\begin{tabular}{c | c | c | c | c | c | c}
{\bf Method} & {\bf Setting} & {\bf Moderate} & {\bf Easy} & {\bf Hard} & {\bf Runtime} & {\bf Environment}\\ \hline
F-PointNet & la & 80.13 \% & 89.83 \% & 75.05 \% & 0.17 s / GPU & C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.\\
HHA-TFFEM & la & 78.53 \% & 87.01 \% & 74.70 \% & 0.14 s / GPU & F. Tan, Z. Xia, Y. Ma and X. Feng: 3D Sensor Based Pedestrian Detection by
Integrating Improved HHA Encoding and Two-Branch
Feature Fusion. Remote Sensing 2022.\\
TuSimple & & 78.40 \% & 88.87 \% & 73.66 \% & 1.6 s / GPU & F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector
with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2016.K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision
and pattern recognition 2016.\\
RRC & & 76.61 \% & 85.98 \% & 71.47 \% & 3.6 s / GPU & J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using
Recurrent Rolling Convolution. CVPR 2017.\\
WSSN & la & 76.42 \% & 84.91 \% & 71.86 \% & 0.37 s / GPU & Z. Guo, W. Liao, Y. Xiao, P. Veelaert and W. Philips: Weak Segmentation Supervised Deep Neural
Networks for Pedestrian Detection. Pattern Recognition 2021.\\
ECP Faster R-CNN & & 76.25 \% & 85.96 \% & 70.55 \% & 0.25 s / GPU & M. Braun, S. Krebs, F. Flohr and D. Gavrila: The EuroCity Persons Dataset: A Novel Benchmark for Object Detection. CoRR 2018.\\
Aston-EAS & & 76.07 \% & 86.71 \% & 70.02 \% & 0.24 s / GPU & J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.\\
MHN & & 75.99 \% & 87.21 \% & 69.50 \% & 0.39 s / GPU & J. Cao, Y. Pang, S. Zhao and X. Li: High-Level Semantic Networks for Multi-
Scale Object Detection. IEEE Transactions on Circuits and
Systems for Video Technology 2019.\\
FFNet & & 75.81 \% & 87.17 \% & 69.86 \% & 1.07 s / GPU & C. Zhao, Y. Qian and M. Yang: Monocular Pedestrian Orientation Estimation Based on Deep 2D-3D Feedforward. Pattern Recognition 2019.\\
SJTU-HW & & 75.81 \% & 87.17 \% & 69.86 \% & 0.85s / GPU & S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION
EMBEDDED DETECTOR. IEEE International Conference on
Image Processing 2018.L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection
based on shifted single shot detector. Multimedia Tools and Applications 2018.\\
MS-CNN & & 74.89 \% & 85.71 \% & 68.99 \% & 0.4 s / GPU & Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep
Convolutional Neural Network for Fast Object
Detection. ECCV 2016.\\
DD3D & & 73.09 \% & 85.71 \% & 68.54 \% & n/a s / 1 core & D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D
Object detection?. IEEE/CVF International Conference on
Computer Vision (ICCV) .\\
F-ConvNet & la & 72.91 \% & 83.63 \% & 67.18 \% & 0.47 s / GPU & Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to
Aggregate Local Point-Wise Features for Amodal 3D
Object Detection. IROS 2019.\\
GN & & 72.29 \% & 82.93 \% & 65.56 \% & 1 s / GPU & S. Jung and K. Hong: Deep network aided by guiding network for pedestrian detection. Pattern Recognition Letters 2017.\\
SubCNN & & 72.27 \% & 84.88 \% & 66.82 \% & 2 s / GPU & Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural
Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of
Computer Vision (WACV) 2017.\\
VMVS & la & 71.82 \% & 82.80 \% & 66.85 \% & 0.25 s / GPU & J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for
pedestrians with virtual multi-view synthesis
orientation estimation. IROS 2019.\\
EOTL & & 71.45 \% & 84.74 \% & 64.58 \% & TBD s / 1 core & R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road
Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.\\
IVA & & 71.37 \% & 84.61 \% & 64.90 \% & 0.4 s / GPU & Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional
Regression Network for Pedestrian Detection. ACCV 2016.S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object
detection with region proposal networks. Advances in neural information
processing systems 2015.\\
MM-MRFC & fl la & 70.76 \% & 83.79 \% & 64.81 \% & 0.05 s / GPU & A. Costea, R. Varga and S. Nedevschi: Fast
Boosting based Detection using Scale Invariant
Multimodal Multiresolution Filtered Features. CVPR 2017.\\
SDP+RPN & & 70.42 \% & 82.07 \% & 65.09 \% & 0.4 s / GPU & F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN
Object Detector with Scale Dependent Pooling and
Cascaded Rejection Classifiers. Proceedings of the IEEE International
Conference on Computer Vision and Pattern
Recognition 2016.S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection
with region proposal networks. Advances in Neural Information Processing
Systems 2015.\\
3DOP & st & 69.57 \% & 83.17 \% & 63.48 \% & 3s / GPU & X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class
Detection. NIPS 2015.\\
MonoPSR & & 68.56 \% & 85.60 \% & 63.34 \% & 0.2 s / GPU & J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging
Accurate Proposals and Shape Reconstruction. CVPR 2019.\\
DeepStereoOP & & 68.46 \% & 83.00 \% & 63.35 \% & 3.4 s / GPU & C. Pham and J. Jeon: Robust Object Proposals Re-ranking for
Object Detection in Autonomous Driving Using
Convolutional Neural Networks. Signal Processing: Image
Communiation 2017.\\
sensekitti & & 68.41 \% & 82.72 \% & 62.72 \% & 4.5 s / GPU & B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.\\
MonoAFKD & & 67.83 \% & 82.92 \% & 60.90 \% & 0.03 s / 1 core & \\
MonoLSS & & 67.78 \% & 82.88 \% & 60.87 \% & 0.04 s / 1 core & Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For
Monocular 3D Detection. International Conference on 3D Vision 2024.\\
Frustum-PointPillars & & 67.51 \% & 76.80 \% & 63.81 \% & 0.06 s / 4 cores & A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage
Approach for 3D Object Detection using RGB Camera
and LiDAR. International Conference on
Computer Vision, ICCV, Workshop on Autonomous
Vehicle Vision 2021.\\
FII-CenterNet & & 67.31 \% & 81.32 \% & 61.29 \% & 0.09 s / GPU & S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector
With Foreground Attention for Traffic Object
Detection. IEEE Transactions on Vehicular
Technology 2021.\\
Mono3D & & 67.29 \% & 80.30 \% & 62.23 \% & 4.2 s / GPU & X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous
Driving. CVPR 2016.\\
Faster R-CNN & & 66.24 \% & 79.97 \% & 61.09 \% & 2 s / GPU & S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real-
Time
Object Detection with Region Proposal
Networks. NIPS 2015.\\
VPFNet & & 65.68 \% & 75.03 \% & 61.95 \% & 0.2 s / 1 core & C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network
for Multi-class 3D Object Detection. 2021.C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.\\
UPIDet & & 65.50 \% & 75.07 \% & 63.09 \% & 0.11 s / 1 core & Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch
for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural
Information Processing Systems 2023.\\
EQ-PVRCNN & & 65.01 \% & 77.19 \% & 61.95 \% & 0.2 s / GPU & Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud
Understanding. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2022.\\
CasA++ & & 64.94 \% & 74.41 \% & 62.35 \% & 0.1 s / 1 core & H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D
Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and
Remote Sensing 2022.\\
TED & & 64.74 \% & 74.26 \% & 62.08 \% & 0.1 s / 1 core & H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object
Detection for Autonomous Driving. AAAI 2023.\\
LoGoNet & & 64.55 \% & 72.47 \% & 62.24 \% & 0.1 s / 1 core & X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object
Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.\\
SDP+CRC (ft) & & 64.36 \% & 79.22 \% & 59.16 \% & 0.6 s / GPU & F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN
Object Detector with Scale Dependent Pooling and
Cascaded Rejection Classifiers. Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition 2016.\\
LCANet & & 64.13 \% & 73.98 \% & 60.14 \% & 1 s / 1 core & \\
Pose-RCNN & & 63.54 \% & 80.07 \% & 57.02 \% & 2 s / >8 cores & M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and
pose estimation using 3D object proposals. Intelligent Transportation Systems
(ITSC), 2016 IEEE 19th International Conference
on 2016.\\
USVLab BSAODet & & 63.21 \% & 72.86 \% & 59.48 \% & 0.04 s / 1 core & W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective
for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and
Systems for Video Technology 2023.\\
MLF-DET & & 63.09 \% & 70.25 \% & 59.23 \% & 0.09 s / 1 core & Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross-
Modal 3D Object Detection. International Conference on
Artificial Neural Networks 2023.\\
FIRM-Net\_SCF+ & & 62.91 \% & 72.98 \% & 60.31 \% & 0.07 s / 1 core & \\
CFM & & 62.84 \% & 74.76 \% & 56.06 \% & & Q. Hu, P. Wang, C. Shen, A. Hengel and F. Porikli: Pushing the Limits of Deep CNNs for
Pedestrian Detection. IEEE Transactions on Circuits and
Systems for Video Technology 2017.\\
CasA & & 62.73 \% & 72.65 \% & 60.12 \% & 0.1 s / 1 core & H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D
Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and
Remote Sensing 2022.\\
FIRM-Net-SCF & & 62.63 \% & 72.78 \% & 59.99 \% & 0.07 s / 1 core & \\
Fast-CLOCs & & 62.57 \% & 76.22 \% & 60.13 \% & 0.1 s / GPU & S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR
Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer
Vision (WACV) 2022.\\
FIRM-Net & & 62.50 \% & 72.65 \% & 59.84 \% & 0.07 s / 1 core & \\
PiFeNet & & 62.35 \% & 72.74 \% & 59.29 \% & 0.03 s / 1 core & D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian
Detection Using an Efficient Attentive Pillar
Network. IEEE Robotics and Automation Letters 2022.\\
HotSpotNet & & 62.31 \% & 71.43 \% & 59.24 \% & 0.04 s / 1 core & Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference
on Computer Vision (ECCV) 2020.\\
BVIFusion+ & & 62.06 \% & 71.81 \% & 58.21 \% & 0.09 s / 1 core & \\
P2V-RCNN & & 61.83 \% & 71.76 \% & 59.29 \% & 0.1 s / 2 cores & J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature
Learning for 3D Object Detection from Point
Clouds. IEEE Access 2021.\\
MonoPair & & 61.57 \% & 78.81 \% & 56.51 \% & 0.06 s / GPU & Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection
Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2020.\\
LumiNet & & 61.38 \% & 72.01 \% & 58.94 \% & 0.1 s / 1 core & \\
monodle & & 61.29 \% & 78.66 \% & 56.18 \% & 0.04 s / GPU & X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for
Monocular 3D Object Detection. CVPR 2021 .\\
OGMMDet & & 61.26 \% & 72.41 \% & 58.79 \% & 0.01 s / 1 core & \\
ANM & & 61.26 \% & 72.41 \% & 58.79 \% & ANM / & \\
RPN+BF & & 61.22 \% & 77.06 \% & 55.22 \% & 0.6 s / GPU & L. Zhang, L. Lin, X. Liang and K. He: Is Faster R-CNN Doing Well for Pedestrian
Detection?. ECCV 2016.\\
AFFN-G & & 60.99 \% & 69.06 \% & 58.89 \% & 0.5 s / 1 core & \\
GEFPN & & 60.99 \% & 69.06 \% & 58.89 \% & 0.5 s / 1 core & \\
GeVo & & 60.99 \% & 69.06 \% & 58.89 \% & 0.05 s / 1 core & \\
3ONet & & 60.89 \% & 72.45 \% & 56.65 \% & 0.1 s / 1 core & H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object
Under Obstructed Conditions. IEEE Sensors Journal 2023.\\
