Method
Setting
Code
HOTA
DetA
AssA
DetRe
DetPr
AssRe
AssPr
LocA
MOTA
1
BiTrack
82.70 %
80.04 %
86.17 %
84.53 %
87.19 %
89.11 %
92.16 %
88.68 %
91.55 %
K. Huang, M. Zhang, Y. Chen and Q. Hao: BiTrack: Bidirectional Offline 3D
Multi-Object Tracking Using Camera-LiDAR Data . 2024.
2
MCTrack
code
82.46 %
79.12 %
86.55 %
82.75 %
87.31 %
89.63 %
91.21 %
88.05 %
91.46 %
X. Wang, S. Qi, J. Zhao, H. Zhou, S. Zhang, G. Wang, K. Tu, S. Guo, J. Zhao, J. Li and M. Yang: MCTrack: A Unified 3D Multi-Object
Tracking Framework for Autonomous Driving . 2024.
3
FusionTrack
81.90 %
79.92 %
84.59 %
85.19 %
85.50 %
87.95 %
90.61 %
87.87 %
92.54 %
4
VirConvTrack
code
81.87 %
78.14 %
86.39 %
82.00 %
86.92 %
89.08 %
91.58 %
88.04 %
90.24 %
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal
3D Object Detection . CVPR 2023.
5
RobMOT_v2
81.80 %
78.78 %
85.54 %
84.18 %
85.17 %
89.18 %
90.24 %
87.82 %
91.12 %
6
RobMOT
81.76 %
78.67 %
85.58 %
84.18 %
85.04 %
89.25 %
90.22 %
87.82 %
91.02 %
M. Nagy, N. Werghi, B. Hassan, J. Dias and M. Khonji: RobMOT: Robust 3D Multi-Object
Tracking by Observational Noise and State
Estimation Drift Mitigation on LiDAR PointCloud . 2024.
7
DFR
81.63 %
78.59 %
85.39 %
84.16 %
84.98 %
89.11 %
90.15 %
87.81 %
90.94 %
8
VirConvTrack
81.56 %
78.63 %
85.19 %
82.39 %
87.13 %
88.70 %
90.49 %
88.05 %
90.54 %
H. Wu, C. Wen, S. Shi, X. Li and C. Wang: Virtual Sparse Convolution for Multimodal
3D Object Detection . 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2023.
9
PMTrack
81.36 %
78.90 %
84.49 %
82.98 %
86.76 %
87.73 %
90.18 %
88.02 %
91.13 %
10
RobMOT_CasA
81.22 %
78.34 %
84.80 %
81.95 %
87.21 %
87.40 %
91.44 %
88.08 %
90.34 %
M. Nagy, N. Werghi, B. Hassan, J. Dias and M. Khonji: RobMOT: Robust 3D Multi-Object
Tracking by Observational Noise and State
Estimation Drift Mitigation on LiDAR PointCloud . 2024.
11
RobMOT_CasA
81.22 %
77.48 %
85.77 %
83.60 %
84.03 %
89.68 %
89.82 %
87.41 %
90.48 %
M. Nagy, N. Werghi, B. Hassan, J. Dias and M. Khonji: RobMOT: Robust 3D Multi-Object
Tracking by Observational Noise and State
Estimation Drift Mitigation on LiDAR PointCloud . 2024.
12
KFDL
81.06 %
78.08 %
84.78 %
82.13 %
86.64 %
88.33 %
90.47 %
87.89 %
90.29 %
13
CasTrack
code
81.00 %
78.58 %
84.22 %
84.10 %
84.86 %
87.55 %
90.47 %
87.49 %
91.91 %
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for
3D Object Detection from LiDAR point clouds . IEEE TGRS 2022. H. Wu, W. Han, C. Wen, X. Li and C. Wang: 3D Multi-Object Tracking in Point Clouds
Based on Prediction Confidence-Guided Data
Association . IEEE TITS 2021.
14
PC-TCNN
80.90 %
78.46 %
84.13 %
84.22 %
84.58 %
87.46 %
90.47 %
87.48 %
91.70 %
H. Wu, Q. Li, C. Wen, X. Li, X. Fan and C. Wang: Tracklet Proposal Network for Multi-Object
Tracking on Point Clouds . IJCAI 2021.
