Method 
     Setting 
     Code 
     Moderate  
     Easy 
     Hard 
     Runtime 
     Environment 
      
    
   
    1 
     ViKIENet  
      
      
     98.06 %  
     98.63 % 
     93.21 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Yu, B. Qiu and A. Khong:  ViKIENet: Towards Efficient 3D 
Object Detection with Virtual Key Instance 
Enhanced Network . CVPR 2025. 
    
   
    2 
     P3GMF  
      
      
     97.81 % 
     96.67 % 
     93.04 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    3 
     ICD-PSI  
      
      
     97.73 % 
     98.09 % 
     92.94 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    4 
     UDeerPEP  
      
     code  
     97.57 % 
     98.42 % 
     95.08 %  
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen:  PeP: a Point enhanced Painting method 
for unified point cloud tasks . 2023. 
    
   
    5 
     ViKIENet-R  
      
      
     97.40 % 
     95.89 % 
     92.63 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Yu, B. Qiu and A. Khong:  ViKIENet: Towards Efficient 3D 
Object Detection with Virtual Key Instance 
Enhanced Network . CVPR 2025. 
    
   
    6 
     RM3D  
      
      
     97.35 % 
     95.93 % 
     92.67 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    7 
     VirConv-S  
      
     code  
     97.27 % 
     98.00 % 
     94.53 % 
     0.09 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Wu, C. Wen, S. Shi and C. Wang:  Virtual Sparse Convolution for Multimodal 
3D Object Detection . CVPR 2023. 
    
   
    8 
     PointVit V2  
      
      
     96.56 % 
     97.04 % 
     88.97 % 
     .006 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
     
    
   
    9 
     PointVit P1  
      
      
     96.53 % 
     97.05 % 
     88.96 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    10 
     GraR-VoI  
      
     code  
     96.38 % 
     96.81 % 
     91.20 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai:  Graph R-CNN: Towards Accurate 
3D Object Detection with Semantic-Decorated Local 
Graph . ECCV 2022. 
    
   
    11 
     VirConv-T  
      
     code  
     96.38 % 
     98.93 % 
     93.56 % 
     0.09 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Wu, C. Wen, S. Shi and C. Wang:  Virtual Sparse Convolution for Multimodal 
3D Object Detection . CVPR 2023. 
    
   
    12 
     LumiNet  
      
     code  
     96.27 % 
     99.23 % 
     88.94 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    13 
     LDRFusion  
      
      
     96.20 % 
     96.73 % 
     93.33 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    14 
     GraR-Po  
      
     code  
     96.18 % 
     96.84 % 
     91.11 % 
     0.06 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai:  Graph R-CNN: Towards Accurate 
3D Object Detection with Semantic-Decorated Local 
Graph . ECCV 2022. 
    
   
    15 
     SFD  
      
     code  
     96.17 % 
     98.97 % 
     91.13 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai:  Sparse Fuse Dense: Towards High Quality 3D 
Detection with Depth Completion . CVPR 2022. 
    
   
    16 
     MLF-DET  
      
      
     96.17 % 
     96.89 % 
     88.90 % 
     0.09 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng:  MLF-DET: Multi-Level Fusion for Cross-
Modal 3D Object Detection . International Conference on 
Artificial Neural Networks 2023. 
    
   
    17 
     VPFNet  
      
     code  
     96.15 % 
     96.64 % 
     91.14 % 
     0.06 s 
     2 cores @ 2.5 Ghz (Python) 
      
    
   
    H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang:  VPFNet: Improving 3D Object Detection 
with Virtual Point based LiDAR and Stereo Data 
Fusion . IEEE Transactions on Multimedia 2022. 
    
   
    18 
     WWW  
      
      
     96.07 % 
     98.74 % 
     93.27 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    19 
     CLOCs  
      
     code  
     96.07 % 
     96.77 % 
     91.11 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    S. Pang, D. Morris and H. Radha:  CLOCs: Camera-LiDAR Object Candidates 
Fusion for 3D Object Detection  . 2020 IEEE/RSJ International 
Conference on Intelligent Robots and Systems 
(IROS) 2020. 
    
   
    20 
     ACFNet  
      
      
     96.06 % 
     96.68 % 
     93.36 % 
     0.11 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding:  ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images . IEEE Transactions on Intelligent Vehicles 2023. 
    
   
    21 
     RDIoU  
      
     code  
     96.05 % 
     98.79 % 
     91.03 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee:  Rethinking IoU-based Optimization for Single-
stage 3D Object Detection . ECCV 2022. 
    
   
    22 
     GraR-Vo  
      
     code  
     96.05 % 
     96.67 % 
     93.01 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai:  Graph R-CNN: Towards Accurate 
3D Object Detection with Semantic-Decorated Local 
Graph . ECCV 2022. 
    
   
    23 
     TED  
      
     code  
     96.03 % 
     96.64 % 
     93.35 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Wu, C. Wen, W. Li, R. Yang and C. Wang:  Transformation-Equivariant 3D Object 
Detection for Autonomous Driving . AAAI 2023. 
    
   
    24 
     BFT3D  
      
      
     96.03 % 
     96.98 % 
     88.81 % 
     0.15 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    25 
     LongSF  
      
     code  
     96.02 % 
     98.97 % 
     91.10 % 
     0.8 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    :  LongSF: Long State Fusion with SSMs for 
Multimodal 3D Object Detection . 2025. 
    
   
    26 
     CLOCs_PVCas  
      
     code  
     95.96 % 
     96.76 % 
     91.08 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    S. Pang, D. Morris and H. Radha:  CLOCs: Camera-LiDAR Object Candidates 
Fusion for 3D Object Detection  . 2020 IEEE/RSJ International 
Conference on Intelligent Robots and Systems 
(IROS) 2020. 
    
   
    27 
     DPFusion  
      
     code  
     95.94 % 
     96.72 % 
     90.91 % 
     0.07 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan:  Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection . ITSC 2025. 
    
   
    28 
     PVT-SSD  
      
      
     95.90 % 
     96.75 % 
     90.69 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang:  PVT-SSD: Single-Stage 3D Object Detector with 
Point-Voxel Transformer . CVPR 2023. 
    
   
    29 
     UPIDet  
      
     code  
     95.89 % 
     96.25 % 
     93.25 % 
     0.11 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing:  Unleash the Potential of Image Branch 
for Cross-modal 3D Object Detection . Thirty-seventh Conference on Neural 
Information Processing Systems 2023. 
    
   
    30 
     GraR-Pi  
      
     code  
     95.89 % 
     98.59 % 
     92.85 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai:  Graph R-CNN: Towards Accurate 
3D Object Detection with Semantic-Decorated Local 
Graph . ECCV 2022. 
    
   
    31 
     MPCF  
      
     code  
     95.87 % 
     98.95 % 
     90.98 % 
     0.08 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    P. Gao and P. Zhang:  MPCF: Multi-Phase Consolidated Fusion for 
Multi-Modal 3D Object Detection with Pseudo Point 
Cloud . 2024. 
    
   
    32 
     SQD++  
      
      
     95.84 % 
     98.47 % 
     93.03 % 
     0.08 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
     
    
   
    33 
     None  
      
      
     95.84 % 
     98.47 % 
     93.03 % 
     0.05 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    34 
     OcTr  
      
      
     95.84 % 
     96.48 % 
     90.99 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    C. Zhou, Y. Zhang, J. Chen and D. Huang:  OcTr: Octree-based Transformer for 3D Object 
Detection . CVPR 2023. 
    
   
    35 
     3D Dual-Fusion  
      
     code  
     95.82 % 
     96.54 % 
     93.11 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Kim, K. Park, M. Kim, D. Kum and J. Choi:  3D Dual-Fusion: Dual-Domain Dual-Query 
Camera-LiDAR Fusion for 3D Object Detection . arXiv preprint arXiv:2211.13529 2022. 
    
   
    36 
     GLENet-VR  
      
     code  
     95.81 % 
     96.85 % 
     90.91 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan:  GLENet: Boosting 3D object 
detectors 
with generative label uncertainty estimation . International Journal of Computer 
Vision 2023. Y. Zhang, J. Hou and Y. Yuan:  A Comprehensive Study of the Robustness 
for LiDAR-based 3D Object Detectors against 
Adversarial Attacks . International Journal of Computer 
Vision 2023. 
    
   
    37 
     mm3d  
      
      
     95.81 % 
     96.89 % 
     90.92 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    38 
     TSSTDet  
      
      
     95.81 % 
     96.65 % 
     93.05 % 
     0.08 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Hoang, D. Bui and M. Yoo:  TSSTDet: Transformation-Based 3-D Object 
Detection via a Spatial Shape Transformer . IEEE Sensors Journal 2024. 
    
   
    39 
     DVF-V  
      
      
     95.77 % 
     96.60 % 
     90.89 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    A. Mahmoud, J. Hu and S. Waslander:  Dense Voxel Fusion for 3D Object 
Detection . WACV 2023. 
    
   
    40 
     Fast-CLOCs  
      
      
     95.75 % 
     96.69 % 
     90.95 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    S. Pang, D. Morris and H. Radha:  Fast-CLOCs: Fast Camera-LiDAR 
Object Candidates Fusion for 3D Object Detection . Proceedings of the IEEE/CVF 
Winter Conference on Applications of Computer 
Vision (WACV) 2022. 
    
   
    41 
     TRTConv-L  
      
      
     95.73 % 
     96.58 % 
     92.97 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    42 
     3D HANet  
      
     code  
     95.73 % 
     98.61 % 
     92.96 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang:  3D HANet: A Flexible 3D Heatmap Auxiliary 
Network for Object Detection . IEEE Transactions on Geoscience and 
Remote Sensing 2023. 
    
   
    43 
     DSGN++  
      
     code  
     95.70 % 
     98.08 % 
     88.27 % 
     0.2 s 
     GeForce RTX 2080Ti 
      
    
   
    Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia:  DSGN++: Exploiting Visual-Spatial Relation 
for Stereo-Based 3D Detectors . IEEE Transactions on Pattern Analysis and 
Machine Intelligence 2022. 
    
   
    44 
     MonoHD  
      
      
     95.65 % 
     96.37 % 
     90.69 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    45 
     mat3D  
      
      
     95.64 % 
     98.83 % 
     93.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    46 
     CasA  
      
     code  
     95.62 % 
     96.52 % 
     92.86 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Wu, J. Deng, C. Wen, X. Li and C. Wang:  CasA: A Cascade Attention Network for 3D 
Object Detection from LiDAR point clouds . IEEE Transactions on Geoscience and 
Remote Sensing 2022. 
    
   
    47 
     BADet  
      
     code  
     95.61 % 
     98.75 % 
     90.64 % 
     0.14 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    R. Qian, X. Lai and X. Li:  BADet: Boundary-Aware 3D Object 
Detection 
from Point Clouds . Pattern Recognition 2022. 
    
   
    48 
     SE-SSD  
      
     code  
     95.60 % 
     96.69 % 
     90.53 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    W. Zheng, W. Tang, L. Jiang and C. Fu:  SE-SSD: Self-Ensembling Single-Stage Object 
Detector From Point Cloud . CVPR 2021. 
    
   
    49 
     FARP-Net  
      
     code  
     95.57 % 
     96.11 % 
     93.07 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li:  FARP-Net: Local-Global Feature 
Aggregation and Relation-Aware Proposals for 3D 
Object Detection . IEEE Transactions on Multimedia 2023. 
    
   
    50 
     LoGoNet  
      
     code  
     95.55 % 
     96.60 % 
     93.07 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others:  LoGoNet: Towards Accurate 3D Object 
Detection with Local-to-Global Cross-Modal Fusion . CVPR 2023. 
    
   
    51 
     GD-MAE  
      
      
     95.54 % 
     98.38 % 
     90.42 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang:  GD-MAE: Generative Decoder for MAE Pre-
training on LiDAR Point Clouds . CVPR 2023. 
    
   
    52 
     3D-AWARE  
      
      
     95.52 % 
     98.69 % 
     92.93 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    53 
     DVF-PV  
      
      
     95.49 % 
     96.42 % 
     92.57 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    A. Mahmoud, J. Hu and S. Waslander:  Dense Voxel Fusion for 3D Object 
Detection . WACV 2023. 
    
   
    54 
     SpaA  
      
      
     95.47 % 
     96.18 % 
     92.78 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    55 
     SPANet  
      
      
     95.46 % 
     96.54 % 
     90.47 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Ye:  SPANet: Spatial and Part-Aware Aggregation Network 
for 3D Object Detection . Pacific Rim International Conference on Artificial 
Intelligence 2021. 
    
   
    56 
     PG-RCNN  
      
     code  
     95.40 % 
     96.66 % 
     90.55 % 
     0.06 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim:  PG-RCNN: Semantic Surface Point 
Generation for 3D Object Detection . 2023. 
    
   
    57 
     FIRM-Net_SCF+  
      
      
     95.38 % 
     96.31 % 
     92.71 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    58 
     SCDA-Net  
      
      
     95.37 % 
     98.62 % 
     92.90 % 
     - s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    59 
     ImagePG  
      
      
     95.36 % 
     96.18 % 
     92.79 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    60 
     FIRM-Net-SCF  
      
      
     95.36 % 
     96.30 % 
     92.69 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    61 
     SASA  
      
     code  
     95.35 % 
     96.01 % 
     92.53 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    C. Chen, Z. Chen, J. Zhang and D. Tao:  SASA: Semantics-Augmented Set Abstraction 
for Point-based 3D Object Detection . arXiv preprint arXiv:2201.01976 2022. 
    
   
    62 
     SPG_mini  
      
     code  
     95.32 % 
     96.23 % 
     92.68 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov:  SPG: Unsupervised Domain Adaptation for 
3D Object Detection via Semantic Point 
Generation . Proceedings of the IEEE conference on 
computer vision and pattern recognition (ICCV) 2021. 
    
   
    63 
     EQ-PVRCNN  
      
     code  
     95.32 % 
     98.23 % 
     92.65 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia:  A Unified Query-based Paradigm for Point Cloud 
Understanding . Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2022. 
    
   
    64 
     TRTConv-T  
      
      
     95.31 % 
     98.38 % 
     92.69 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    65 
     Focals Conv  
      
     code  
     95.28 % 
     96.30 % 
     92.69 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia:  Focal Sparse Convolutional Networks for 3D Object 
Detection . Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition 2022. 
    
   
    66 
     CasA++  
      
     code  
     95.28 % 
     95.83 % 
     94.28 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Wu, J. Deng, C. Wen, X. Li and C. Wang:  CasA: A Cascade Attention Network for 3D 
Object Detection from LiDAR point clouds . IEEE Transactions on Geoscience and 
Remote Sensing 2022. 
    