Regionlets & & 60.83 \% & 73.79 \% & 54.72 \% & 1 s / >8 cores & X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object
Detection. T-PAMI 2015.W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense
Neural Patterns and Regionlets. British Machine Vision Conference 2014.C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location
Relaxation and Regionlets Relocalization. Asian Conference on Computer
Vision 2014.\\
PillarHist & & 60.78 \% & 71.70 \% & 57.66 \% & 0.01 s / 1 core & \\
3DSSD & & 60.51 \% & 72.33 \% & 56.28 \% & 0.04 s / GPU & Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object
Detector. CVPR 2020.\\
BPG3D & & 60.24 \% & 69.19 \% & 56.74 \% & 0.05 s / 1 core & \\
ACFNet & & 60.12 \% & 71.42 \% & 55.96 \% & 0.11 s / 1 core & Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.\\
vsis-PHNet & & 60.10 \% & 71.15 \% & 57.66 \% & 0.03 s / 1 core & \\
PHNetp & & 60.10 \% & 71.15 \% & 57.66 \% & 0.03 s / 1 core & \\
KPTr & & 59.79 \% & 69.70 \% & 56.03 \% & 0.07 s / 1 core & ERROR: Wrong syntax in BIBTEX file.\\
dsvd+vx & & 59.75 \% & 69.79 \% & 57.34 \% & 0.1 s / 1 core & \\
DPPFA-Net & & 59.52 \% & 67.68 \% & 56.87 \% & 0.1 s / 1 core & J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for
Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.\\
ACDet & & 59.51 \% & 71.27 \% & 57.03 \% & 0.05 s / 1 core & J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion
for LiDAR-based 3D Object Detection. 3DV 2022.\\
LPFusion\_three\_class & & 59.48 \% & 69.28 \% & 55.55 \% & 0.1 s / 1 core & \\
SCNet3D & & 59.47 \% & 69.32 \% & 56.96 \% & 0.08 s / 1 core & \\
QD-3DT & on & 59.26 \% & 78.41 \% & 54.37 \% & 0.03 s / GPU & H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.\\
AM & & 59.09 \% & 77.32 \% & 54.25 \% & 0.04 s / 1 core & \\
TANet & & 59.07 \% & 69.90 \% & 56.44 \% & 0.035s / GPU & Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from
Point Clouds with Triple Attention. AAAI 2020.\\
MonoUNI & & 58.97 \% & 76.17 \% & 53.99 \% & 0.04 s / 1 core & J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and
Infrastructure-side Monocular 3D Object Detection
Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural
Information Processing Systems 2023.\\
SFA\_IGCL\_Focalsconv* & & 58.94 \% & 66.88 \% & 56.80 \% & 0.2 s / 1 core & \\
SVFMamba & & 58.83 \% & 69.22 \% & 55.36 \% & N/A s / 1 core & \\
DSA-PV-RCNN & la & 58.81 \% & 66.93 \% & 56.57 \% & 0.08 s / 1 core & P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.\\
SRDL & & 58.70 \% & 68.45 \% & 56.23 \% & 0.05 s / 1 core & ERROR: Wrong syntax in BIBTEX file.\\
FocalsConv* & & 58.61 \% & 66.08 \% & 55.20 \% & 0.2 s / 1 core & \\
MMLab PV-RCNN & la & 58.37 \% & 68.88 \% & 55.38 \% & 0.08 s / 1 core & S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set
Abstraction for
3D Object Detection. CVPR 2020.\\
PASS-PV-RCNN-Plus & & 58.31 \% & 67.45 \% & 55.92 \% & 1 s / 1 core & Anonymous: Leveraging Anchor-based LiDAR 3D Object
Detection via Point Assisted Sample Selection. will submit to computer vision
conference/journal 2024.\\
Point-GNN & la & 58.20 \% & 71.59 \% & 54.06 \% & 0.6 s / GPU & W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D
Object Detection in a Point Cloud. CVPR 2020.\\
MPC3DNet & & 58.20 \% & 66.33 \% & 55.97 \% & 0.05 s / GPU & \\
test & & 58.19 \% & 66.17 \% & 56.16 \% & 0.04 s / GPU & \\
DeepParts & & 58.15 \% & 71.47 \% & 51.92 \% & ~1 s / GPU & Y. Tian, P. Luo, X. Wang and X. Tang: Deep Learning Strong Parts for Pedestrian
Detection. ICCV 2015.\\
CompACT-Deep & & 58.14 \% & 70.93 \% & 52.29 \% & 1 s / 1 core & Z. Cai, M. Saberian and N. Vasconcelos: Learning Complexity-Aware Cascades for Deep Pedestrian Detection. ICCV 2015.\\