15
MCTrack_online
80.78 %
77.99 %
84.29 %
83.10 %
85.44 %
87.05 %
91.28 %
87.98 %
89.82 %
16
LEGO
80.75 %
78.91 %
83.27 %
84.64 %
84.94 %
86.87 %
90.19 %
87.92 %
90.61 %
Z. Zhang, J. Liu, Y. Xia, T. Huang, Q. Han and H. Liu: LEGO: Learning and Graph-Optimized Modular
Tracker for Online Multi-Object Tracking with Point
Clouds . arXiv preprint arXiv:2308.09908 2023.
17
Rethink MOT
80.39 %
77.88 %
83.64 %
84.23 %
83.57 %
87.63 %
88.90 %
87.07 %
91.53 %
L. Wang, J. Zhang, P. Cai and X. Li: Towards Robust Reference System for
Autonomous Driving: Rethinking 3D MOT . Proceedings of the 2023 IEEE
International Conference on Robotics and Automation
(ICRA) 2023.
18
SCMOT
80.34 %
78.15 %
83.27 %
83.50 %
85.01 %
86.85 %
90.16 %
87.56 %
90.80 %
19
CollabMOT
80.02 %
78.85 %
81.86 %
82.60 %
86.32 %
85.34 %
88.41 %
87.14 %
91.70 %
P. Ninh and H. Kim: CollabMOT Stereo Camera Collaborative
Multi Object Tracking . IEEE Access 2024.
20
CasTrack
79.96 %
77.95 %
82.71 %
83.47 %
84.80 %
86.42 %
89.98 %
87.56 %
90.52 %
H. Wu, W. Han, C. Wen, X. Li and C. Wang: 3D Multi-Object Tracking in Point Clouds
Based on Prediction Confidence-Guided Data
Association . IEEE Transactions on Intelligent
Transportation Systems 2022.
21
McByte
79.94 %
77.36 %
83.17 %
80.69 %
86.44 %
86.14 %
89.38 %
86.97 %
91.06 %
ERROR: Wrong syntax in BIBTEX file.
22
mmMCL3DMOT:
79.61 %
76.32 %
83.64 %
79.20 %
88.53 %
86.14 %
91.93 %
88.65 %
87.24 %
23
RAM
79.53 %
78.79 %
80.94 %
82.54 %
86.33 %
84.21 %
88.77 %
87.15 %
91.61 %
P. Tokmakov, A. Jabri, J. Li and A. Gaidon: Object Permanence Emerges in a Random Walk along
Memory . ICML 2022.
24
YONTD-MOTv2
code
79.52 %
75.83 %
84.01 %
82.31 %
83.69 %
87.16 %
90.70 %
87.65 %
88.06 %
X. Wang, J. He, C. Fu, T. Meng and M. Huang: You Only Need Two Detectors to Achieve
Multi-Modal 3D Multi-Object Tracking . arXiv preprint arXiv:2304.08709 2023.
25
CollabMOT
79.48 %
78.79 %
80.83 %
82.54 %
86.33 %
84.20 %
88.61 %
87.15 %
91.60 %
26
RA3DMOT
79.36 %
75.34 %
84.23 %
83.53 %
82.31 %
87.28 %
91.39 %
88.35 %
85.53 %
27
JHIT
79.21 %
76.76 %
82.29 %
81.63 %
84.62 %
85.94 %
88.19 %
86.91 %
89.80 %
28
UG3DMOT
code
78.60 %
76.01 %
82.28 %
80.77 %
85.44 %
85.36 %
91.37 %
87.84 %
87.98 %
J. He, C. Fu, X. Wang and J. Wang: 3D multi-object tracking based on
informatic divergence-guided data association . Signal Processing 2024.
29
MSA-MOT
78.52 %
75.19 %
82.56 %
82.42 %
82.21 %
85.21 %
90.16 %
87.00 %
88.01 %
Z. Zhu, J. Nie, H. Wu, Z. He and M. Gao: MSA-MOT: Multi-Stage Association for 3D
Multimodality Multi-Object Tracking . Sensors 2022.
30
FusionTrack+pointgnn
78.50 %
75.96 %
81.89 %
78.86 %
87.01 %
84.40 %
90.83 %
87.02 %
89.57 %
31
CollabMOT
78.20 %
78.38 %
78.67 %
81.81 %
86.53 %
81.44 %
89.41 %
87.10 %
91.49 %
32
YONTD-MOT
code
78.08 %
74.16 %
82.86 %
78.95 %
85.71 %
85.44 %
91.74 %
88.23 %
85.09 %
X. Wang, J. He, C. Fu, T. Meng and M. Huang: You Only Need Two Detectors to Achieve
Multi-Modal 3D Multi-Object Tracking . arXiv preprint arXiv:2304.08709 2023.