   
    67 
     DUO-Net  
      
      
     95.24 % 
     96.19 % 
     90.60 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    68 
     CEF  
      
     code  
     95.24 % 
     96.19 % 
     90.60 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    69 
     VoxSeT  
      
     code  
     95.23 % 
     96.16 % 
     90.49 % 
     33 ms 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    C. He, R. Li, S. Li and L. Zhang:  Voxel Set Transformer: A Set-to-Set Approach 
to 3D Object Detection from Point Clouds . CVPR 2022. 
    
   
    70 
     PC-CNN-V2  
      
      
     95.20 % 
     96.06 % 
     89.37 % 
     0.5 s 
     GPU @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    X. Du, M. Ang, S. Karaman and D. Rus:  A General Pipeline for 3D Detection of Vehicles . 2018 IEEE International Conference on Robotics 
and Automation (ICRA) 2018. 
    
   
    71 
     RagNet3D  
      
     code  
     95.17 % 
     96.27 % 
     92.66 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang:  Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection . Available at SSRN 4979473 . 
    
   
    72 
     VPFNet  
      
     code  
     95.17 % 
     96.06 % 
     92.66 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    C. Wang, H. Chen and L. Fu:  VPFNet: Voxel-Pixel Fusion Network 
for Multi-class 3D Object Detection . 2021. C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu:  VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection . IEEE Transactions on Intelligent Transportation Systems 2024. 
    
   
    73 
     F-PointNet  
      
     code  
     95.17 % 
     95.85 % 
     85.42 % 
     0.17 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
    C. Qi, W. Liu, C. Wu, H. Su and L. Guibas:  Frustum PointNets for 3D Object Detection from RGB-D Data . arXiv preprint arXiv:1711.08488 2017. 
    
   
    74 
     EPNet++  
      
      
     95.17 % 
     96.73 % 
     92.10 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai:  EPNet++: Cascade Bi-Directional Fusion for 
Multi-Modal 3D Object Detection . IEEE Transactions on 
Pattern Analysis and Machine Intelligence 2022. 
    
   
    75 
     SA-SSD  
      
     code  
     95.16 % 
     97.92 % 
     90.15 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    C. He, H. Zeng, J. Huang, X. Hua and L. Zhang:  Structure Aware Single-stage 3D Object Detection from Point Cloud . CVPR 2020. 
    
   
    76 
     HMFI  
      
     code  
     95.16 % 
     96.29 % 
     92.45 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He:  Homogeneous Multi-modal Feature Fusion and 
Interaction for 3D Object Detection . ECCV 2022. 
    
   
    77 
     USVLab BSAODet  
      
     code  
     95.15 % 
     96.26 % 
     92.62 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li:  Balanced Sample Assignment and Objective 
for Single-Model Multi-Class 3D Object Detection . IEEE Transactions on Circuits and 
Systems for Video Technology 2023. 
    
   
    78 
     Pyramid R-CNN  
      
      
     95.13 % 
     95.88 % 
     92.62 % 
     0.07 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu:  Pyramid R-CNN: Towards Better Performance and 
Adaptability for 3D Object Detection . ICCV 2021. 
    
   
    79 
     Voxel R-CNN  
      
     code  
     95.11 % 
     96.49 % 
     92.45 % 
     0.04 s 
     GPU @ 3.0 Ghz (C/C++) 
      
    
   
    J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li:  Voxel R-CNN: Towards High Performance 
Voxel-based 3D Object Detection
 . AAAI 2021. 
    
   
    80 
     3DSSD  
      
     code  
     95.10 % 
     97.69 % 
     92.18 % 
     0.04 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Yang, Y. Sun, S. Liu and J. Jia:  3DSSD: Point-based 3D Single Stage Object 
Detector . CVPR 2020. 
    
   
    81 
     MonoSample (DID-M3D)  
      
     code  
     95.02 % 
     96.45 % 
     85.58 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Qiao, B. Liu, J. Yang, B. Wang, S. Xiu, X. Du and X. Nie:  MonoSample: Synthetic 3D Data 
Augmentation Method in Monocular 3D Object 
Detection . IEEE Robotics and Automation Letters 2024. 
    
   
    82 
     PDV  
      
     code  
     95.00 % 
     96.07 % 
     92.44 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Hu, T. Kuai and S. Waslander:  Point Density-Aware Voxels for LiDAR 3D Object Detection . CVPR 2022. 
    
   
    83 
     MVRA + I-FRCNN+  
      
      
     94.98 % 
     95.87 % 
     82.52 % 
     0.18 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Choi, H. Kang and Y. Hyun:  Multi-View Reprojection Architecture for 
Orientation Estimation . The IEEE International Conference on 
Computer Vision (ICCV) Workshops 2019. 
    
   
    84 
     SVFMamba  
      
     code  
     94.97 % 
     95.54 % 
     92.24 % 
     N/A s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    85 
     SIENet  
      
     code  
     94.97 % 
     96.02 % 
     92.40 % 
     0.08 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie:  SIENet: Spatial Information Enhancement Network for 
3D Object Detection from Point Cloud . 2021. 
    
   
    86 
     VoTr-TSD  
      
     code  
     94.94 % 
     95.97 % 
     92.44 % 
     0.07 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu:  Voxel Transformer for 3D Object Detection . ICCV 2021. 
    
   
    87 
     L-AUG  
      
      
     94.92 % 
     95.84 % 
     92.22 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    T. Cortinhal, I. Gouigah and E. Aksoy:  Semantics-aware LiDAR-Only Pseudo Point 
Cloud Generation for 3D Object Detection . 2023. 
    
   
    88 
     SQD  
      
     code  
     94.92 % 
     98.21 % 
     92.37 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Mo, Y. Wu, J. Zhao, Z. Hou, W. Huang, Y. Hu, J. Wang and J. Yan:  Sparse Query Dense: Enhancing 3D Object Detection with Pseudo Points . ACM MM Oral 2024. 
    
   
    89 
     GraphAlign(ICCV2023)  
      
     code  
     94.87 % 
     98.06 % 
     92.47 % 
     0.03 s 
     GPU @ 2.0 Ghz (Python) 
      
    
   
    Z. Song, H. Wei, L. Bai, L. Yang and C. Jia:  GraphAlign: Enhancing accurate feature 
alignment by graph matching for multi-modal 3D 
object detection . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2023. 
    
   
    90 
     M3DeTR  
      
     code  
     94.83 % 
     97.39 % 
     92.10 % 
     n/a s 
     GPU @ 1.0 Ghz (Python) 
      
    
   
    T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha:  M3DeTR: Multi-representation, Multi-
scale, Mutual-relation 3D Object Detection with 
Transformers . 2021. 
    
   
    91 
     StructuralIF  
      
      
     94.81 % 
     96.14 % 
     92.12 % 
     0.02 s 
     8 cores @ 2.5 Ghz (Python) 
      
    
   
    J. Pei An:  Deep structural information fusion for 3D 
object detection on LiDAR-camera system . Accepted in CVIU 2021. 
    
   
    92 
     XView  
      
      
     94.77 % 
     95.89 % 
     92.23 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Xie, G. Xu, D. Cai and X. He:  X-view: Non-egocentric Multi-View 3D 
Object Detector . 2021. 
    
   
    93 
     P2V-RCNN  
      
      
     94.73 % 
     96.03 % 
     92.34 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao:  P2V-RCNN: Point to Voxel Feature 
Learning for 3D Object Detection from Point 
Clouds . IEEE Access 2021. 
    
   
    94 
     SPG  
      
     code  
     94.71 % 
     97.80 % 
     92.19 % 
     0.09 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov:  SPG: Unsupervised Domain Adaptation for 
3D Object Detection via Semantic Point 
Generation . Proceedings of the IEEE conference on 
computer vision and pattern recognition (ICCV) 2021. 
    
   
    95 
     CAT-Det  
      
      
     94.71 % 
     95.97 % 
     92.07 % 
     0.3 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Zhang, J. Chen and D. Huang:  CAT-Det: Contrastively Augmented Transformer 
for Multi-modal 3D Object Detection . CVPR 2022. 
    
   
    96 
     MMLab PV-RCNN  
      
     code  
     94.70 % 
     98.17 % 
     92.04 % 
     0.08 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li:  PV-RCNN: Point-Voxel Feature Set 
Abstraction for 
3D Object Detection . CVPR 2020. 
    
   
    97 
     RobusTor3D  
      
      
     94.69 % 
     98.12 % 
     92.30 % 
     ... s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    98 
     SVGA-Net  
      
      
     94.67 % 
     96.05 % 
     91.86 % 
     0.03s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu:  SVGA-Net: Sparse Voxel-Graph Attention 
Network for 3D Object Detection from Point 
Clouds . AAAI 2022. 
    
   
    99 
     RangeDet (Official)  
      
     code  
     94.64 % 
     95.50 % 
     91.77 % 
     0.02 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang:  RangeDet: In Defense of Range 
View for LiDAR-Based 3D Object Detection . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 
(ICCV) 2021. 
    
   
    100 
     DSA-PV-RCNN  
      
     code  
     94.64 % 
     95.86 % 
     92.10 % 
     0.08 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    P. Bhattacharyya, C. Huang and K. Czarnecki:  SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection . 2021. 
    
   
    101 
     RangeIoUDet  
      
      
     94.61 % 
     95.74 % 
     91.98 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu:  RangeIoUDet: Range Image Based Real-Time 
3D 
Object Detector Optimized by Intersection Over 
Union . CVPR 2021. 
    
   
    102 
     BVIFusion+  
      
      
     94.61 % 
     95.81 % 
     91.93 % 
     0.09 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    103 
     PASS-PV-RCNN-Plus  
      
      
     94.59 % 
     95.79 % 
     92.10 % 
     1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Anonymous:  Leveraging Anchor-based LiDAR 3D Object
Detection via Point Assisted Sample Selection . will submit to computer vision 
conference/journal 2024. 
    
   
    104 
     DVFENet  
      
      
     94.57 % 
     95.35 % 
     91.77 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang:  DVFENet: Dual-branch Voxel Feature 
Extraction Network for 3D Object Detection . Neurocomputing 2021. 
    
   
    105 
     Voxel RCNN*  
      
     code  
     94.53 % 
     96.12 % 
     91.84 % 
     0.07 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    106 
     TuSimple  
      
     code  
     94.47 % 
     95.12 % 
     86.45 % 
     1.6 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    F. Yang, W. Choi and Y. Lin:  Exploit all the layers: Fast and accurate cnn object detector 
with scale dependent pooling and cascaded rejection classifiers . Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition 2016. K. He, X. Zhang, S. Ren and J. Sun:  Deep residual learning for image recognition . Proceedings of the IEEE conference on computer vision 
and pattern recognition 2016. 
    
   
    107 
     EPNet  
      
     code  
     94.44 % 
     96.15 % 
     89.99 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    T. Huang, Z. Liu, X. Chen and X. Bai:  EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection . ECCV 2020. 
    
   
    108 
     SFA_IGCL_Focalsconv*  
      
     code  
     94.44 % 
     95.92 % 
     92.18 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    109 
     2025AAAI-SSLfusion  
      
     code  
     94.42 % 
     98.23 % 
     89.97 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    110 
     SERCNN  
      
      
     94.42 % 
     96.33 % 
     89.96 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang:  Joint 3D Instance Segmentation and 
Object Detection for Autonomous Driving . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2020. 
    
   
    111 
     New_VLGCL  
      
     code  
     94.35 % 
     97.60 % 
     92.05 % 
     0.4 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    112 
     ...  
      
     code  
     94.32 % 
     98.02 % 
     91.88 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    113 
     dsvd+vx  
      
      
     94.30 % 
     95.09 % 
     91.51 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    114 
     UberATG-MMF  
      
      
     94.25 % 
     97.41 % 
     89.87 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun:  Multi-Task Multi-Sensor Fusion for 3D 
Object Detection . CVPR 2019. 
    
   
    115 
     SRDL  
      
      
     94.24 % 
     95.86 % 
     91.80 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    116 
     CGML  
      
      
     94.14 % 
     97.56 % 
     91.89 % 
     0.33 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    117 
     Voxel RCNN-Focal*  
      
     code  
     94.14 % 
     95.62 % 
     91.99 % 
     0.2 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    118 
     VLGCL_NoText  
      
     code  
     94.12 % 
     95.89 % 
     91.92 % 
     0.3 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    119 
     FocalsConv*  
      
      
     94.10 % 
     97.67 % 
     91.88 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    120 
     HMNet  
      
      
     94.07 % 
     95.51 % 
     91.23 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    121 
     PointVit V1  
      
      
     94.04 % 
     99.36 %  
     86.46 % 
     .006 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
     
    
   
    122 
     RangeRCNN  
      
      
     94.03 % 
     95.48 % 
     91.74 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu:  RangeRCNN: Towards Fast and Accurate 3D 
Object Detection with Range Image 
Representation . arXiv preprint arXiv:2009.00206 2020. 
    
   
    123 
     SA V1  
      
      
     94.02 % 
     94.86 % 
     91.16 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    124 
     Faraway-Frustum  
      
     code  
     93.99 % 
     95.81 % 
     91.72 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner:  Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion . 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021. 
    
   
    125 
     DD3D  
      
     code  
     93.99 % 
     94.69 % 
     89.37 % 
     n/a s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon:  Is Pseudo-Lidar needed for Monocular 3D 
Object detection? . IEEE/CVF International Conference on 
Computer Vision (ICCV) . 
    
   
    126 
     MSFASA-3DNet  
      
      
     93.98 % 
     95.21 % 
     90.94 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    127 
     SIF  
      
      
     93.95 % 
     95.51 % 
     91.57 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    P. An:  SIF . Submitted to CVIU 2021. 
    
   
    128 
     MGAF-3DSSD  
      
     code  
     93.87 % 
     94.45 % 
     86.37 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Li, H. Dai, L. Shao and Y. Ding:  Anchor-free 3D Single Stage 
Detector with Mask-Guided Attention for Point 
Cloud . MM '21: The 29th ACM 
International Conference on Multimedia (ACM MM) 2021. 
    
   
    129 
     3ONet  
      
      
     93.87 % 
     96.97 % 
     88.84 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Hoang and M. Yoo:  3ONet: 3-D Detector for Occluded Object 
Under Obstructed Conditions . IEEE Sensors Journal 2023. 
    