EPNet++ & & 58.10 \% & 68.58 \% & 55.58 \% & 0.1 s / GPU & Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for
Multi-Modal 3D Object Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2022.\\
DSGN++ & st & 58.09 \% & 69.70 \% & 54.45 \% & 0.2 s / & Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation
for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2022.\\
MMLab-PartA^2 & la & 57.96 \% & 68.78 \% & 54.01 \% & 0.08 s / GPU & S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from
Point Cloud with Part-aware and Part-aggregation
Network. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2020.\\
SVGA-Net & & 57.92 \% & 67.81 \% & 55.25 \% & 0.03s / 1 core & Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention
Network for 3D Object Detection from Point
Clouds. AAAI 2022.\\
AVOD-FPN & la & 57.87 \% & 67.95 \% & 55.23 \% & 0.1 s / & J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.\\
HA-PillarNet & & 57.87 \% & 65.21 \% & 55.84 \% & 0.05 s / 1 core & \\
Voxel RCNN-Focal* & & 57.74 \% & 65.53 \% & 55.67 \% & 0.2 s / 1 core & \\
DFAF3D & & 57.65 \% & 67.45 \% & 53.89 \% & 0.05 s / 1 core & Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free
single-stage 3D detector for point clouds. Image and Vision Computing 2023.\\
AFFN & & 57.59 \% & 66.29 \% & 55.14 \% & 0.5 s / 1 core & \\
CGML & & 57.49 \% & 64.84 \% & 55.41 \% & 0.33 s / 1 core & \\
Faraway-Frustum & la & 57.35 \% & 67.88 \% & 54.42 \% & 0.1 s / GPU & H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.\\
PDV & & 57.34 \% & 65.94 \% & 54.21 \% & 0.1 s / 1 core & J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.\\
SIF & & 57.32 \% & 67.78 \% & 54.86 \% & 0.1 s / 1 core & P. An: SIF. Submitted to CVIU 2021.\\
PG-RCNN & & 57.31 \% & 67.77 \% & 54.83 \% & 0.06 s / GPU & I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point
Generation for 3D Object Detection. 2023.\\
FromVoxelToPoint & & 57.26 \% & 68.26 \% & 54.74 \% & 0.1 s / 1 core & J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D
Object Detection for Point Cloud with Voxel-to-
Point Decoder. MM '21: The 29th ACM
International Conference on Multimedia (ACM MM) 2021.\\
MLFusion-VS & & 57.22 \% & 66.13 \% & 55.00 \% & 0.06 s / 1 core & \\
SemanticVoxels & & 57.22 \% & 67.62 \% & 54.90 \% & 0.04 s / GPU & J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D
Pedestrian Detection using LiDAR Point Cloud
and Semantic Segmentation. MFI 2020.\\
centerpoint\_pcdet & & 57.06 \% & 65.95 \% & 55.08 \% & 0.06 s / 1 core & \\
IA-SSD (single) & & 56.87 \% & 66.69 \% & 54.68 \% & 0.013 s / 1 core & Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly
Efficient Point-based Detectors for 3D LiDAR Point
Clouds. CVPR 2022.\\
SFA-GCL(80, k=4) & & 56.83 \% & 69.60 \% & 54.42 \% & 0.04 s / 1 core & \\
CAT-Det & & 56.75 \% & 67.15 \% & 53.44 \% & 0.3 s / GPU & Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer
for Multi-modal 3D Object Detection. CVPR 2022.\\
SFA-GCL\_dataaug & & 56.73 \% & 69.55 \% & 54.32 \% & 0.04 s / 1 core & \\
SFA-GCL(80) & & 56.69 \% & 67.64 \% & 52.51 \% & 0.04 s / 1 core & \\
FRCNN+Or & & 56.68 \% & 71.64 \% & 51.53 \% & 0.09 s / & C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.\\
SFA-GCL & & 56.62 \% & 69.30 \% & 54.20 \% & 0.04 s / 1 core & \\
FilteredICF & & 56.53 \% & 69.79 \% & 50.32 \% & ~ 2 s / >8 cores & S. Zhang, R. Benenson and B. Schiele: Filtered Channel Features for Pedestrian Detection. CVPR 2015.\\
R2Pfusion-Det & & 56.52 \% & 67.09 \% & 54.46 \% & 0.3 s / 1 core & \\
R50\_SACINet & & 56.47 \% & 67.56 \% & 52.71 \% & 0.06 s / 1 core & \\
HMNet & & 56.46 \% & 67.93 \% & 53.96 \% & 0.1 s / 1 core & \\
SFA-GCL(baseline) & & 56.42 \% & 69.02 \% & 54.05 \% & 0.04 s / 1 core & \\