33
PermaTrack
78.03 %
78.29 %
78.41 %
81.71 %
86.54 %
81.14 %
89.49 %
87.10 %
91.33 %
P. Tokmakov, J. Li, W. Burgard and A. Gaidon: Learning to Track with Object Permanence . ICCV 2021.
34
PC3T
code
77.80 %
74.57 %
81.59 %
79.19 %
84.07 %
84.77 %
88.75 %
86.07 %
88.81 %
H. Wu, W. Han, C. Wen, X. Li and C. Wang: 3D Multi-Object Tracking in Point Clouds
Based on Prediction Confidence-Guided Data
Association . IEEE TITS 2021.
35
S3Track
77.58 %
77.91 %
77.93 %
84.49 %
84.41 %
82.02 %
88.98 %
88.35 %
88.38 %
Anonymous: S$^3$Track: Self-supervised Tracking with
Soft Assignment Flow . .
36
Stereo3DMOT
code
77.32 %
73.43 %
81.86 %
77.34 %
85.38 %
84.66 %
89.61 %
86.72 %
87.10 %
C. Mao, C. Tan, H. Liu, J. Hu and M. Zheng: Stereo3DMOT: Stereo Vision Based 3D
Multi-object Tracking with Multimodal ReID . Chinese Conference on Pattern
Recognition and Computer Vision (PRCV) 2023.
37
OC-SORT
code
76.54 %
77.25 %
76.39 %
80.64 %
86.36 %
80.33 %
87.17 %
87.01 %
90.28 %
J. Cao, X. Weng, R. Khirodkar, J. Pang and K. Kitani: Observation-Centric SORT: Rethinking SORT for Robust
Multi-Object Tracking . 2022.
38
3DMLA
75.65 %
71.92 %
80.02 %
77.31 %
83.33 %
83.73 %
88.39 %
86.62 %
85.03 %
M. Cho and E. Kim: 3D LiDAR Multi-Object Tracking with
Short-Term and Long-Term Multi-Level
Associations . Remote Sensing 2023.
39
StrongFusion-MOT
75.65 %
72.08 %
79.84 %
75.20 %
86.23 %
82.42 %
89.81 %
86.74 %
85.53 %
X. Wang, C. Fu, J. He, S. Wang and J. Wang: StrongFusionMOT: A Multi-Object Tracking
Method Based on LiDAR-Camera Fusion . IEEE Sensors Journal 2022.
40
Mono_3D_KF
75.47 %
74.10 %
77.63 %
78.86 %
82.98 %
80.23 %
88.88 %
85.48 %
88.48 %
A. Reich and H. Wuensche: Monocular 3D Multi-Object Tracking with an EKF Approach for Long-Term Stable Tracks . 2021 IEEE 24th International Conference on Information Fusion (FUSION) 2021.
41
DeepFusion-MOT
code
75.46 %
71.54 %
80.05 %
75.34 %
85.25 %
82.63 %
89.77 %
86.70 %
84.63 %
X. Wang, C. Fu, Z. Li, Y. Lai and J. He: DeepFusionMOT: A 3D Multi-Object
Tracking Framework Based on Camera-LiDAR Fusion with
Deep Association . IEEE Robotics and Automation
Letters 2022.
42
CollabMOT
75.26 %
75.46 %
75.74 %
80.06 %
84.36 %
78.75 %
88.53 %
86.44 %
89.08 %
P. Ninh and H. Kim: CollabMOT Stereo Camera Collaborative
Multi Object Tracking . IEEE Access 2024.
43
APPTracker
75.19 %
75.55 %
75.36 %
78.77 %
86.04 %
78.34 %
88.24 %
86.59 %
89.09 %
44
PolarMOT
code
75.16 %
73.94 %
76.95 %
80.81 %
82.40 %
80.00 %
89.27 %
87.12 %
85.08 %
A. Kim, G. Bras'o, A. O\vsep and L. Leal-Taix'e: PolarMOT: How Far Can Geometric Relations Take Us in 3D Multi-Object Tracking? . European Conference on Computer Vision (ECCV) 2022.
45
EagerMOT
code
74.39 %
75.27 %
74.16 %
78.77 %
86.42 %
76.24 %
91.05 %
87.17 %
87.82 %
A. Kim, A. Osep and L. Leal-Taix'e: EagerMOT: 3D Multi-Object Tracking via Sensor Fusion . IEEE International Conference on Robotics and Automation (ICRA) 2021.