   
    130 
     LPCG-Monoflex  
      
     code  
     93.86 % 
     96.90 % 
     83.94 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai:  Lidar Point Cloud Guided Monocular 3D 
Object Detection . ECCV 2022. 
    
   
    131 
     WinMamba  
      
     code  
     93.84 % 
     95.07 % 
     92.63 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    132 
     MMLAB LIGA-Stereo  
      
     code  
     93.82 % 
     96.43 % 
     86.19 % 
     0.4 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    X. Guo, S. Shi, X. Wang and H. Li:  LIGA-Stereo: Learning LiDAR Geometry 
Aware Representations for Stereo-based 3D 
Detector . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 
(ICCV) 2021. 
    
   
    133 
     Sem-Aug  
      
      
     93.77 % 
     96.79 % 
     88.78 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    L. Zhao, M. Wang and Y. Yue:  Sem-Aug: Improving 
Camera-LiDAR Feature Fusion With Semantic 
Augmentation for 3D Vehicle Detection . IEEE Robotics 
and Automation Letters 2022. 
    
   
    134 
     Patches - EMP  
      
      
     93.75 % 
     97.91 % 
     90.56 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter:  Patch Refinement: Localized 3D 
Object Detection . arXiv preprint arXiv:1910.04093 2019. 
    
   
    135 
     CIA-SSD  
      
     code  
     93.72 % 
     96.87 % 
     86.20 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu:  CIA-SSD: Confident IoU-Aware Single-Stage 
Object Detector From Point Cloud . AAAI 2021. 
    
   
    136 
     QD-3DT  
      
     code  
     93.66 % 
     94.26 % 
     83.63 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun:  Monocular Quasi-Dense 3D Object Tracking . ArXiv:2103.07351 2021. 
    
   
    137 
     MVAF-Net  
      
     code  
     93.66 % 
     95.37 % 
     90.90 % 
     0.06 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu:  Multi-View Adaptive Fusion Network for 
3D Object Detection . arXiv preprint arXiv:2011.00652 2020. 
    
   
    138 
     SSL-PointGNN  
      
     code  
     93.65 % 
     96.61 % 
     88.53 % 
     0.56 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll:  3D Object Detection with a Self-supervised Lidar Scene Flow 
Backbone . arXiv preprint arXiv:2205.00705 2022. 
    
   
    139 
     work6_new1  
      
      
     93.65 % 
     94.87 % 
     90.94 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    140 
     MonoHPE-Mask  
      
      
     93.63 % 
     96.48 % 
     86.04 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    141 
     MonoHPE  
      
      
     93.62 % 
     94.25 % 
     83.79 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    142 
     PA3DNet  
      
      
     93.62 % 
     96.57 % 
     88.65 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    M. Wang, L. Zhao and Y. Yue:  PA3DNet: 3-D Vehicle Detection with 
Pseudo Shape Segmentation and Adaptive Camera-
LiDAR Fusion . IEEE Transactions on Industrial 
Informatics 2023. 
    
   
    143 
     DynaMo3D  
      
      
     93.61 % 
     95.30 % 
     90.90 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    144 
     CS3D  
      
      
     93.58 % 
     95.18 % 
     90.84 % 
     0.5 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    145 
     IA-SSD (multi)  
      
     code  
     93.56 % 
     96.10 % 
     90.68 % 
     0.014 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo:  Not All Points Are Equal: Learning Highly 
Efficient Point-based Detectors for 3D LiDAR Point 
Clouds . CVPR 2022. 
    
   
    146 
     MonoLiG  
      
     code  
     93.56 % 
     96.70 % 
     83.74 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    A. Hekimoglu, M. Schmidt and A. Ramiro:  Monocular 3D Object Detection with LiDAR Guided Semi 
Supervised Active Learning . 2023. 
    
   
    147 
     MonoPair  
      
      
     93.55 % 
     96.61 % 
     83.55 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Chen, L. Tai, K. Sun and M. Li:  MonoPair: Monocular 3D Object Detection 
Using Pairwise Spatial Relationships . The IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) 2020. 
    
   
    148 
     IA-SSD (single)  
      
     code  
     93.54 % 
     96.26 % 
     88.49 % 
     0.013 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo:  Not All Points Are Equal: Learning Highly 
Efficient Point-based Detectors for 3D LiDAR Point 
Clouds . CVPR 2022. 
    
   
    149 
     EBM3DOD  
      
     code  
     93.54 % 
     96.81 % 
     88.33 % 
     0.12 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    F. Gustafsson, M. Danelljan and T. Schön:  Accurate 3D Object Detection using Energy-
Based Models . arXiv preprint arXiv:2012.04634 2020. 
    
   
    150 
     IDEAL-M3D 60%  
      
      
     93.51 % 
     96.32 % 
     85.98 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    151 
     SeSame-point  
      
     code  
     93.50 % 
     95.22 % 
     90.44 % 
     N/A s 
     TITAN RTX @ 1.35 Ghz (Python) 
      
    
   
    H. O, C. Yang and K. Huh:  SeSame: Simple, Easy 3D Object 
Detection with Point-Wise Semantics . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    152 
     Deep MANTA  
      
      
     93.50 % 
     98.89 % 
     83.21 % 
     0.7 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau:  Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image . CVPR 2017. 
    
   
    153 
     Point-GNN  
      
     code  
     93.50 % 
     96.58 % 
     88.35 % 
     0.6 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    W. Shi and R. Rajkumar:  Point-GNN: Graph Neural Network for 3D 
Object Detection in a Point Cloud . CVPR 2020. 
    
   
    154 
     BtcDet  
      
     code  
     93.47 % 
     96.23 % 
     88.55 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Q. Xu, Y. Zhong and U. Neumann:  Behind the Curtain: Learning Occluded 
Shapes for 3D Object Detection . Proceedings of the AAAI Conference on 
Artificial Intelligence 2022. 
    
   
    155 
     MonoDLGD  
      
      
     93.45 % 
     96.45 % 
     83.72 % 
     0.04 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    156 
     Struc info fusion II  
      
      
     93.45 % 
     96.72 % 
     88.31 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    P. An, J. Liang, J. Ma, K. Yu and B. Fang:  Struc info fusion . Submitted to CVIU 2021. 
    
   
    157 
     EBM3DOD baseline  
      
     code  
     93.45 % 
     96.72 % 
     88.25 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    F. Gustafsson, M. Danelljan and T. Schön:  Accurate 3D Object Detection using Energy-
Based Models . arXiv preprint arXiv:2012.04634 2020. 
    
   
    158 
     StereoDistill  
      
      
     93.43 % 
     97.61 % 
     87.71 % 
     0.4 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai:  StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection . Proceedings of the AAAI Conference on Artificial Intelligence 2023. 
    
   
    159 
     MonoAFKD  
      
      
     93.42 % 
     96.18 % 
     83.62 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    160 
     MonoLSS  
      
      
     93.42 % 
     96.19 % 
     83.62 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Li, J. Jia and Y. Shi:  MonoLSS: Learnable Sample Selection For 
Monocular 3D Detection . International Conference on 3D Vision 2024. 
    
   
    161 
     RRC  
      
     code  
     93.40 % 
     95.68 % 
     87.37 % 
     3.6  s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu:  Accurate Single Stage Detector Using 
Recurrent Rolling Convolution . CVPR 2017. 
    
   
    162 
     AM  
      
      
     93.39 % 
     96.22 % 
     85.84 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    163 
     3D-CVF at SPA  
      
     code  
     93.36 % 
     96.78 % 
     86.11 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Yoo, Y. Kim, J. Kim and J. Choi:  3D-CVF: Generating Joint Camera and 
LiDAR 
Features Using Cross-View Spatial Feature 
Fusion for 
3D Object Detection . ECCV 2020. 
    
   
    164 
     SNVC  
      
     code  
     93.32 % 
     96.33 % 
     85.81 % 
     1 s 
     GPU @ 1.0 Ghz (Python) 
      
    
   
    S. Li, Z. Liu, Z. Shen and K. Cheng:  Stereo Neural Vernier Caliper . Proceedings of the AAAI Conference on 
Artificial Intelligence 2022. 
    
   
    165 
     DFAF3D  
      
      
     93.32 % 
     96.58 % 
     90.24 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang:  DFAF3D: A dual-feature-aware anchor-free 
single-stage 3D detector for point clouds . Image and Vision Computing 2023. 
    
   
    166 
     MonoLSPF  
      
      
     93.32 % 
     96.15 % 
     85.74 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    167 
     Struc info fusion I  
      
      
     93.31 % 
     96.59 % 
     88.23 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    P. An, J. Liang, J. Ma, K. Yu and B. Fang:  Struc info fusion . Submitted to CVIU 2021. 
    
   
    168 
     NoText_VLGCL  
      
     code  
     93.30 % 
     97.56 % 
     89.42 % 
     0.2 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    169 
     CityBrainLab-CT3D  
      
     code  
     93.30 % 
     96.28 % 
     90.58 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao:  Improving 3D Object Detection with Channel-
wise Transformer . ICCV 2021. 
    
   
    170 
     STD  
      
     code  
     93.22 % 
     96.14 % 
     90.53 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia:  STD: Sparse-to-Dense 3D Object Detector for 
Point Cloud . ICCV 2019. 
    
   
    171 
     SARPNET  
      
      
     93.21 % 
     96.07 % 
     88.09 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang:  SARPNET: Shape Attention Regional Proposal 
Network for LiDAR-based 3D Object Detection . Neurocomputing 2019. 
    
   
    172 
     H^23D R-CNN  
      
     code  
     93.20 % 
     96.20 % 
     90.55 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Deng, W. Zhou, Y. Zhang and H. Li:  From Multi-View to Hollow-3D: Hallucinated 
Hollow-3D R-CNN for 3D Object Detection . IEEE Transactions on Circuits and Systems 
for Video Technology 2021. 
    
   
    173 
     Fast Point R-CNN  
      
      
     93.18 % 
     96.13 % 
     87.68 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Chen, S. Liu, X. Shen and J. Jia:  Fast Point R-CNN . Proceedings of the IEEE international 
conference on computer vision (ICCV) 2019. 
    
   
    174 
     sensekitti  
      
     code  
     93.17 % 
     94.79 % 
     84.38 % 
     4.5 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    B. Yang, J. Yan, Z. Lei and S. Li:  Craft Objects from Images . CVPR 2016. 
    
   
    175 
     SJTU-HW  
      
      
     93.11 % 
     96.30 % 
     82.21 % 
     0.85s 
     GPU @ 1.5 Ghz (Python + C/C++) 
      
    
   
    S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao:  LED: LOCALIZATION-QUALITY ESTIMATION 
EMBEDDED DETECTOR . IEEE International Conference on 
Image Processing 2018. L. Fang, X. Zhao and S. Zhang:  Small-objectness sensitive detection 
based on shifted single shot detector . Multimedia Tools and Applications 2018. 
    
   
    176 
     FromVoxelToPoint  
      
     code  
     93.06 % 
     96.08 % 
     90.53 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Li, H. Dai, L. Shao and Y. Ding:  From Voxel to Point: IoU-guided 3D 
Object Detection for Point Cloud with Voxel-to-
Point Decoder . MM '21: The 29th ACM 
International Conference on Multimedia (ACM MM) 2021. 
    
   
    177 
     CLOCs_SecCas  
      
      
     92.95 % 
     95.43 % 
     89.21 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    S. Pang, D. Morris and H. Radha:  CLOCs: Camera-LiDAR Object Candidates 
Fusion for 3D Object Detection . 2020 IEEE/RSJ International 
Conference on Intelligent Robots and Systems 
(IROS) 2020. 
    
   
    178 
     MonoCD  
      
     code  
     92.91 % 
     96.43 % 
     85.55 % 
     n/a s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan:  MonoCD: Monocular 3D Object Detection with 
Complementary Depths . CVPR 2024. 
    
   
    179 
     Fade-kd  
      
      
     92.91 % 
     96.26 % 
     89.99 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    180 
     ACDet  
      
     code  
     92.84 % 
     96.18 % 
     89.83 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Xu, G. Wang, X. Zhang and G. Wan:  ACDet: Attentive Cross-view Fusion 
for LiDAR-based 3D Object Detection . 3DV 2022. 
    
   
    181 
     HotSpotNet  
      
      
     92.81 % 
     96.21 % 
     89.80 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille:  object as hotspots . Proceedings of the European Conference 
on Computer Vision (ECCV) 2020. 
    
   
    182 
     SegVoxelNet  
      
      
     92.73 % 
     96.00 % 
     87.60 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang:  SegVoxelNet: Exploring Semantic Context 
and 
Depth-aware Features for 3D Vehicle Detection from 
Point Cloud . ICRA 2020. 
    
   
    183 
     Patches  
      
      
     92.72 % 
     96.34 % 
     87.63 % 
     0.15 s 
     GPU @ 2.0 Ghz  
      
    
   
    J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter:  Patch Refinement: Localized 3D 
Object Detection . arXiv preprint arXiv:1910.04093 2019. 
    
   
    184 
     Cube R-CNN  
      
     code  
     92.72 % 
     95.78 % 
     84.81 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari:  Omni3D: A Large Benchmark and 
Model for 3D Object Detection in the Wild . CVPR 2023. 
    
   
    185 
     CenterNet3D  
      
      
     92.69 % 
     95.76 % 
     89.81 % 
     0.04 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao:  CenterNet3D:An Anchor free Object Detector for Autonomous 
Driving . 2020. 
    
   
    186 
     R-GCN  
      
      
     92.67 % 
     96.19 % 
     87.66 % 
     0.16 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Zarzar, S. Giancola and B. Ghanem:  PointRGCN: Graph Convolution Networks for 
3D Vehicles Detection Refinement . ArXiv 2019. 
    
   
    187 
     PI-RCNN  
      
      
     92.66 % 
     96.17 % 
     87.68 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He:  PI-RCNN: An Efficient Multi-sensor 3D 
Object Detector with Point-based Attentive Cont-conv 
Fusion Module . AAAI 2020 : The Thirty-Fourth 
AAAI Conference on Artificial Intelligence 2020. 
    
   
    188 
     PointPainting  
      
      
     92.58 % 
     98.39 % 
     89.71 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    S. Vora, A. Lang, B. Helou and O. Beijbom:  PointPainting: Sequential Fusion for 3D Object 
Detection . CVPR 2020. 
    
   
    189 
     Fade 3D  
      
     code  
     92.55 % 
     97.71 % 
     87.50 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen:  Fade3D: Fast and Deployable 3D Object 
Detection for Autonomous Driving . IEEE Transactions on Intelligent 
Transportation Systems 2025. 
    