ARPNET & & 56.42 \% & 69.08 \% & 52.69 \% & 0.08 s / GPU & Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network
for 3D object detection. Science China Information Sciences 2019.\\
MonoRUn & & 56.40 \% & 73.05 \% & 51.40 \% & 0.07 s / GPU & H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.\\
MV-RGBD-RF & la & 56.18 \% & 72.99 \% & 49.72 \% & 4 s / 4 cores & A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.\\
voxelnext\_pcdet & & 56.13 \% & 65.44 \% & 53.73 \% & 0.05 s / 1 core & \\
CG-SSD & & 55.97 \% & 65.50 \% & 53.64 \% & 0.01 s / 1 core & \\
HMFI & & 55.96 \% & 66.20 \% & 53.24 \% & 0.1 s / 1 core & X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and
Interaction for 3D Object Detection. ECCV 2022.\\
MGAF-3DSSD & & 55.80 \% & 66.31 \% & 52.02 \% & 0.1 s / 1 core & J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage
Detector with Mask-Guided Attention for Point
Cloud. MM '21: The 29th ACM
International Conference on Multimedia (ACM MM) 2021.\\
GUPNet & & 55.65 \% & 74.95 \% & 48.44 \% & NA s / 1 core & Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network
for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.\\
MLOD & la & 55.62 \% & 68.42 \% & 51.45 \% & 0.12 s / GPU & J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.\\
AFFN-Ga & & 55.60 \% & 64.75 \% & 53.23 \% & 0.5 s / 1 core & \\
L\_SACINet & & 55.37 \% & 65.81 \% & 51.63 \% & 0.04 s / 1 core & \\
SAKD-MR-Res18 & & 55.20 \% & 74.40 \% & 48.08 \% & 0.03 s / 1 core & \\
MonoMH & & 55.19 \% & 73.25 \% & 50.19 \% & 0.04 s / 1 core & \\
DEVIANT & & 55.16 \% & 74.27 \% & 50.21 \% & 0.04 s / & A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.\\
PointPillars & la & 55.10 \% & 65.29 \% & 52.39 \% & 16 ms / & A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from
Point Clouds. CVPR 2019.\\
StereoDistill & & 55.09 \% & 69.00 \% & 50.95 \% & 0.4 s / 1 core & Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.\\
STD & & 55.04 \% & 68.33 \% & 50.85 \% & 0.08 s / GPU & Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for
Point Cloud. ICCV 2019.\\
OPA-3D & & 54.92 \% & 73.93 \% & 47.87 \% & 0.04 s / 1 core & Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise
Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.\\
Vote3Deep & la & 54.80 \% & 67.99 \% & 51.17 \% & 1.5 s / 4 cores & M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point
Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.\\
M3DeTR & & 54.78 \% & 63.15 \% & 52.49 \% & n/a s / GPU & T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi-
scale, Mutual-relation 3D Object Detection with
Transformers. 2021.\\
MFB3D & & 54.75 \% & 62.76 \% & 51.89 \% & 0.14 s / 1 core & \\
CAIA\_PRO & & 54.70 \% & 64.33 \% & 52.36 \% & 0.01 s / 1 core & \\
L-AUG & & 54.61 \% & 65.71 \% & 51.67 \% & 0.1 s / 1 core & T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point
Cloud Generation for 3D Object Detection. 2023.\\
SecAtten & & 54.61 \% & 65.63 \% & 51.02 \% & 0.1 s / 1 core & \\
MonoCoP & & 54.41 \% & 70.75 \% & 49.66 \% & 0.01 s / 1 core & \\
AEPF & & 54.41 \% & 64.95 \% & 51.22 \% & 0.05 s / GPU & \\
SFA-GCL & & 54.27 \% & 66.81 \% & 50.13 \% & 0.04 s / 1 core & \\
epBRM & la & 54.13 \% & 62.90 \% & 51.95 \% & 0.10 s / 1 core & K. Shin: Improving a Quality of 3D Object Detection
by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.\\
DVFENet & & 54.13 \% & 63.54 \% & 51.79 \% & 0.05 s / 1 core & Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature
Extraction Network for 3D Object Detection. Neurocomputing 2021.\\
SA V1 & & 54.09 \% & 64.15 \% & 51.64 \% & 0.5 s / GPU & \\
XView & & 53.83 \% & 62.27 \% & 51.61 \% & 0.1 s / 1 core & L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D