46
DEFT
code
74.23 %
75.33 %
73.79 %
79.96 %
83.97 %
78.30 %
85.19 %
86.14 %
88.38 %
M. Chaabane, P. Zhang, R. Beveridge and S. O'Hara: DEFT: Detection Embeddings for Tracking . Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops 2021.
47
TripletTrack
73.58 %
73.18 %
74.66 %
76.18 %
86.81 %
77.31 %
89.55 %
87.37 %
84.32 %
N. Marinello, M. Proesmans and L. Van Gool: TripletTrack: 3D Object Tracking Using Triplet
Embeddings and LSTM . Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops 2022.
48
CollabMOT
73.47 %
75.63 %
72.07 %
80.11 %
84.55 %
74.83 %
88.82 %
86.52 %
88.88 %
49
FNC2
73.19 %
73.27 %
73.77 %
80.98 %
81.67 %
77.05 %
89.84 %
87.31 %
84.21 %
C. Jiang, Z. Wang, H. Liang and Y. Wang: A Novel Adaptive Noise Covariance
Matrix Estimation and Filtering Method:
Application to Multiobject Tracking . IEEE Transactions on Intelligent
Vehicles 2024. C. Jiang, Z. Wang and H. Liang: A Fast and High-Performance Object
Proposal Method for Vision Sensors: Application to
Object Detection . IEEE Sensors Journal 2022.
50
mono3DT
code
73.16 %
72.73 %
74.18 %
76.51 %
85.28 %
77.18 %
87.77 %
86.88 %
84.28 %
H. Hu, Q. Cai, D. Wang, J. Lin, M. Sun, P. Krähenbühl, T. Darrell and F. Yu: Joint Monocular 3D Vehicle Detection and
Tracking . ICCV 2019.
51
LGM
73.14 %
74.61 %
72.31 %
80.53 %
82.16 %
76.38 %
84.74 %
85.85 %
87.60 %
G. Wang, R. Gu, Z. Liu, W. Hu, M. Song and J. Hwang: Track without Appearance: Learn Box and
Tracklet Embedding with Local and Global Motion
Patterns for Vehicle Tracking . Proceedings of the IEEE/CVF
International Conference on Computer Vision
(ICCV) 2021.
52
CenterTrack
code
73.02 %
75.62 %
71.20 %
80.10 %
84.56 %
73.84 %
89.00 %
86.52 %
88.83 %
X. Zhou, V. Koltun and P. Krähenbühl: Tracking Objects as Points . ECCV 2020.
53
MHF-SOE
code
72.80 %
70.85 %
75.62 %
75.44 %
81.30 %
79.97 %
84.33 %
84.13 %
86.13 %
54
QD-3DT
code
72.77 %
74.09 %
72.19 %
78.13 %
85.48 %
74.87 %
89.21 %
87.16 %
85.94 %
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking . ArXiv:2103.07351 2021.
55
SpbTracker
72.66 %
74.69 %
71.43 %
79.04 %
85.59 %
77.69 %
85.86 %
87.48 %
86.51 %
E. Im, C. Jee and J. Lee: Spb3DTracker: A Robust LiDAR-Based Person
Tracker for Noisy Environmen . arXiv preprint arXiv:2408.05940 2024.
56
TrackMPNN
code
72.30 %
74.69 %
70.63 %
80.02 %
83.11 %
73.58 %
87.14 %
86.14 %
87.33 %
A. Rangesh, P. Maheshwari, M. Gebre, S. Mhatre, V. Ramezani and M. Trivedi: TrackMPNN: A Message Passing Graph Neural
Architecture for Multi-Object Tracking . arXiv preprint arXiv:2101.04206 .
57
EAFFMOT
72.28 %
71.97 %
73.08 %
77.05 %
83.77 %
76.39 %
88.66 %
86.73 %
84.77 %
J. Jin, J. Zhang, K. Zhang, Y. Wang, Y. Ma and D. Pan: 3D multi-object tracking with boosting
data association and improved trajectory
management mechanism . Signal Processing 2024.
58
DiTMOT
code
72.21 %
71.09 %
74.04 %
75.98 %
83.28 %
76.57 %
89.97 %
86.15 %
84.53 %
S. Wang, P. Cai, L. Wang and M. Liu: DiTNet: End-to-End 3D Object Detection
and Track ID Assignment in Spatio-Temporal
World . IEEE Robotics and Automation Letters 2021.