   
    190 
     DASS  
      
      
     92.53 % 
     96.23 % 
     87.75 % 
     0.09 s 
     1 core @ 2.0 Ghz (Python) 
      
    
   
    O. Unal, L. Van Gool and D. Dai:  Improving Point Cloud Semantic 
Segmentation by Learning 3D Object Detection . Proceedings of the IEEE/CVF 
Winter Conference on Applications of Computer 
Vision (WACV) 2021. 
    
   
    191 
     3D IoU-Net  
      
      
     92.47 % 
     96.31 % 
     87.67 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao:  3D IoU-Net: IoU Guided 3D Object Detector for 
Point Clouds . arXiv preprint arXiv:2004.04962 2020. 
    
   
    192 
     Associate-3Ddet  
      
     code  
     92.45 % 
     95.61 % 
     87.32 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen:  Associate-3Ddet: Perceptual-to-Conceptual 
Association for 3D Point Cloud Object Detection . The IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR) 2020. 
    
   
    193 
     S-AT GCN  
      
      
     92.44 % 
     95.06 % 
     90.78 % 
     0.02 s 
     GPU @ 2.0 Ghz (Python) 
      
    
   
    L. Wang, C. Wang, X. Zhang, T. Lan and J. Li:  S-AT GCN: Spatial-Attention 
Graph Convolution Network based Feature
               Enhancement for 3D Object 
Detection . CoRR 2021. 
    
   
    194 
     PointRGCN  
      
      
     92.33 % 
     97.51 % 
     87.07 % 
     0.26 s 
     GPU @ V100 (Python) 
      
    
   
    J. Zarzar, S. Giancola and B. Ghanem:  PointRGCN: Graph Convolution Networks for 
3D Vehicles Detection Refinement . ArXiv 2019. 
    
   
    195 
     Sem-Aug-PointRCNN++  
      
      
     92.32 % 
     95.65 % 
     87.62 % 
     0.1 s 
     8 cores @ 3.0 Ghz (Python) 
      
    
   
    L. Zhao, M. Wang and Y. Yue:  Sem-Aug: Improving 
Camera-LiDAR Feature Fusion With Semantic 
Augmentation for 3D Vehicle Detection . IEEE Robotics 
and Automation Letters 2022. 
    
   
    196 
     XPillars  
      
      
     92.26 % 
     94.78 % 
     89.18 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    197 
     Harmonic PointPillar  
      
     code  
     92.25 % 
     95.16 % 
     89.11 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung:  3D Harmonic Loss: Towards Task-consistent 
and Time-friendly 3D Object Detection for V2X 
Orchestration . will submit to IEEE Transactions on 
Vehicular Technology 2022. 
    
   
    198 
     R_Pillar  
      
      
     92.25 % 
     94.96 % 
     89.17 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    199 
     F-ConvNet  
      
     code  
     92.19 % 
     95.85 % 
     80.09 % 
     0.47 s 
     GPU @ 2.5 Ghz (Python + C/C++)	 
      
    
   
    Z. Wang and K. Jia:  Frustum ConvNet: Sliding Frustums to 
Aggregate Local Point-Wise Features for Amodal 3D 
Object Detection . IROS 2019. 
    
   
    200 
     PFF3D  
      
     code  
     92.15 % 
     95.37 % 
     87.54 % 
     0.05 s 
     GPU @ 3.0 Ghz (Python + C/C++) 
      
    
   
    L. Wen and K. Jo:  Fast and 
Accurate 3D Object Detection for Lidar-Camera-Based 
Autonomous Vehicles Using One Shared Voxel-Based 
Backbone . IEEE Access 2021. 
    
   
    201 
     geo-pillars  
      
      
     92.10 % 
     95.30 % 
     89.08 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    202 
     PASS-PointPillar  
      
      
     92.09 % 
     95.20 % 
     88.73 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Anonymous:  Leveraging Anchor-based LiDAR 3D Object
Detection via Point Assisted Sample Selection . will submit to computer vision conference/journal 2024. 
    
   
    203 
     SDP+RPN  
      
      
     92.03 % 
     95.16 % 
     79.16 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    F. Yang, W. Choi and Y. Lin:  Exploit All the Layers: Fast and Accurate CNN 
Object Detector with Scale Dependent Pooling and 
Cascaded Rejection Classifiers . Proceedings of the IEEE International 
Conference on Computer Vision and Pattern 
Recognition 2016. S. Ren, K. He, R. Girshick and J. Sun:  Faster R-CNN: Towards real-time object detection 
with region proposal networks . Advances in Neural Information Processing 
Systems 2015. 
    
   
    204 
     AB3DMOT  
      
     code  
     92.00 % 
     95.88 % 
     86.98 % 
     0.0047s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Weng and K. Kitani:  A Baseline for 3D Multi-Object 
Tracking . arXiv:1907.03961 2019. 
    
   
    205 
     PointPillars_mmdet3d  
      
      
     91.96 % 
     95.21 % 
     87.03 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    206 
     P3D  
      
      
     91.90 % 
     94.96 % 
     88.61 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    207 
     MMLab-PointRCNN  
      
     code  
     91.90 % 
     95.92 % 
     87.11 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    S. Shi, X. Wang and H. Li:  Pointrcnn: 3d object proposal generation 
and 
detection from point cloud . Proceedings of the IEEE Conference 
on 
Computer Vision and Pattern Recognition 2019. 
    
   
    208 
     M3DNet  
      
      
     91.87 % 
     95.00 % 
     88.69 % 
     0.5 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    209 
     MMLab-PartA^2  
      
     code  
     91.86 % 
     95.03 % 
     89.06 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    S. Shi, Z. Wang, J. Shi, X. Wang and H. Li:  From Points to Parts: 3D Object Detection from 
Point Cloud with Part-aware and Part-aggregation 
Network . IEEE Transactions on Pattern Analysis and 
Machine Intelligence 2020. 
    
   
    210 
     mmFUSION  
      
     code  
     91.84 % 
     95.69 % 
     87.05 % 
     1s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Ahmad and A. Del Bue:  mmFUSION: Multimodal Fusion for 3D Objects 
Detection . arXiv preprint arXiv:2311.04058 2023. 
    
   
    211 
     WeakM3D  
      
     code  
     91.81 % 
     94.51 % 
     85.35 % 
     0.08 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai:  WeakM3D: Towards Weakly Supervised 
Monocular 3D Object Detection . ICLR 2022. 
    
   
    212 
     epBRM  
      
     code  
     91.77 % 
     94.59 % 
     88.45 % 
     0.1 s 
     GPU @ >3.5 Ghz (Python + C/C++) 
      
    
   
    K. Shin:  Improving a Quality of 3D Object Detection 
by Spatial Transformation Mechanism . arXiv preprint arXiv:1910.04853 2019. 
    
   
    213 
     PL++: PV-RCNN++  
      
      
     91.77 % 
     94.79 % 
     88.82 % 
     0.342 s 
     RTX 4060Ti (Python) 
      
    
   
    X. Gong, X. Huang, S. Chen and B. Zhang:  Enhancing 3D Detection Accuracy in 
Autonomous Driving through Pseudo-LiDAR 
Augmentation and Downsampling . 2024 International Conference on 
Image Processing, Computer Vision and Machine 
Learning (ICICML) 2024. 
    
   
    214 
     C-GCN  
      
      
     91.73 % 
     95.64 % 
     86.37 % 
     0.147 s 
     GPU @ V100 (Python) 
      
    
   
    J. Zarzar, S. Giancola and B. Ghanem:  PointRGCN: Graph Convolution Networks for 3D 
Vehicles Detection Refinement . ArXiv 2019. 
    
   
    215 
     ITVD  
      
     code  
     91.73 % 
     95.85 % 
     79.31 % 
     0.3 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Wei Liu:  Improving Tiny Vehicle Detection in 
Complex Scenes . IEEE International Conference on 
Multimedia and Expo (ICME) 2018. 
    
   
    216 
     BFT3D_easy  
      
      
     91.72 % 
     97.15 % 
     84.32 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    217 
     SINet+  
      
     code  
     91.67 % 
     94.17 % 
     78.60 % 
     0.3 s 
     TITAN X GPU 
      
    
   
    X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng:  SINet: A Scale-insensitive Convolutional 
Neural Network for Fast Vehicle Detection . IEEE Transactions on Intelligent 
Transportation Systems 2019. 
    
   
    218 
     Cascade MS-CNN  
      
     code  
     91.60 % 
     94.26 % 
     78.84 % 
     0.25 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Cai and N. Vasconcelos:  Cascade R-CNN: High Quality Object 
Detection and Instance Segmentation . arXiv preprint arXiv:1906.09756 2019. Z. Cai, Q. Fan, R. Feris and N. Vasconcelos:  A unified multi-scale deep 
convolutional neural network for fast object 
detection . European conference on computer 
vision 2016. 
    
   
    219 
     SeSame-pillar  
      
     code  
     91.57 % 
     95.13 % 
     88.41 % 
     N/A s 
     TITAN RTX @ 1.35 Ghz (Python) 
      
    
   
    H. O, C. Yang and K. Huh:  SeSame: Simple, Easy 3D Object 
Detection with Point-Wise Semantics . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    220 
     MDD-M3D-X  
      
      
     91.53 % 
     93.45 % 
     84.33 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    221 
     DSFNet  
      
      
     91.51 % 
     94.58 % 
     87.81 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    222 
     PointRGBNet  
      
      
     91.48 % 
     95.40 % 
     86.50 % 
     0.08 s 
     4 cores @ 2.5 Ghz (Python + C/C++) 
      
    
   
    P. Xie Desheng:  Real-time Detection of 3D Objects 
Based on Multi-Sensor Information Fusion . Automotive Engineering 2022. 
    
   
    223 
     MAFF-Net(DAF-Pillar)  
      
      
     91.46 % 
     94.38 % 
     83.89 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu:  MAFF-Net: Filter False Positive for 3D 
Vehicle Detection with Multi-modal Adaptive Feature 
Fusion . arXiv preprint arXiv:2009.10945 2020. 
    
   
    224 
     HRI-VoxelFPN  
      
      
     91.44 % 
     96.65 % 
     86.18 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang:  Voxel-FPN:multi-scale voxel feature 
aggregation in 3D object detection from point 
clouds . sensors 2020. 
    
   
    225 
     EgoNet  
      
     code  
     91.39 % 
     96.18 % 
     81.33 % 
     0.1 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    S. Li, Z. Yan, H. Li and K. Cheng:  Exploring intermediate representation 
for monocular vehicle pose estimation . The IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR) 2021. 
    
   
    226 
     MonoDTF  
      
      
     91.35 % 
     95.03 % 
     85.92 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Anonymities:  Revisiting Monocular 3D Object Detection 
from Scene-Level Depth Retargeting to Instance-
Level Spatial Refinement . arXiv preprint arXiv:2412.19165 2024. 
    
   
    227 
     AFCAP  
      
      
     91.35 % 
     94.50 % 
     88.46 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    228 
     SeSame-pillar w/scor  
      
     code  
     91.34 % 
     94.89 % 
     88.13 % 
     N/A s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. O, C. Yang and K. Huh:  SeSame: Simple, Easy 3D Object 
Detection with Point-Wise Semantics . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    229 
     MonoSKD  
      
     code  
     91.34 % 
     96.68 % 
     83.69 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    S. Wang and J. Zheng:  MonoSKD: General Distillation Framework for 
Monocular 3D Object Detection via Spearman 
Correlation Coefficient . ECAI 2023. 
    
   
    230 
     Stereo CenterNet  
      
      
     91.27 % 
     96.61 % 
     83.50 % 
     0.04 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Shi, Y. Guo, Z. Mi and X. Li:  Stereo CenterNet-based 3D object 
detection for autonomous driving . Neurocomputing 2022. 
    
   
    231 
     DDStereo  
      
      
     91.26 % 
     94.20 % 
     83.53 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    232 
     AARMOD  
      
      
     91.23 % 
     96.70 % 
     83.76 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    233 
     PointPillars  
      
     code  
     91.19 % 
     94.00 % 
     88.17 % 
     16 ms 
     1080ti GPU and  Intel i7 CPU 
      
    
   
    A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom:  PointPillars: Fast Encoders for Object Detection from 
Point Clouds . CVPR 2019. 
    
   
    234 
     LTN  
      
      
     91.18 % 
     94.68 % 
     81.51 % 
     0.4 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
    T. Wang, X. He, Y. Cai and G. Xiao:  Learning a Layout Transfer Network for 
Context Aware Object Detection . IEEE Transactions on Intelligent 
Transportation Systems 2019. 
    
   
    235 
     EOTL  
      
     code  
     91.17 % 
     96.31 % 
     81.20 % 
     TBD s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek:  Efficient Online Transfer Learning for Road 
Participants Detection in Autonomous Driving . IEEE Sensors Journal 2023. 
    
   
    236 
     WS3D  
      
      
     91.15 % 
     95.13 % 
     86.52 % 
     0.1 s 
     	GPU @ 2.5 Ghz (Python) 
      
    
   
    Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai:  Weakly Supervised 3D Object Detection 
from Lidar Point Cloud . 2020. 
    
   
    237 
     NeurOCS  
      
      
     91.08 % 
     96.39 % 
     81.20 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker:  NeurOCS: Neural NOCS Supervision 
for Monocular 3D Object Localization . CVPR 2023. 
    
   
    238 
     KM3D  
      
     code  
     91.07 % 
     96.44 % 
     81.19 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    P. Li:  Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training . 2020. 
    
   
    239 
     DID-M3D  
      
     code  
     91.04 % 
     94.29 % 
     81.31 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai:  DID-M3D: Decoupling Instance Depth for 
Monocular 3D Object Detection . ECCV 2022. 
    
   
    240 
     FII-CenterNet  
      
     code  
     91.03 % 
     94.48 % 
     83.00 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang:  FII-CenterNet: An Anchor-Free Detector 
With Foreground Attention for Traffic Object 
Detection . IEEE Transactions on Vehicular 
Technology 2021. 
    
   
    241 
     Aston-EAS  
      
      
     91.02 % 
     93.91 % 
     77.93 % 
     0.24 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong:  Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance . IEEE Transactions on Intelligent Transportation Systems 2019. 
    
   
    242 
     MonoFlex  
      
      
     91.02 % 
     96.01 % 
     83.38 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Zhang, J. Lu and J. Zhou:  Objects are Different: Flexible Monocular 3D 
Object Detection . CVPR 2021. 
    
   
    243 
     Mix-Teaching   
      
     code  
     91.02 % 
     96.35 % 
     83.41 % 
     30 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li:  Mix-Teaching: A Simple, Unified and 
Effective Semi-Supervised Learning Framework for 
Monocular 3D Object Detection . ArXiv 2022. 
    
   
    244 
     ARPNET  
      
      
     90.99 % 
     94.00 % 
     83.49 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Ye, C. Zhang and X. Hao:  ARPNET: attention region proposal network 
for 3D object detection . Science China Information Sciences 2019. 
    
   
    245 
     CIE  
      
      
     90.98 % 
     96.31 % 
     83.43 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Anonymities:  Consistency of Implicit and Explicit 
Features Matters for Monocular 3D Object 
Detection . arXiv preprint arXiv:2207.07933 2022. 
    
   
    246 
     HINTED  
      
     code  
     90.97 % 
     95.16 % 
     85.55 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang:  HINTED: Hard Instance Enhanced Detector 
with Mixed-Density Feature Fusion for Sparsely-
Supervised 3D Object Detection . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2024. 
    
   
    247 
     MonoVQD  
      
      
     90.97 % 
     96.20 % 
     81.04 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    248 
     DCD  
      
     code  
     90.93 % 
     96.44 % 
     83.36 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Li, Y. Chen, J. He and Z. Zhang:  Densely Constrained Depth Estimator for 
Monocular 3D Object Detection . European Conference on Computer 
Vision 2022. 
    
   
    249 
     MonoEF  
      
      
     90.88 % 
     96.32 % 
     83.27 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang:  Monocular 3D Object Detection: An 
Extrinsic Parameter Free Approach . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2021. 
    
   
    250 
     PatchNet  
      
     code  
     90.87 % 
     93.82 % 
     79.62 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang:  Rethinking Pseudo-LiDAR Representation . Proceedings of the European Conference 
on Computer Vision (ECCV) 2020. 
    
   
    251 
     MV3D  
      
      
     90.83 % 
     96.47 % 
     78.63 % 
     0.36 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    X. Chen, H. Ma, J. Wan, B. Li and T. Xia:  Multi-View 3D Object Detection Network for 
Autonomous 
Driving . CVPR 2017. 
    
   
    252 
     monodle  
      
     code  
     90.81 % 
     93.83 % 
     80.93 % 
     0.04 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang:  Delving into Localization Errors for 
Monocular 3D Object Detection . CVPR  2021 . 
    
   
    253 
     3D IoU Loss  
      
      
     90.79 % 
     95.92 % 
     85.65 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang:  IoU Loss for 2D/3D Object Detection . International Conference on 3D 
Vision 
(3DV) 2019. 
    
   
    254 
     SINet_VGG  
      
     code  
     90.79 % 
     93.59 % 
     77.53 % 
     0.2 s 
     TITAN X GPU 
      
    
   
    X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng:  SINet: A Scale-insensitive Convolutional 
Neural Network for Fast Vehicle Detection . IEEE Transactions on Intelligent 
Transportation Systems 2019. 
    
   
    255 
     HomoLoss(monoflex)  
      
     code  
     90.69 % 
     95.92 % 
     80.91 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua:  Homography Loss for Monocular 3D Object
Detection . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2022. 
    
   
    256 
     TANet  
      
     code  
     90.67 % 
     93.67 % 
     85.31 % 
     0.035s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai:  TANet: Robust 3D Object Detection from 
Point Clouds with Triple Attention . AAAI 2020. 
    
   
    257 
     fdaa11  
      
      
     90.65 % 
     95.90 % 
     80.85 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    258 
     MonoGeo  
      
     code  
     90.64 % 
     93.48 % 
     80.89 % 
     0.14 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    259 
     MonoCInIS  
      
      
     90.60 % 
     96.05 % 
     82.43 % 
     0,13 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino:  MonoCInIS: Camera Independent Monocular 
3D Object Detection using Instance Segmentation . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2021. 
    
   
    260 
     MonoCLUE  
      
      
     90.55 % 
     93.51 % 
     80.79 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    261 
     SeSame-voxel  
      
     code  
     90.55 % 
     95.78 % 
     87.62 % 
     N/A s 
     TITAN RTX @ 1.35 Ghz (Python) 
      
    
   
    H. O, C. Yang and K. Huh:  SeSame: Simple, Easy 3D Object 
Detection with Point-Wise Semantics . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    262 
     temp  
      
      
     90.52 % 
     96.06 % 
     82.86 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    263 
     MonoCLUE  
      
      
     90.48 % 
     95.82 % 
     80.71 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    264 
     MonoCLUE_all  
      
      
     90.38 % 
     95.56 % 
     80.58 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    265 
     CG-Stereo  
      
      
     90.38 % 
     96.31 % 
     82.80 % 
     0.57 s 
     GeForce RTX 2080 Ti 
      
    
   
    C. Li, J. Ku and S. Waslander:  Confidence Guided Stereo 3D Object 
Detection with 
Split Depth Estimation . IROS 2020. 
    
   
    266 
     SCNet  
      
      
     90.30 % 
     95.59 % 
     85.09 % 
     0.04 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
    Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai:  SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud . IEEE Access 2019. 
    
   
    267 
     CMKD  
      
     code  
     90.28 % 
     95.14 % 
     83.91 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Hong, H. Dai and Y. Ding:  Cross-Modality Knowledge 
Distillation Network for Monocular 3D Object
               Detection . ECCV 2022. 
    
   
    268 
     PS-fld  
      
     code  
     90.27 % 
     95.75 % 
     82.32 % 
     0.25 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Chen, H. Dai and Y. Ding:  Pseudo-Stereo for Monocular 3D Object 
Detection in Autonomous Driving . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2022. 
    
   
    269 
     Deep3DBox  
      
      
     90.19 % 
     94.71 % 
     76.82 % 
     1.5 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka:  3D Bounding Box Estimation Using Deep 
Learning and Geometry . CVPR 2017. 
    
   
    270 
     FQNet  
      
      
     90.17 % 
     94.72 % 
     76.78 % 
     0.5 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou:  Deep Fitting Degree Scoring Network for 
Monocular 3D Object Detection . Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2019. 
    
   
    271 
     DeepStereoOP  
      
      
     90.06 % 
     95.15 % 
     79.91 % 
     3.4 s 
     GPU @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    C. Pham and J. Jeon:  Robust Object Proposals Re-ranking for 
Object Detection in Autonomous Driving Using 
Convolutional Neural Networks . Signal Processing: Image 
Communiation 2017. 
    
   
    272 
     SubCNN  
      
      
     89.98 % 
     94.26 % 
     79.78 % 
     2 s 
     GPU @ 3.5 Ghz (Python + C/C++) 
      
    
   
    Y. Xiang, W. Choi, Y. Lin and S. Savarese:  Subcategory-aware Convolutional Neural 
Networks for Object Proposals and Detection . IEEE Winter Conference on Applications of 
Computer Vision (WACV) 2017. 
    
   
    273 
     MLOD  
      
     code  
     89.97 % 
     94.88 % 
     84.98 % 
     0.12 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    J. Deng and K. Czarnecki:  MLOD: A multi-view 3D object detection based on robust feature fusion method . arXiv preprint arXiv:1909.04163 2019. 
    
   
    274 
     GPP  
      
     code  
     89.96 % 
     94.02 % 
     81.13 % 
     0.23 s 
     GPU @ 1.5 Ghz (Python + C/C++) 
      
    
   
    A. Rangesh and M. Trivedi:  Ground plane polling for 6dof pose 
estimation of objects on the road . IEEE Transactions on Intelligent 
Vehicles 2020. 
    
   
    275 
     AVOD  
      
     code  
     89.88 % 
     95.17 % 
     82.83 % 
     0.08 s 
     Titan X (pascal) 
      
    
   
    J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander:  Joint 3D Proposal Generation and Object 
Detection from View Aggregation . IROS 2018. 
    
   
    276 
     SINet_PVA  
      
     code  
     89.86 % 
     92.72 % 
     76.47 % 
     0.11 s 
     TITAN X GPU 
      
    
   
    X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng:  SINet: A Scale-insensitive Convolutional 
Neural Network for Fast Vehicle Detection . IEEE Transactions on Intelligent 
Transportation Systems 2019. 
    
   
    277 
     MonoCoP  
      
      
     89.72 % 
     92.13 % 
     80.15 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    278 
     MonoGeo  
      
     code  
     89.68 % 
     94.83 % 
     82.18 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    279 
     3DOP  
      
     code  
     89.55 % 
     92.96 % 
     79.38 % 
     3s 
     GPU @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun:  3D Object Proposals for Accurate Object Class 
Detection . NIPS 2015. 
    
   
    280 
     ADD  
      
     code  
     89.53 % 
     94.82 % 
     81.60 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang:  Attention-based Depth Distillation with 3D-Aware Positional 
Encoding for Monocular 3D Object Detection . AAAI2023 . 
    
   
    281 
     IAFA  
      
      
     89.46 % 
     93.08 % 
     79.83 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang:  IAFA: Instance-Aware Feature Aggregation 
for 3D Object Detection from a Single Image . Proceedings of the Asian Conference on 
Computer Vision 2020. 
    
   
    282 
     Mono3D  
      
     code  
     89.37 % 
     94.52 % 
     79.15 % 
     4.2 s 
     GPU @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun:  Monocular 3D Object Detection for Autonomous 
Driving . CVPR 2016. 
    
   
    283 
     4d-MSCNN  
      
     code  
     89.37 % 
     92.40 % 
     77.00 % 
     0.3 min 
     GPU @ 3.0 Ghz (Matlab + C/C++) 
      
    
   
    P. Ferraz, B. Oliveira, F. Ferreira, C. Silva Martins and others:  Three-stage RGBD architecture for vehicle and pedestrian detection using convolutional neural networks and stereo vision . IET Intelligent Transport Systems 2020. 
    
   
    284 
     MonoGAD  
      
      
     89.22 % 
     93.68 % 
     79.75 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    285 
     MonoDDE  
      
      
     89.19 % 
     96.76 % 
     81.60 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang:  Diversity Matters: Fully Exploiting Depth 
Clues for Reliable Monocular 3D Object Detection . CVPR 2022. 
    
   
    286 
     MonoUNI  
      
     code  
     88.96 % 
     94.30 % 
     78.95 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Jia, Z. Li and Y. Shi:  MonoUNI: A Unified Vehicle and 
Infrastructure-side Monocular 3D Object Detection 
Network with Sufficient Depth Clues . Thirty-seventh Conference on Neural 
Information Processing Systems 2023. 
    
   
    287 
     AVOD-FPN  
      
     code  
     88.92 % 
     94.70 % 
     84.13 % 
     0.1 s 
     Titan X (Pascal) 
      
    
   
    J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander:  Joint 3D Proposal Generation and Object Detection from View Aggregation . IROS 2018. 
    
   
    288 
     PCT  
      
     code  
     88.78 % 
     96.45 % 
     78.85 % 
     0.045 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue:  Progressive Coordinate Transforms for 
Monocular 3D Object Detection . NeurIPS 2021. 
    
   
    289 
     OPA-3D  
      
     code  
     88.77 % 
     96.50 % 
     76.55 % 
     0.04 s 
     1 core @ 3.5 Ghz (Python) 
      
    
   
    Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari:  OPA-3D: Occlusion-Aware Pixel-Wise 
Aggregation for Monocular 3D Object Detection . IEEE Robotics and Automation Letters 2023. 
    
   
    290 
     MonOri  
      
     code  
     88.72 % 
     95.23 % 
     81.77 % 
     0.03 s 
     4 cores @ 2.5 Ghz (Python) 
      
    
   
    H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin:  MonOri: Orientation-Guided PnP for 
Monocular 3-D Object Detection . IEEE Transactions on Neural Networks and 
Learning Systems 2025. 
    
   
    291 
     AM3D  
      
      
     88.71 % 
     92.55 % 
     77.78 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan:  Accurate Monocular Object Detection via Color-
Embedded 3D Reconstruction for Autonomous Driving . Proceedings of the IEEE international 
Conference on Computer Vision (ICCV) 2019. 
    
   
    292 
     MS-CNN  
      
     code  
     88.68 % 
     93.87 % 
     76.11 % 
     0.4 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Cai, Q. Fan, R. Feris and N. Vasconcelos:  A Unified Multi-scale Deep 
Convolutional Neural Network for Fast Object 
Detection . ECCV 2016. 
    
   
    293 
     MonoPSR  
      
     code  
     88.50 % 
     93.63 % 
     73.36 % 
     0.2 s 
     GPU @ 3.5 Ghz (Python) 
      
    
   
    J. Ku*, A. Pon* and S. Waslander:  Monocular 3D Object Detection Leveraging 
Accurate Proposals and Shape Reconstruction . CVPR 2019. 
    
   
    294 
     Shift R-CNN (mono)  
      
     code  
     88.48 % 
     94.07 % 
     78.34 % 
     0.25 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu:  Shift R-CNN: Deep Monocular 3D 
Object  Detection With Closed-form Geometric 
Constraints . ICIP 2019. 
    
   
    295 
     RCD  
      
      
     88.46 % 
     92.52 % 
     83.73 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu:  Range Conditioned Dilated Convolutions for 
Scale Invariant 3D Object Detection . Conference on Robot Learning (CoRL) 2020. 
    
   
    296 
     MM-MRFC  
      
      
     88.46 % 
     95.54 % 
     78.14 % 
     0.05 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    A. Costea, R. Varga and S. Nedevschi:  Fast 
Boosting based Detection using Scale Invariant 
Multimodal Multiresolution Filtered Features . CVPR 2017. 
    
   
    297 
     MonoDTR  
      
      
     88.41 % 
     93.90 % 
     76.20 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    K. Huang, T. Wu, H. Su and W. Hsu:  MonoDTR: Monocular 3D Object Detection with 
Depth-Aware Transformer . CVPR 2022. 
    
   
    298 
     MonoDSSMs-M  
      
      
     88.31 % 
     93.96 % 
     76.15 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    K. Vu, T. Tran and D. Nguyen:  MonoDSSMs: Efficient Monocular 3D 
Object Detection with Depth-Aware State Space 
Models . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    299 
     3DBN  
      
      
     88.29 % 
     93.74 % 
     80.74 % 
     0.13s 
     1080Ti (Python+C/C++) 
      
    
   
    X. Li, J. Guivant, N. Kwok and Y. Xu:  3D Backbone Network for 3D Object 
Detection . CoRR 2019. 
    
   
    300 
     MonoDSSMs-A  
      
      
     88.19 % 
     93.91 % 
     76.04 % 
     0.02 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    K. Vu, T. Tran and D. Nguyen:  MonoDSSMs: Efficient Monocular 3D 
Object Detection with Depth-Aware State Space 
Models . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    301 
     MonoCInIS  
      
      
     88.16 % 
     96.22 % 
     75.72 % 
     0,14 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino:  MonoCInIS: Camera Independent Monocular 
3D Object Detection using Instance Segmentation . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2021. 
    