59
MO-YOLO
code
72.08 %
71.02 %
73.84 %
75.59 %
83.52 %
77.75 %
86.41 %
86.04 %
83.19 %
L. Pan, Y. Feng, W. Di, L. Bo and Z. Xingle: MO-YOLO: End-to-End Multiple-Object
Tracking Method with YOLO and MOTR . arXiv preprint arXiv:2310.17170 2023.
60
SMAT
71.88 %
72.13 %
72.13 %
74.43 %
87.33 %
74.77 %
88.30 %
87.19 %
83.64 %
N. Gonzalez, A. Ospina and P. Calvez: SMAT: Smart Multiple Affinity Metrics for
Multiple Object Tracking . Image Analysis and Recognition 2020.
61
NC2
71.85 %
69.61 %
74.81 %
81.19 %
76.99 %
78.57 %
89.33 %
87.30 %
78.52 %
C. Jiang, Z. Wang, H. Liang and Y. Wang: A Novel Adaptive Noise Covariance Matrix
Estimation and Filtering Method: Application to
Multiobject Tracking . IEEE Transactions on Intelligent
Vehicles 2024.
62
TuSimple
71.55 %
72.62 %
71.11 %
76.78 %
83.84 %
74.51 %
86.26 %
85.72 %
86.31 %
W. Choi: Near-online multi-target tracking with aggregated local flow
descriptor . Proceedings of the IEEE International Conference on
Computer Vision 2015. K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition . Proceedings of the IEEE conference on computer vision
and pattern recognition 2016.
63
BcMODT
71.00 %
73.62 %
69.14 %
78.86 %
83.97 %
72.34 %
88.70 %
86.93 %
85.48 %
K. Zhang, Y. Liu, F. Mei, J. Jin and Y. Wang: Boost Correlation Features with 3D-MiIoU-
Based Camera-LiDAR Fusion for MODT in Autonomous
Driving . Remote Sensing 2023.
64
JMODT
code
70.73 %
73.45 %
68.76 %
78.67 %
84.02 %
72.46 %
88.02 %
86.95 %
85.35 %
K. Huang and Q. Hao: Joint multi-object detection and tracking
with camera-LiDAR fusion for autonomous driving . 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) 2021.
65
AB3DMOT+PointRCNN
code
69.99 %
71.13 %
69.33 %
75.66 %
84.40 %
72.31 %
89.02 %
86.85 %
83.61 %
X. Weng, J. Wang, D. Held and K. Kitani: 3D Multi-Object Tracking: A Baseline and
New Evaluation Metrics . IROS 2020.
66
JRMOT
code
69.61 %
73.05 %
66.89 %
76.95 %
85.07 %
69.18 %
88.95 %
86.72 %
85.10 %
A. Shenoi, M. Patel, J. Gwak, P. Goebel, A. Sadeghian, H. Rezatofighi, R. Mart\'in-Mart\'in and S. Savarese: JRMOT: A Real-Time 3D Multi-Object
Tracker and a New Large-Scale Dataset . The IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2020.
67
MOTSFusion
code
68.74 %
72.19 %
66.16 %
76.05 %
84.88 %
69.57 %
85.49 %
86.56 %
84.24 %
J. Luiten, T. Fischer and B. Leibe: Track to Reconstruct and Reconstruct to
Track . IEEE Robotics and Automation Letters 2020.
68
IMMDP
68.66 %
68.02 %
69.76 %
71.47 %
83.28 %
74.50 %
82.02 %
84.80 %
82.75 %
Y. Xiang, A. Alahi and S. Savarese: Learning to Track: Online Multi-
Object Tracking by Decision Making . International Conference on
Computer Vision (ICCV) 2015. S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real-
Time
Object Detection with Region Proposal
Networks . NIPS 2015.
69
SRK_ODESA(hc)
68.51 %
75.40 %
63.08 %
78.89 %
86.00 %
65.89 %
87.47 %
86.88 %
87.79 %
D. Mykheievskyi, D. Borysenko and V. Porokhonskyy: Learning Local Feature Descriptors for Multiple Object Tracking . ACCV 2020.
70
Quasi-Dense
code
68.45 %
72.44 %
65.49 %
76.01 %
85.37 %
68.28 %
88.53 %
86.50 %
84.93 %
J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell and F. Yu: Quasi-Dense Similarity Learning for Multiple Object Tracking . CVPR 2021.
71
MASS
68.25 %
72.92 %
64.46 %
76.83 %
85.14 %
72.12 %
81.46 %
86.80 %
84.64 %
H. Karunasekera, H. Wang and H. Zhang: Multiple Object Tracking with attention to
Appearance, Structure, Motion and Size . IEEE Access 2019.
72
PNAS-MOT
code
67.32 %
77.69 %
58.99 %
81.58 %
85.81 %
64.70 %
80.74 %
86.94 %
89.59 %
C. Peng, Z. Zeng, J. Gao, J. Zhou, M. Tomizuka, X. Wang, C. Zhou and N. Ye: PNAS-MOT: Multi-Modal Object Tracking
With Pareto Neural Architecture Search . IEEE Robotics and Automation Letters 2024.
73
JCSTD
65.94 %
65.37 %
67.03 %
68.49 %
82.42 %
71.02 %
82.25 %
84.03 %
80.24 %
W. Tian, M. Lauer and L. Chen: Online Multi-Object Tracking Using Joint
Domain Information in Traffic Scenarios . IEEE Transactions on Intelligent
Transportation Systems 2019.
74
\
code
65.14 %
64.64 %
66.38 %
72.51 %
73.25 %
69.65 %
83.33 %
81.50 %
80.22 %
75
MDP
code
64.79 %
63.04 %
67.05 %
66.18 %
82.22 %
69.61 %
85.61 %
84.24 %
76.08 %
Y. Xiang, A. Alahi and S. Savarese: Learning to Track: Online Multi-
Object Tracking by Decision Making . International Conference on
Computer Vision (ICCV) 2015. Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural
Networks for Object Proposals and Detection . IEEE Winter Conference on Applications of
Computer Vision (WACV) 2017.
76
NOMT*
64.77 %
63.08 %
67.04 %
66.92 %
79.28 %
70.38 %
83.14 %
82.22 %
77.91 %
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
77
SRK_ODESA(mc)
64.25 %
74.87 %
55.70 %
78.62 %
84.68 %
62.10 %
81.78 %
85.85 %
88.50 %
D. Mykheievskyi, D. Borysenko and V. Porokhonskyy: Learning Local Feature Descriptors for Multiple Object Tracking . ACCV 2020.
78
MOTBeyondPixels
code
63.75 %
72.87 %
56.40 %
76.58 %
85.38 %
59.05 %
86.70 %
86.90 %
82.68 %
S. Sharma, J. Ansari, J. Krishna Murthy and K. Madhava Krishna: Beyond Pixels: Leveraging
Geometry and
Shape Cues for Online Multi-Object
Tracking . Proceedings of the IEEE
International Conference on Robotics and
Automation (ICRA) 2018.
79
mmMOT
code
62.05 %
72.29 %
54.02 %
76.17 %
84.89 %
58.98 %
82.40 %
86.58 %
83.23 %
W. Zhang, H. Zhou, Sun, Z. Wang, J. Shi and C. Loy: Robust Multi-Modality Multi-Object
Tracking . International Conference on
Computer Vision (ICCV) 2019.
80
FANTrack
code
60.85 %
64.36 %
58.69 %
69.17 %
80.82 %
60.78 %
88.94 %
84.72 %
75.84 %
E. Baser, V. Balasubramanian, P. Bhattacharyya and K. Czarnecki: FANTrack: 3D Multi-Object Tracking with
Feature Association Network . ArXiv 2019.
81
DSM
60.05 %
64.09 %
57.18 %
67.22 %
83.64 %
59.91 %
86.32 %
85.39 %
73.94 %
D. Frossard and R. Urtasun: End-To-End Learning of Multi-Sensor 3D Tracking by Detection . ICRA 2018.
82
SST [st]
59.90 %
57.19 %
63.28 %
60.64 %
82.13 %
66.26 %
87.39 %
85.65 %
66.95 %
83
aUToTrack
59.83 %
67.82 %
53.68 %
72.66 %
79.60 %
55.94 %
86.52 %
83.10 %
80.97 %
K. Burnett, S. Samavi, S. Waslander, T. Barfoot and A. Schoellig: aUToTrack: A Lightweight Object Detection and Tracking System for
the SAE AutoDrive Challenge . arXiv:1905.08758 2019.
84
extraCK
59.76 %
65.18 %
55.47 %
69.21 %
81.69 %
61.82 %
75.70 %
84.30 %
79.29 %
G. Gunduz and T. Acarman: A lightweight online multiple object
vehicle tracking method . Intelligent Vehicles Symposium
(IV), 2018 IEEE 2018.