   
    302 
     MonoRUn  
      
     code  
     87.91 % 
     95.48 % 
     78.10 % 
     0.07 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong:  MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation . IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021. 
    
   
    303 
     PS-SVDM  
      
      
     87.55 % 
     94.49 % 
     78.21 % 
     1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Shi:  SVDM: Single-View Diffusion Model for 
Pseudo-Stereo 3D Object Detection . arXiv preprint arXiv:2307.02270 2023. 
    
   
    304 
     SMOKE  
      
     code  
     87.51 % 
     93.21 % 
     77.66 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Liu, Z. Wu and R. Tóth:  SMOKE: Single-Stage Monocular 3D Object 
Detection via Keypoint Estimation . 2020. 
    
   
    305 
     monospb  
      
      
     87.44 % 
     93.05 % 
     77.48 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    306 
     H3  
      
      
     87.33 % 
     93.58 % 
     77.79 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    307 
     MonoFRD  
      
      
     87.31 % 
     95.25 % 
     77.66 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui:  Color intuitive feature guided depth-height 
fusion and volume rendering for monocular 3D object 
detection . IEEE Transactions on Intelligent 
Vehicles(Major Revison) 2024. 
    
   
    308 
     CDN  
      
     code  
     87.19 % 
     95.85 % 
     79.43 % 
     0.6 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao:  Wasserstein Distances for Stereo 
Disparity Estimation . Advances in Neural 
Information Processing Systems (NeurIPS) 2020. 
    
   
    309 
     CPD++(unsupervised)  
      
     code  
     86.95 % 
     94.96 % 
     83.72 % 
     0.1 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
     
    
   
    310 
     RTM3D  
      
     code  
     86.93 % 
     91.82 % 
     77.41 % 
     0.05 s 
     GPU @ 1.0 Ghz (Python) 
      
    
   
    P. Li, H. Zhao, P. Liu and F. Cao:  RTM3D: Real-time Monocular 3D Detection 
from Object Keypoints for Autonomous Driving . 2020. 
    
   
    311 
     MonoNeRD  
      
     code  
     86.89 % 
     94.60 % 
     77.23 % 
     na s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai:  MonoNeRD: NeRF-like Representations for 
Monocular 3D Object Detection . ICCV 2023. 
    
   
    312 
     MonoRCNN  
      
     code  
     86.78 % 
     91.98 % 
     66.97 % 
     0.07 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim:  Geometry-based Distance Decomposition for 
Monocular 3D Object Detection . ICCV 2021. 
    
   
    313 
     BirdNet+  
      
     code  
     86.73 % 
     92.61 % 
     81.80 % 
     0.11 s 
     Titan Xp (PyTorch) 
      
    
   
    A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García:  BirdNet+: Two-Stage 3D Object Detection 
in LiDAR through a Sparsity-Invariant Bird’s Eye 
View . IEEE Access 2021. 
    
   
    314 
     MonoRCNN++  
      
     code  
     86.69 % 
     94.31 % 
     71.87 % 
     0.07 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Shi, Z. Chen and T. Kim:  Multivariate Probabilistic Monocular 3D 
Object Detection . WACV 2023. 
    
   
    315 
     DEVIANT  
      
     code  
     86.64 % 
     94.42 % 
     76.69 % 
     0.04 s 
     1 GPU (Python) 
      
    
   
    A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu:  DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection . European Conference on Computer Vision (ECCV) 2022. 
    
   
    316 
     GUPNet  
      
     code  
     86.45 % 
     94.15 % 
     74.18 % 
     NA s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang:  Geometry Uncertainty Projection Network 
for Monocular 3D Object Detection . arXiv preprint arXiv:2107.13774 2021. 
    
   
    317 
     DSGN  
      
     code  
     86.43 % 
     95.53 % 
     78.75 % 
     0.67 s 
     NVIDIA Tesla V100 
      
    
   
    Y. Chen, S. Liu, X. Shen and J. Jia:  DSGN: Deep Stereo Geometry Network for 3D 
Object Detection . CVPR 2020. 
    
   
    318 
     GATE3D  
      
     code  
     86.23 % 
     90.58 % 
     79.19 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    319 
     MonoDETR  
      
     code  
     86.17 % 
     93.99 % 
     76.19 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li:  MonoDETR: Depth-aware Transformer for 
Monocular 3D Object Detection . arXiv preprint arXiv:2203.13310 2022. 
    
   
    320 
     mdab  
      
      
     86.15 % 
     94.14 % 
     76.25 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    321 
     PS-SVDM  
      
      
     86.15 % 
     94.45 % 
     77.86 % 
     1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Shi:  SVDM: Single-View Diffusion Model for 
Pseudo-Stereo 3D Object Detection . arXiv preprint arXiv:2307.02270 2023. 
    
   
    322 
     Stereo R-CNN  
      
     code  
     85.98 % 
     93.98 % 
     71.25 % 
     0.3 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    P. Li, X. Chen and S. Shen:  Stereo R-CNN based 3D Object Detection 
for 
Autonomous Driving . CVPR 2019. 
    
   
    323 
     StereoFENet  
      
      
     85.70 % 
     91.48 % 
     77.62 % 
     0.15 s 
     1 core @ 3.5 Ghz (Python) 
      
    
   
    W. Bao, B. Xu and Z. Chen:  MonoFENet: Monocular 3D Object Detection 
with 
Feature Enhancement Networks . IEEE Transactions on Image Processing 2019. 
    
   
    324 
     DMF  
      
      
     85.49 % 
     89.50 % 
     82.52 % 
     0.2 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    X. J. Chen and W. Xu:  Disparity-Based Multiscale Fusion Network for 
Transportation Detection . IEEE Transactions on Intelligent 
Transportation Systems 2022. 
    
   
    325 
     ResNet-RRC_Car  
      
      
     85.33 % 
     91.45 % 
     74.27 % 
     0.06 s 
     GPU @ 1.5 Ghz (Python + C/C++) 
      
    
   
    H. Jeon and others:  High-Speed Car Detection Using ResNet-
Based Recurrent Rolling Convolution . Proceedings of the IEEE conference 
on 
systems, man, and cybernetics 2018. 
    
   
    326 
     DetAny3D  
      
     code  
     85.20 % 
     95.22 % 
     80.64 % 
     0.58 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    327 
     MM3D  
      
      
     85.18 % 
     95.81 % 
     77.67 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    328 
     PL++ (SDN+GDC)  
      
     code  
     85.15 % 
     94.95 % 
     77.78 % 
     0.6 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger:  Pseudo-LiDAR++: Accurate Depth for 3D 
Object Detection in Autonomous Driving . International Conference on Learning 
Representations 2020. 
    
   
    329 
     M3D-RPN  
      
     code  
     85.08 % 
     89.04 % 
     69.26 % 
     0.16 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    G. Brazil and X. Liu:   M3D-RPN: Monocular 3D Region Proposal 
Network for Object Detection  .  ICCV   2019 . 
    
   
    330 
     CDN-PL++  
      
      
     85.01 % 
     94.66 % 
     77.60 % 
     0.4 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao:  Wasserstein Distances for Stereo Disparity 
Estimation . Advances in Neural Information 
Processing Systems 2020. 
    
   
    331 
     SDP+CRC (ft)  
      
      
     85.00 % 
     92.06 % 
     71.71 % 
     0.6 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    F. Yang, W. Choi and Y. Lin:  Exploit All the Layers: Fast and Accurate CNN 
Object Detector with Scale Dependent Pooling and 
Cascaded Rejection Classifiers . Proceedings of the IEEE International 
Conference on Computer Vision and Pattern Recognition 2016. 
    
   
    332 
     SSM3D  
      
      
     84.96 % 
     93.63 % 
     77.40 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    333 
     SS3D  
      
      
     84.92 % 
     92.72 % 
     70.35 % 
     48 ms 
     Tesla V100 (Python) 
      
    
   
    E. Jörgensen, C. Zach and F. Kahl:  Monocular 3D Object Detection and Box Fitting Trained 
End-to-End Using
               Intersection-over-Union Loss . CoRR 2019. 
    
   
    334 
     M3D  
      
      
     84.78 % 
     93.46 % 
     77.17 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    335 
     M5_3D  
      
      
     84.69 % 
     93.53 % 
     77.16 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    336 
     MonoFENet  
      
      
     84.63 % 
     91.68 % 
     76.71 % 
     0.15 s 
     1 core @ 3.5 Ghz (Python) 
      
    
   
    W. Bao, B. Xu and Z. Chen:  MonoFENet: Monocular 3D Object 
Detection 
with Feature Enhancement Networks . IEEE Transactions on Image 
Processing 2019. 
    
   
    337 
     STLM3D  
      
      
     84.58 % 
     93.59 % 
     75.07 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    338 
     DLE  
      
     code  
     84.45 % 
     94.66 % 
     62.10 % 
     0.06 s 
     NVIDIA Tesla V100 
      
    
   
    C. Liu, S. Gu, L. Gool and R. Timofte:  Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction . Proceedings of the British Machine Vision Conference (BMVC) 2021. 
    
   
    339 
     MV3D (LIDAR)  
      
      
     84.39 % 
     93.08 % 
     79.27 % 
     0.24 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    X. Chen, H. Ma, J. Wan, B. Li and T. Xia:  Multi-View 3D Object Detection Network for 
Autonomous 
Driving . CVPR 2017. 
    
   
    340 
     Complexer-YOLO  
      
      
     84.16 % 
     91.92 % 
     79.62 % 
     0.06 s 
     GPU @ 3.5 Ghz (C/C++) 
      
    
   
    M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross:  Complexer-YOLO: Real-Time 3D Object 
Detection and Tracking on Semantic Point 
Clouds . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 
Workshops 2019. 
    
   
    341 
     MonOAPC  
      
      
     84.13 % 
     92.39 % 
     74.62 % 
     0035 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu:  Occlusion-Aware Plane-Constraints for 
Monocular 3D Object Detection . IEEE Transactions on Intelligent 
Transportation Systems 2023. 
    
   
    342 
     ZoomNet  
      
     code  
     83.92 % 
     94.22 % 
     69.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Z. Xu:  ZoomNet: Part-Aware Adaptive Zooming 
Neural Network for 3D Object Detection . Proceedings of the AAAI Conference on 
Artificial Intelligence 2020. 
    
   
    343 
     CMAN  
      
      
     83.74 % 
     89.74 % 
     65.35 % 
     0.15 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    C. Yuanzhouhan Cao:  CMAN: Leaning Global Structure Correlation 
for
Monocular 3D Object Detection . IEEE Trans. Intell. Transport. Syst. 2022. 
    
   
    344 
     D4LCN  
      
     code  
     83.67 % 
     90.34 % 
     65.33 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo:  Learning Depth-Guided Convolutions for 
Monocular 3D Object Detection . CVPR 2020. 
    
   
    345 
     test_det  
      
      
     83.23 % 
     84.04 % 
     74.69 % 
     -1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    346 
     Faster R-CNN  
      
     code  
     83.16 % 
     88.97 % 
     72.62 % 
     2 s 
     GPU @ 3.5 Ghz (Python + C/C++) 
      
    
   
    S. Ren, K. He, R. Girshick and J. Sun:  Faster R-CNN: Towards Real-
Time 
Object Detection with Region Proposal
               Networks . NIPS 2015. 
    
   
    347 
     SGM3D  
      
     code  
     83.05 % 
     93.66 % 
     73.35 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng:  SGM3D: Stereo Guided Monocular 3D Object 
Detection . RA-L 2022. 
    
   
    348 
     Pseudo-LiDAR++  
      
     code  
     82.90 % 
     94.46 % 
     75.45 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger:  Pseudo-LiDAR++: Accurate Depth for 3D 
Object Detection in Autonomous Driving . International Conference on Learning 
Representations 2020. 
    
   
    349 
     Disp R-CNN  
      
     code  
     82.86 % 
     93.64 % 
     68.33 % 
     0.387 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao:  Disp R-CNN: Stereo 3D Object Detection 
via Shape Prior Guided Instance Disparity 
Estimation . CVPR 2020. 
    
   
    350 
     MonoMH  
      
     code  
     82.77 % 
     91.02 % 
     71.66 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    351 
     BS3D  
      
      
     82.72 % 
     95.35 % 
     70.01 % 
     22 ms 
     Titan Xp 
      
    
   
    N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler:  Beyond Bounding Boxes: Using Bounding 
Shapes for Real-Time 3D Vehicle Detection from 
Monocular RGB Images . 2019 IEEE Intelligent Vehicles 
Symposium (IV) 2019. 
    
   
    352 
     Disp R-CNN (velo)  
      
     code  
     82.64 % 
     93.45 % 
     70.45 % 
     0.387 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao:  Disp R-CNN: Stereo 3D Object Detection via 
Shape Prior Guided Instance Disparity Estimation . CVPR 2020. 
    
   
    353 
     HomoLoss(imvoxelnet)  
      
     code  
     82.54 % 
     92.81 % 
     72.80 % 
     0.20 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua:  Homogrpahy Loss for Monocular 3D Object
Detection . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2022. 
    
   
    354 
     YOLOStereo3D  
      
     code  
     82.15 % 
     94.81 % 
     62.17 % 
     0.1 s 
     GPU 1080Ti 
      
    
   
    Y. Liu, L. Wang and M. Liu:  YOLOStereo3D: A Step Back to 2D for 
Efficient Stereo 3D Detection . 2021 International Conference on 
Robotics and Automation (ICRA) 2021. 
    
   
    355 
     Ground-Aware  
      
     code  
     82.05 % 
     92.33 % 
     62.08 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Liu, Y. Yuan and M. Liu:  Ground-aware Monocular 3D Object 
Detection for Autonomous Driving . IEEE Robotics and Automation Letters 2021. 
    
   
    356 
     FRCNN+Or  
      
     code  
     82.00 % 
     92.91 % 
     68.79 % 
     0.09 s 
     Titan Xp GPU 
      
    
   
    C. Guindel, D. Martin and J. Armingol:  Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding . IEEE Intelligent Transportation Systems Magazine 2018. C. Guindel, D. Martin and J. Armingol:  Joint Object Detection and Viewpoint Estimation using CNN features . IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017. 
    