85
3D-CNN/PMBM
59.12 %
65.43 %
54.28 %
69.87 %
80.68 %
57.28 %
83.89 %
83.94 %
79.23 %
S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan and K. Granström: Mono-Camera 3D Multi-Object Tracking
Using Deep Learning Detections
and PMBM Filtering . 2018 IEEE Intelligent Vehicles
Symposium, IV 2018, Changshu, Suzhou,
China, June 26-30, 2018 2018.
86
NOMT-HM*
59.08 %
61.27 %
57.45 %
65.14 %
79.29 %
60.25 %
83.46 %
82.63 %
74.66 %
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
87
Point3DT
57.20 %
55.71 %
59.15 %
64.66 %
68.67 %
63.20 %
78.30 %
80.07 %
67.56 %
Sukai Wang and M. Liu: PointTrackNet: An End-to-End Network for
3-D Object Detection and Tracking from Point
Clouds . to be submitted ICRA'20 .
88
LP-SSVM*
56.62 %
61.02 %
52.80 %
65.32 %
76.83 %
55.61 %
80.07 %
80.92 %
76.82 %
S. Wang and C. Fowlkes: Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions . International Journal of Computer Vision 2016.
89
MCMOT-CPD
56.61 %
64.28 %
50.55 %
67.37 %
82.77 %
53.96 %
81.97 %
84.26 %
77.98 %
B. Lee, E. Erdenee, S. Jin, M. Nam, Y. Jung and P. Rhee: Multi-class Multi-object Tracking Using Changing Point Detection . ECCVWORK 2016.
90
NOMT
56.49 %
52.29 %
61.59 %
54.73 %
78.75 %
64.63 %
83.40 %
81.41 %
66.36 %
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
91
SCEA*
56.09 %
60.70 %
52.15 %
64.97 %
77.83 %
54.87 %
81.17 %
81.94 %
74.92 %
J. Yoon, C. Lee, M. Yang and K. Yoon: Online Multi-object Tracking via
Structural Constraint Event Aggregation . IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) 2016.
92
RMOT*
55.82 %
54.95 %
57.34 %
62.56 %
69.08 %
62.58 %
74.77 %
78.82 %
65.07 %
J. Yoon, M. Yang, J. Lim and K. Yoon: Bayesian Multi-Object Tracking Using
Motion
Context from Multiple Objects . IEEE Winter Conference on
Applications
of
Computer Vision (WACV) 2015.
93
CIWT*
code
54.90 %
60.57 %
49.99 %
64.13 %
78.77 %
51.98 %
82.33 %
81.87 %
74.44 %
A. Osep, W. Mehner, M. Mathias and B. Leibe: Combined Image- and World-Space Tracking
in Traffic Scenes . ICRA 2017.
94
FAMNet
52.56 %
61.00 %
45.51 %
64.40 %
78.67 %
48.66 %
77.41 %
81.47 %
75.92 %
P. Chu and H. Ling: FAMNet: Joint Learning of Feature,
Affinity and Multi-dimensional Assignment for
Online Multiple Object Tracking . ICCV 2019.
95
SASN-MCF_nano
52.24 %
59.65 %
46.22 %
66.28 %
77.27 %
56.20 %
68.77 %
84.56 %
69.82 %
G. Gunduz and T. Acarman: Efficient Multi-Object Tracking by Strong Associations on Temporal Window . IEEE Transactions on Intelligent Vehicles 2019.
96
NOMT-HM
52.17 %
48.58 %
56.45 %
50.76 %
79.02 %
58.78 %
84.62 %
81.82 %
60.68 %
W. Choi: Near-Online Multi-target Tracking with
Aggregated Local Flow Descriptor
. ICCV 2015.
97
SSP*
code
51.16 %
58.96 %
44.64 %
65.26 %
74.09 %
46.75 %
80.78 %
81.32 %
70.94 %
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
98
mbodSSP*
code
50.92 %
58.57 %
44.51 %
63.69 %
75.67 %
46.47 %
81.23 %
81.44 %
70.78 %
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
99
Complexer-YOLO
49.12 %
62.44 %
39.34 %
67.58 %
76.86 %
40.72 %
85.23 %
81.47 %
72.61 %
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object
Detection and Tracking on Semantic Point
Clouds . The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)
Workshops 2019.
100
LP-SSVM
47.21 %
47.93 %
46.77 %
50.19 %
77.19 %
48.78 %
81.46 %
80.40 %
61.08 %
S. Wang and C. Fowlkes: Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions . International Journal of Computer Vision 2016.