   
    357 
     DDMP-3D  
      
      
     81.70 % 
     91.15 % 
     63.12 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang:  Depth-conditioned Dynamic Message Propagation for 
Monocular 3D Object Detection . CVPR 2020. 
    
   
    358 
     MonoSC  
      
      
     81.52 % 
     88.86 % 
     70.96 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    359 
     MonoCtrl_MonoDistill  
      
      
     81.47 % 
     77.75 % 
     76.88 % 
     0.06 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    360 
     A3DODWTDA (image)  
      
     code  
     81.25 % 
     78.96 % 
     70.56 % 
     0.8 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
    F. Gustafsson and E. Linder-Norén:  Automotive 3D Object Detection Without 
Target Domain Annotations . 2018. 
    
   
    361 
     RefineNet  
      
      
     81.01 % 
     91.91 % 
     65.67 % 
     0.20 s 
     GPU @ 2.5 Ghz (Matlab + C++) 
      
    
   
    R. Rajaram, E. Bar and M. Trivedi:  RefineNet: Refining Object Detectors for 
Autonomous Driving . IEEE Transactions on Intelligent 
Vehicles 2016. R. Rajaram, E. Bar and M. Trivedi:  RefineNet: Iterative Refinement for 
Accurate Object Localization . Intelligent Transportation Systems 
Conference 2016. 
    
   
    362 
     CaDDN  
      
     code  
     80.73 % 
     93.61 % 
     71.09 % 
     0.63 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    C. Reading, A. Harakeh, J. Chae and S. Waslander:  Categorical Depth Distribution 
Network for Monocular 3D Object Detection . CVPR 2021. 
    
   
    363 
     ESGN  
      
      
     80.58 % 
     93.07 % 
     70.68 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li:  ESGN: Efficient Stereo Geometry Network 
for Fast 3D Object Detection . IEEE Transactions on Circuits and 
Systems for Video Technology 2022. 
    
   
    364 
     PGD-FCOS3D  
      
     code  
     80.58 % 
     92.04 % 
     69.67 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    T. Wang, X. Zhu, J. Pang and D. Lin:  Probabilistic and Geometric Depth: 
Detecting Objects in Perspective . Conference on Robot Learning 
(CoRL) 2021. 
    
   
    365 
     AMNet+DDAD15M  
      
     code  
     80.30 % 
     88.43 % 
     74.19 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Pan, Y. Jia, J. Wang and W. Sun:  MonoAMNet: Three-Stage Real-Time
Monocular 3D Object Detection With Adaptive
Methods . IEEE Transactions on Intelligent
Transportation Systems 2025. 
    
   
    366 
     GrooMeD-NMS  
      
     code  
     80.28 % 
     90.14 % 
     63.78 % 
     0.12 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    A. Kumar, G. Brazil and X. Liu:  GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection . CVPR 2021. 
    
   
    367 
     3D-GCK  
      
      
     80.19 % 
     89.55 % 
     68.08 % 
     24 ms 
     Tesla V100 
      
    
   
    N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler:  Single-Shot 3D Detection of Vehicles 
from Monocular RGB Images via Geometrically 
Constrained Keypoints in Real-Time . 2020 IEEE Intelligent Vehicles 
Symposium (IV) 2020. 
    
   
    368 
     AMNet  
      
     code  
     79.84 % 
     88.59 % 
     72.78 % 
     0.03 s 
     GPU @ 1.0 Ghz (Python) 
      
    
   
    H. Pan, Y. Jia, J. Wang and W. Sun:  MonoAMNet: Three-Stage Real-Time 
Monocular 3D Object Detection With Adaptive 
Methods . IEEE Transactions on Intelligent 
Transportation Systems 2025. 
    
   
    369 
     YoloMono3D  
      
     code  
     79.63 % 
     92.37 % 
     59.69 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Liu, L. Wang and L. Ming:  YOLOStereo3D: A Step Back to 2D for 
Efficient Stereo 3D Detection . 2021 International Conference on 
Robotics and Automation (ICRA) 2021. 
    
   
    370 
     A3DODWTDA  
      
     code  
     79.15 % 
     82.98 % 
     68.30 % 
     0.08 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
    F. Gustafsson and E. Linder-Norén:  Automotive 3D Object Detection Without 
Target Domain Annotations . 2018. 
    
   
    371 
     ImVoxelNet  
      
     code  
     79.09 % 
     89.80 % 
     69.45 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    D. Rukhovich, A. Vorontsova and A. Konushin:  ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection . arXiv preprint arXiv:2106.01178 2021. 
    
   
    372 
     DFR-Net  
      
      
     78.81 % 
     90.13 % 
     60.40 % 
     0.18 s 
     1080 Ti (Pytorch) 
      
    
   
    Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding:  
The devil is in the task: Exploiting reciprocal 
appearance-localization features for monocular 3d 
object detection
 . ICCV 2021. 
    
   
    373 
     spLBP  
      
      
     78.66 % 
     81.66 % 
     61.69 % 
     1.5 s 
     8 cores @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    Q. Hu, S. Paisitkriangkrai, C. Shen, A. Hengel and F. Porikli:  Fast Detection of Multiple Objects in Traffic Scenes With a Common
               Detection Framework . IEEE Trans. Intelligent Transportation Systems 2016. 
    
   
    374 
     FMF-occlusion-net  
      
      
     78.21 % 
     92.33 % 
     61.58 % 
     0.16 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang:  Fine-grained Multi-level Fusion for Anti-
occlusion Monocular 3D Object Detection . IEEE Transactions on Image Processing 2022. 
    
   
    375 
     3D-SSMFCNN  
      
     code  
     78.19 % 
     77.92 % 
     69.19 % 
     0.1 s 
     GPU @ 1.5 Ghz (C/C++) 
      
    
   
    L. Novak:  Vehicle Detection and Pose Estimation for Autonomous 
Driving . 2017. 
    
   
    376 
     MonoGRNet  
      
     code  
     77.94 % 
     88.65 % 
     63.31 % 
     0.04s 
     NVIDIA P40 
      
    
   
    Z. Qin, J. Wang and Y. Lu:  MonoGRNet: A Geometric Reasoning Network 
for 3D Object Localization . The Thirty-Third AAAI Conference on 
Artificial Intelligence (AAAI-19) 2019. 
    
   
    377 
     Aug3D-RPN  
      
      
     77.88 % 
     85.57 % 
     61.16 % 
     0.08 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    C. He, J. Huang, X. Hua and L. Zhang:  Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth . 2021. 
    
   
    378 
     AutoShape  
      
     code  
     77.66 % 
     86.51 % 
     64.40 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang:  AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection . Proceedings of the IEEE/CVF International Conference on Computer Vision 2021. 
    
   
    379 
     Reinspect  
      
     code  
     77.48 % 
     90.27 % 
     66.73 % 
     2s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    R. Stewart, M. Andriluka and A. Ng:  End-to-End People Detection in Crowded Scenes . CVPR 2016. 
    
   
    380 
     multi-task CNN  
      
      
     77.18 % 
     86.12 % 
     68.09 % 
     25.1 ms 
     GPU @ 2.0 Ghz (Python) 
      
    
   
    M. Oeljeklaus, F. Hoffmann and T. Bertram:  A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes . IEEE Intelligent Transportation Systems Conference 2018. 
    
   
    381 
     Regionlets  
      
      
     76.99 % 
     88.75 % 
     60.49 % 
     1 s 
     >8 cores @ 2.5 Ghz (C/C++) 
      
    
   
    X. Wang, M. Yang, S. Zhu and Y. Lin:  Regionlets for Generic Object 
Detection . T-PAMI 2015. W. Zou, X. Wang, M. Sun and Y. Lin:  Generic Object Detection with Dense 
Neural Patterns and Regionlets . British Machine Vision Conference 2014. C. Long, X. Wang, G. Hua, M. Yang and Y. Lin:  Accurate Object Detection with Location 
Relaxation and Regionlets Relocalization . Asian Conference on Computer 
Vision 2014. 
    
   
    382 
     3DVP  
      
     code  
     76.98 % 
     84.95 % 
     65.78 % 
     40 s 
     8 cores @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    Y. Xiang, W. Choi, Y. Lin and S. Savarese:  Data-Driven 3D Voxel Patterns 
for Object Category Recognition . IEEE Conference on Computer 
Vision and Pattern Recognition 2015. 
    
   
    383 
     Mobile Stereo R-CNN  
      
      
     76.73 % 
     90.08 % 
     62.23 % 
     1.8 s 
     NVIDIA Jetson TX2 
      
    
   
    M. Hussein, M. Khalil and B. Abdullah:  3D Object Detection using Mobile Stereo R-
CNN on Nvidia Jetson TX2 . International Conference on Advanced 
Engineering, Technology and Applications 
(ICAETA) 2021. 
    
   
    384 
     SubCat  
      
     code  
     76.36 % 
     84.10 % 
     60.56 % 
     0.7 s 
     6 cores @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    E. Ohn-Bar and M. Trivedi:  Learning to Detect Vehicles by 
Clustering 
Appearance Patterns . T-ITS 2015. 
    
   
    385 
     GS3D  
      
      
     76.35 % 
     86.23 % 
     62.67 % 
     2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang:  GS3D: An Efficient 3D Object Detection 
Framework for Autonomous Driving . IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2019. 
    
   
    386 
     AOG  
      
     code  
     76.24 % 
     86.08 % 
     61.51 % 
     3 s 
     4 cores @ 2.5 Ghz (Matlab) 
      
    
   
    T. Wu, B. Li and S. Zhu:  Learning And-Or Models to Represent 
Context and Occlusion for Car
               Detection and Viewpoint Estimation . TPAMI 2016. B. Li, T. Wu and S. Zhu:  Integrating Context and Occlusion 
for Car Detection by Hierarchical And-Or Model . ECCV 2014. 
    
   
    387 
     Pose-RCNN  
      
      
     75.83 % 
     89.59 % 
     64.06 % 
     2 s 
     >8 cores @ 2.5 Ghz (Python) 
      
    
   
    M. Braun, Q. Rao, Y. Wang and F. Flohr:  Pose-RCNN: Joint object detection and 
pose estimation using 3D object proposals . Intelligent Transportation Systems 
(ITSC), 2016 IEEE 19th International Conference 
on 2016. 
    
   
    388 
     Plane-Constraints  
      
     code  
     75.43 % 
     82.54 % 
     66.82 % 
     0.05 s 
     4 cores @ 3.0 Ghz (Python) 
      
    
   
    H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han:  Vertex points are not enough: Monocular 
3D object detection via intra-and inter-plane 
constraints . Neural Networks 2023. 
    
   
    389 
     3D FCN  
      
      
     74.65 % 
     86.74 % 
     67.85 % 
     >5 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Li:  3D Fully Convolutional Network for Vehicle 
Detection 
in Point Cloud . IROS 2017. 
    
   
    390 
     OC Stereo  
      
     code  
     74.60 % 
     87.39 % 
     62.56 % 
     0.35 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    A. Pon, J. Ku, C. Li and S. Waslander:  Object-Centric Stereo Matching for 3D 
Object Detection . ICRA 2020. 
    
   
    391 
     Kinematic3D  
      
     code  
     71.73 % 
     89.67 % 
     54.97 % 
     0.12 s 
     1 core @ 1.5 Ghz (C/C++) 
      
    
   
    G. Brazil, G. Pons-Moll, X. Liu and B. Schiele:   Kinematic 3D Object Detection in 
Monocular Video .  ECCV   2020 . 
    
   
    392 
     SeSame-point w/score  
      
     code  
     71.56 % 
     88.90 % 
     61.60 % 
     N/A  s 
     1 core @ 1.5 Ghz (Python) 
      
    
   
    H. O, C. Yang and K. Huh:  SeSame: Simple, Easy 3D Object 
Detection with Point-Wise Semantics . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    393 
     AOG-View  
      
      
     71.26 % 
     85.01 % 
     55.73 % 
     3 s 
     1 core @ 2.5 Ghz (Matlab, C/C++) 
      
    
   
    B. Li, T. Wu and S. Zhu:  Integrating Context and Occlusion for 
Car Detection by Hierarchical And-Or Model . ECCV 2014. 
    
   
    394 
     GAC3D  
      
      
     70.73 % 
     83.30 % 
     52.23 % 
     0.25 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    M. Bui, D. Ngo, H. Pham and D. Nguyen:  GAC3D: improving monocular 3D 
object detection with
ground-guide model and adaptive convolution . 2021. 
    
   
    395 
     MV-RGBD-RF  
      
      
     70.70 % 
     77.89 % 
     57.41 % 
     4 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
    
   
    A. Gonzalez, D. Vazquez, A. Lopez and J. Amores:  On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts. . IEEE Trans. on Cybernetics 2016. A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez:  Multiview Random Forest of Local Experts Combining RGB and LIDAR data  for Pedestrian Detection . IEEE Intelligent Vehicles Symposium (IV) 2015. 
    
   
    396 
     Vote3Deep  
      
      
     70.30 % 
     78.95 % 
     63.12 % 
     1.5 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
    
   
    M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner:  Vote3Deep: Fast Object Detection in 3D Point 
Clouds Using Efficient Convolutional Neural Networks . ArXiv e-prints 2016. 
    
   
    397 
     ROI-10D  
      
      
     70.16 % 
     76.56 % 
     61.15 % 
     0.2 s 
     GPU @ 3.5 Ghz (Python) 
      
    
   
    F. Manhardt, W. Kehl and A. Gaidon:  ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape . Computer Vision and Pattern Recognition (CVPR) 2019. 
    
   
    398 
     CPD(unsupervised)  
      
     code  
     68.17 % 
     86.87 % 
     67.89 % 
     0.1 s 
     GPU @ >3.5 Ghz (Python + C/C++) 
      
    
   
    H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang:  Commonsense Prototype for Outdoor 
Unsupervised 3D Object Detection . CVPR 2024. 
    
   
    399 
     BirdNet+ (legacy)  
      
     code  
     68.05 % 
     92.10 % 
     65.61 % 
     0.1 s 
     Titan Xp (PyTorch) 
      
    
   
    A. Barrera, C. Guindel, J. Beltrán and F. García:  BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View . 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020. 
    
   
    400 
     Decoupled-3D  
      
      
     67.92 % 
     87.78 % 
     54.53 % 
     0.08 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang:  Monocular 3D Object Detection with Decoupled 
Structured Polygon Estimation and Height-Guided Depth 
Estimation . AAAI 2020. 
    