101
DCO-X*
code
46.53 %
56.69 %
38.71 %
62.56 %
74.41 %
41.26 %
79.21 %
81.50 %
66.22 %
A. Milan, K. Schindler and S. Roth: Detection- and Trajectory-Level
Exclusion in Multiple Object Tracking . CVPR 2013.
102
RMOT
44.80 %
42.02 %
48.32 %
44.53 %
73.59 %
51.68 %
77.62 %
78.92 %
51.92 %
J. Yoon, M. Yang, J. Lim and K. Yoon: Bayesian Multi-Object Tracking Using
Motion
Context from Multiple Objects . IEEE Winter Conference on
Applications of
Computer Vision (WACV) 2015.
103
CEM
code
43.41 %
41.72 %
45.77 %
43.72 %
76.72 %
47.45 %
83.68 %
80.44 %
51.34 %
A. Milan, S. Roth and K. Schindler: Continuous Energy Minimization for Multitarget Tracking . IEEE TPAMI 2014.
104
SCEA
43.06 %
44.75 %
41.70 %
46.22 %
80.08 %
43.11 %
84.22 %
81.84 %
56.00 %
J. Yoon, C. Lee, M. Yang and K. Yoon: Online Multi-object Tracking via
Structural Constraint Event Aggregation . IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) 2016.
105
TBD
code
43.01 %
43.06 %
43.30 %
44.50 %
79.49 %
44.94 %
84.22 %
81.47 %
53.94 %
A. Geiger, M. Lauer, C. Wojek, C. Stiller and R. Urtasun: 3D Traffic Scene Understanding from Movable Platforms . Pattern Analysis and Machine Intelligence (PAMI) 2014. H. Zhang, A. Geiger and R. Urtasun: Understanding High-Level Semantics by Modeling Traffic Patterns . International Conference on Computer Vision (ICCV) 2013.
106
SORT
42.52 %
44.01 %
41.31 %
47.30 %
73.93 %
42.83 %
83.04 %
80.75 %
53.15 %
A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft: Simple online and realtime tracking . 2016 IEEE International Conference on
Image Processing (ICIP) 2016.
107
SSP
code
40.07 %
44.83 %
36.13 %
46.55 %
78.34 %
39.99 %
75.30 %
80.91 %
56.33 %
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
108
mbodSSP
code
39.49 %
43.94 %
35.82 %
45.72 %
77.85 %
36.95 %
84.35 %
80.76 %
54.10 %
P. Lenz, A. Geiger and R. Urtasun: FollowMe: Efficient Online Min-Cost Flow
Tracking with Bounded Memory and Computation . International Conference on Computer
Vision (ICCV) 2015.
109
ODAMOT
37.05 %
46.53 %
30.07 %
49.91 %
73.20 %
32.46 %
78.19 %
79.26 %
57.03 %
A. Gaidon and E. Vig: Online Domain Adaptation for Multi-Object Tracking . British Machine Vision Conference (BMVC) 2015.
110
FMMOVT
34.35 %
33.80 %
35.39 %
39.20 %
62.79 %
39.66 %
75.42 %
80.40 %
31.23 %
F. Alencar, C. Massera, D. Ridel and D. Wolf: Fast Metric Multi-Object Vehicle Tracking
for Dynamical Environment Comprehension . Latin American Robotics Symposium
(LARS), 2015 2015.
111
MCF
33.98 %
35.97 %
32.32 %
36.87 %
79.67 %
33.65 %
82.48 %
81.31 %
44.40 %
L. Zhang, Y. Li and R. Nevatia: Global data association for multi-object tracking using network flows. . CVPR .
112
HM
33.79 %
34.30 %
33.45 %
35.16 %
79.56 %
34.55 %
83.08 %
81.33 %
42.36 %
A. Geiger: Probabilistic Models for 3D Urban Scene
Understanding from Movable Platforms . 2013.
113
DCO
code
33.45 %
36.33 %
31.30 %
40.93 %
64.11 %
34.23 %
73.46 %
77.25 %
36.72 %
A. Andriyenko, K. Schindler and S. Roth: Discrete-Continuous Optimization
for Multi-Target Tracking . CVPR 2012.
114
DP-MCF
code
25.97 %
35.69 %
19.12 %
36.76 %
78.84 %
28.98 %
39.84 %
81.19 %
36.89 %
H. Pirsiavash, D. Ramanan and C. Fowlkes: Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects . IEEE conference on Computer Vision and Pattern Recognition (CVPR) 2011.