   
    401 
     SparVox3D  
      
      
     67.88 % 
     83.76 % 
     52.56 % 
     0.05 s 
     GPU @ 2.0 Ghz (Python) 
      
    
   
    E. Balatkan and F. Kıraç:  Improving Regression Performance 
on Monocular 3D Object Detection Using Bin-Mixing 
and Sparse Voxel Data . 2021 6th International 
Conference on Computer Science and Engineering 
(UBMK) 2021. 
    
   
    402 
     Pseudo-Lidar  
      
     code  
     67.79 % 
     85.40 % 
     58.50 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger:  Pseudo-LiDAR From Visual Depth Estimation: 
Bridging the Gap in 3D Object Detection for Autonomous 
Driving . The IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2019. 
    
   
    403 
     OC-DPM  
      
      
     67.06 % 
     79.07 % 
     52.61 % 
     10 s 
     8 cores @ 2.5 Ghz (Matlab) 
      
    
   
    B. Pepik, M. Stark, P. Gehler and B. Schiele:  Occlusion Patterns for Object Class Detection . IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013. 
    
   
    404 
     DPM-VOC+VP  
      
      
     66.72 % 
     82.15 % 
     49.01 % 
     8 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Pepik, M. Stark, P. Gehler and B. Schiele:  Multi-view and 3D Deformable Part 
Models . IEEE Transactions on Pattern 
Analysis and Machine Intelligence (TPAMI) 2015. 
    
   
    405 
     BdCost48LDCF  
      
     code  
     66.63 % 
     81.38 % 
     52.20 % 
     0.5 s 
     8 cores @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    A. Fernández-Baldera, J. Buenaposada and L. Baumela:  BAdaCost: Multi-class Boosting with Costs  . Pattern Recognition  2018. 
    
   
    406 
     RefinedMPL  
      
      
     65.24 % 
     88.29 % 
     53.20 % 
     0.15 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    J. Vianney, S. Aich and B. Liu:  RefinedMPL: Refined Monocular PseudoLiDAR 
for 3D Object Detection in Autonomous Driving . arXiv preprint arXiv:1911.09712 2019. 
    
   
    407 
     MDPM-un-BB  
      
      
     64.06 % 
     79.74 % 
     49.07 % 
     60 s 
     4 core @ 2.5 Ghz (MATLAB) 
      
    
   
    P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan:  Object Detection with Discriminatively Trained Part-Based 
Models . PAMI 2010. 
    
   
    408 
     SeSame-voxel w/score  
      
     code  
     63.79 % 
     73.57 % 
     58.02 % 
     N/A s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    H. O, C. Yang and K. Huh:  SeSame: Simple, Easy 3D Object 
Detection with Point-Wise Semantics . Proceedings of the Asian 
Conference on Computer Vision (ACCV) 2024. 
    
   
    409 
     TLNet (Stereo)  
      
     code  
     63.53 % 
     76.92 % 
     54.58 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Qin, J. Wang and Y. Lu:  Triangulation Learning Network: from 
Monocular to Stereo 3D Object Detection . IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2019. 
    
   
    410 
     PDV-Subcat  
      
      
     63.24 % 
     78.27 % 
     47.67 % 
     7 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Shen, X. Zuo, J. Li, W. Yang and H. Ling:  A novel pixel neighborhood 
differential
statistic feature for pedestrian and face
detection  . Pattern Recognition  2017. 
    
   
    411 
     MDSNet  
      
      
     62.74 % 
     85.94 % 
     50.27 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu:  MDS-Net: Multi-Scale Depth Stratification 
3D Object Detection from Monocular Images . Sensors 2022. 
    
   
    412 
     MODet  
      
      
     62.54 % 
     66.06 % 
     60.04 % 
     0.05 s 
     GTX1080Ti 
      
    
   
    Y. Zhang, Z. Xiang, C. Qiao and S. Chen:  Accurate and Real-Time Object 
Detection Based on Bird's Eye View on 3D Point 
Clouds . 2019 International Conference on 
3D Vision (3DV) 2019. 
    
   
    413 
     CIE + DM3D  
      
      
     61.54 % 
     79.36 % 
     53.56 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Ananimities:  Consistency of Implicit and Explicit 
Features Matters for Monocular 3D Object 
Detection . arXiv preprint arXiv:2207.07933 2022. 
    
   
    414 
     SubCat48LDCF  
      
     code  
     61.16 % 
     78.86 % 
     44.69 % 
     0.5 s 
     8 cores @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    A. Fernández-Baldera, J. Buenaposada and L. Baumela:  BAdaCost: Multi-class Boosting with Costs  . Pattern Recognition  2018. 
    
   
    415 
     DPM-C8B1  
      
      
     60.21 % 
     75.24 % 
     44.73 % 
     15 s 
     4 cores @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    J. Yebes, L. Bergasa and M. García-Garrido:  Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes . Sensors 2015. J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro:  Supervised learning and evaluation of KITTI's cars detector with DPM . IV 2014. 
    
   
    416 
     SAMME48LDCF  
      
     code  
     58.38 % 
     77.47 % 
     44.43 % 
     0.5 s 
     8 cores @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    A. Fernández-Baldera, J. Buenaposada and L. Baumela:  BAdaCost: Multi-class Boosting with Costs  . Pattern Recognition  2018. 
    
   
    417 
     LSVM-MDPM-sv  
      
      
     58.36 % 
     71.11 % 
     43.22 % 
     10 s 
     4 cores @ 3.0 Ghz (C/C++) 
      
    
   
    P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan:  Object Detection with Discriminatively Trained Part-Based Models . PAMI 2010. A. Geiger, C. Wojek and R. Urtasun:  Joint 3D Estimation of Objects and Scene Layout . NIPS 2011. 
    
   
    418 
     BirdNet  
      
      
     57.12 % 
     79.30 % 
     55.16 % 
     0.11 s 
     Titan Xp (Caffe) 
      
    
   
    J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera:  BirdNet: A 3D Object Detection Framework 
from LiDAR Information . 2018 21st International Conference on 
Intelligent Transportation Systems (ITSC) 2018. 
    
   
    419 
     ACF-SC  
      
      
     56.60 % 
     69.90 % 
     43.61 % 
     <0.3 s 
     1 core @ >3.5 Ghz (Matlab + C/C++) 
      
    
   
    C. Cadena, A. Dick and I. Reid:  A Fast, Modular Scene Understanding 
System using Context-Aware Object Detection . Robotics and Automation (ICRA), 
2015 IEEE International Conference on 2015. 
    
   
    420 
     LSVM-MDPM-us  
      
     code  
     55.95 % 
     68.94 % 
     41.45 % 
     10 s 
     4 cores @ 3.0 Ghz (C/C++) 
      
    
   
    P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan:  Object Detection with Discriminatively Trained Part-Based Models . PAMI 2010. 
    
   
    421 
     ACF  
      
      
     54.09 % 
     63.05 % 
     41.81 % 
     0.2 s 
     1 core @ >3.5 Ghz (Matlab + C/C++) 
      
    
   
    P. Doll\'ar, R. Appel, S. Belongie and P. Perona:  Fast Feature Pyramids for Object 
Detection . PAMI 2014. P. Doll\'ar:  Piotr's Image and Video 
Matlab Toolbox (PMT) . . 
    
   
    422 
     Mono3D_PLiDAR  
      
     code  
     53.36 % 
     80.85 % 
     44.80 % 
     0.1 s 
     NVIDIA GeForce 1080 (pytorch) 
      
    
   
    X. Weng and K. Kitani:  Monocular 3D Object Detection with 
Pseudo-LiDAR Point Cloud . arXiv:1903.09847 2019. 
    
   
    423 
     RT3D-GMP  
      
      
     51.95 % 
     62.41 % 
     39.14 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Königshof and C. Stiller:  Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving . 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020. 
    
   
    424 
     VeloFCN  
      
      
     51.82 % 
     70.53 % 
     45.70 % 
     1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    B. Li, T. Zhang and T. Xia:  Vehicle Detection from 3D Lidar Using Fully Convolutional Network . RSS 2016 . 
    
   
    425 
     BEVHeight++  
      
     code  
     49.99 % 
     59.85 % 
     42.86 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Yang, T. Tang, J. Li, P. Chen, K. Yuan, L. Wang, Y. Huang, X. Zhang and K. Yu:  Bevheight++: Toward robust visual centric 
3d object detection . arXiv preprint arXiv:2309.16179 2023. 
    
   
    426 
     Vote3D  
      
      
     45.94 % 
     54.38 % 
     40.48 % 
     0.5 s 
     4 cores @ 2.8 Ghz (C/C++) 
      
    
   
    D. Wang and I. Posner:  Voting for Voting in Online Point Cloud Object 
Detection . Proceedings of Robotics: Science and 
Systems 2015. 
    
   
    427 
     TopNet-HighRes  
      
      
     45.85 % 
     58.04 % 
     41.11 % 
     101ms 
     NVIDIA GeForce 1080 Ti (tensorflow-gpu) 
      
    
   
    S. Wirges, T. Fischer, C. Stiller and J. Frias:  Object Detection and Classification in 
Occupancy Grid Maps Using Deep Convolutional 
Networks . 2018 21st International Conference on 
Intelligent Transportation Systems (ITSC) 2018. 
    
   
    428 
     RT3DStereo  
      
      
     45.81 % 
     56.53 % 
     37.63 % 
     0.08 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    H. Königshof, N. Salscheider and C. Stiller:  Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information . Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019. 
    
   
    429 
     Multimodal Detection  
      
     code  
     45.46 % 
     63.91 % 
     37.25 % 
     0.06 s 
     GPU @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes:  Multimodal vehicle detection: fusing 3D-
LIDAR and color camera data . Pattern Recognition Letters 2017. 
    
   
    430 
     RT3D  
      
      
     39.69 % 
     50.33 % 
     40.04 % 
     0.09 s 
     GPU @ 1.8Ghz 
      
    
   
    Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun:  RT3D: Real-Time 3-D Vehicle Detection in 
LiDAR Point Cloud for Autonomous Driving . IEEE Robotics and Automation Letters 2018. 
    
   
    431 
     VoxelJones  
      
     code  
     36.31 % 
     43.89 % 
     34.16 % 
     .18 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    M. Motro and J. Ghosh:  Vehicular Multi-object Tracking with Persistent Detector Failures . arXiv preprint arXiv:1907.11306 2019. 
    
   
    432 
     CSoR  
      
     code  
     21.66 % 
     31.52 % 
     17.99 % 
     3.5 s 
     4 cores @ >3.5 Ghz (Python + C/C++) 
      
    
   
    L. Plotkin:  PyDriver: Entwicklung eines Frameworks 
für räumliche Detektion und Klassifikation von 
Objekten in Fahrzeugumgebung . 2015. 
    
   
    433 
     mBoW  
      
      
     21.59 % 
     35.22 % 
     16.89 % 
     10 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Behley, V. Steinhage and A. Cremers:  Laser-based Segment Classification Using a Mixture of Bag-of-Words . Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013. 
    
   
    434 
     DepthCN  
      
     code  
     21.18 % 
     37.45 % 
     16.08 % 
     2.3 s 
     GPU @ 3.5 Ghz (Matlab) 
      
    
   
    A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes:  DepthCN: vehicle detection using 3D-
LIDAR and convnet . IEEE ITSC 2017. 
    
   
    435 
     YOLOv2  
      
     code  
     14.31 % 
     26.74 % 
     10.94 % 
     0.02 s 
     GPU @ 3.5 Ghz (C/C++) 
      
    
   
    J. Redmon, S. Divvala, R. Girshick and A. Farhadi:  You only look once: Unified, real-time 
object detection . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 2016. J. Redmon and A. Farhadi:  YOLO9000: Better, Faster, Stronger . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 2017. 
    
   
    436 
     TopNet-UncEst  
      
      
      6.24 % 
      7.24 % 
      5.42 % 
     0.09 s 
     NVIDIA GeForce 1080 Ti (tensorflow-gpu) 
      
    
   
    S. Wirges, M. Braun, M. Lauer and C. Stiller:  Capturing 
Object Detection Uncertainty in Multi-Layer Grid 
Maps . 2019. 
    
   
    437 
     TopNet-Retina  
      
      
      5.00 % 
      6.82 % 
      4.52 % 
     52ms 
     GeForce 1080Ti (tensorflow-gpu, v1.12) 
      
    
   
    S. Wirges, T. Fischer, C. Stiller and J. Frias:  Object Detection and Classification in 
Occupancy Grid Maps Using Deep Convolutional 
Networks . 2018 21st International Conference on 
Intelligent Transportation Systems (ITSC) 2018. 
    
   
    438 
     TopNet-DecayRate  
      
      
      0.01 % 
      0.00 % 
      0.01 % 
     92 ms 
     NVIDIA GeForce 1080 Ti (tensorflow-gpu) 
      
    
   
    S. Wirges, T. Fischer, C. Stiller and J. Frias:  Object Detection and Classification in 
Occupancy Grid Maps Using Deep Convolutional 
Networks . 2018 21st International Conference on 
Intelligent Transportation Systems (ITSC) 2018. 
    
   
    439 
     EAEPNet  
      
      
      0.00 % 
      0.00 % 
      0.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    440 
     LaserNet  
      
      
      0.00 % 
      0.00 % 
      0.00 % 
     12 ms 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington:  LaserNet: An Efficient Probabilistic 3D Object 
Detector for Autonomous Driving . Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR) 2019. 
    
   
    441 
     DA3D+KM3D+v2-99  
      
     code  
      0.00 % 
      0.00 % 
      0.00 % 
     0.120s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Jia, J. Wang, H. Pan and W. Sun:  Enhancing Monocular 3-D Object Detection 
Through Data Augmentation Strategies . IEEE Transactions on Instrumentation 
and Measurement 2024. 
    
   
    442 
     Monohan  
      
      
      0.00 % 
      0.00 % 
      0.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    443 
     Neighbor-Vote  
      
      
      0.00 % 
      0.00 % 
      0.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang:  Neighbor-Vote: Improving Monocular 3D 
Object Detection through Neighbor Distance Voting . ACM MM 2021. 
    
   
    444 
     DA3D+KM3D  
      
     code  
      0.00 % 
      0.00 % 
      0.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Jia, J. Wang, H. Pan and W. Sun:  Enhancing Monocular 3-D Object Detection 
Through Data Augmentation Strategies . IEEE Transactions on Instrumentation 
and Measurement 2024. 
    
   
    445 
     DA3D  
      
     code  
      0.00 % 
      0.00 % 
      0.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Jia, J. Wang, H. Pan and W. Sun:  Enhancing Monocular 3-D Object Detection 
Through Data Augmentation Strategies . IEEE Transactions on Instrumentation 
and Measurement 2024.