Object Detector. 2021.\\
monospb & & 53.79 \% & 72.50 \% & 48.89 \% & 0.01 s / 1 core & \\
PointPainting & la & 53.76 \% & 61.86 \% & 50.61 \% & 0.4 s / GPU & S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object
Detection. CVPR 2020.\\
PDV2 & & 53.54 \% & 65.59 \% & 47.65 \% & 3.7 s / 1 core & J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential
statistic feature for pedestrian and face
detection . Pattern Recognition 2017.\\
Mix-Teaching & & 53.52 \% & 67.34 \% & 47.45 \% & 30 s / 1 core & L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and
Effective Semi-Supervised Learning Framework for
Monocular 3D Object Detection. ArXiv 2022.\\
Cube R-CNN & & 53.27 \% & 64.96 \% & 47.84 \% & 0.05 s / GPU & G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and
Model for 3D Object Detection in the Wild. CVPR 2023.\\
TAFT & & 53.15 \% & 67.62 \% & 47.08 \% & 0.2 s / 1 core & J. Shen, X. Zuo, W. Yang, D. Prokhorov, X. Mei and H. Ling: Differential Features for Pedestrian
Detection: A
Taylor Series Perspective. IEEE Transactions on Intelligent
Transportation Systems 2018.\\
MSMA V1 & & 53.10 \% & 62.22 \% & 50.28 \% & 0.5 s / GPU & \\
Disp R-CNN & st & 52.98 \% & 71.79 \% & 48.20 \% & 0.387 s / GPU & J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection
via Shape Prior Guided Instance Disparity
Estimation. CVPR 2020.\\
Disp R-CNN (velo) & st & 52.90 \% & 71.63 \% & 48.15 \% & 0.387 s / GPU & J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via
Shape Prior Guided Instance Disparity Estimation. CVPR 2020.\\
pAUCEnsT & & 52.88 \% & 65.84 \% & 46.97 \% & 60 s / 1 core & S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.\\
SparVox3D & & 52.84 \% & 69.33 \% & 48.49 \% & 0.05 s / GPU & E. Balatkan and F. Kıraç: Improving Regression Performance
on Monocular 3D Object Detection Using Bin-Mixing
and Sparse Voxel Data. 2021 6th International
Conference on Computer Science and Engineering
(UBMK) 2021.\\
GSG-FPS & & 52.66 \% & 61.73 \% & 50.50 \% & 0.01 s / 1 core & \\
PFF3D & la & 52.53 \% & 62.12 \% & 50.27 \% & 0.05 s / GPU & L. Wen and K. Jo: Fast and
Accurate 3D Object Detection for Lidar-Camera-Based
Autonomous Vehicles Using One Shared Voxel-Based
Backbone. IEEE Access 2021.\\
IA-SSD (multi) & & 52.45 \% & 65.07 \% & 50.20 \% & 0.014 s / 1 core & Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly
Efficient Point-based Detectors for 3D LiDAR Point
Clouds. CVPR 2022.\\
S-AT GCN & & 52.30 \% & 62.01 \% & 50.10 \% & 0.02 s / GPU & L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention
Graph Convolution Network based Feature
Enhancement for 3D Object
Detection. CoRR 2021.\\
MMLAB LIGA-Stereo & st & 52.18 \% & 65.59 \% & 49.29 \% & 0.4 s / 1 core & X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry
Aware Representations for Stereo-based 3D
Detector. Proceedings of the IEEE/CVF
International Conference on Computer Vision
(ICCV) 2021.\\
HINTED & & 51.95 \% & 66.52 \% & 47.83 \% & 0.04 s / 1 core & Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector
with Mixed-Density Feature Fusion for Sparsely-
Supervised 3D Object Detection. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition 2024.\\
PCNet3D++ & & 51.69 \% & 62.37 \% & 49.14 \% & 0.5 s / GPU & \\
PCNet3D & & 51.69 \% & 61.97 \% & 49.20 \% & 0.05 s / GPU & \\
bs & & 51.66 \% & 60.30 \% & 49.41 \% & 0.1 s / 1 core & \\
Plane-Constraints & & 51.57 \% & 64.64 \% & 46.98 \% & 0.05 s / 4 cores & H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular
3D object detection via intra-and inter-plane
constraints. Neural Networks 2023.\\
Anonymous & la & 51.42 \% & 62.54 \% & 48.94 \% & 0.02 s / GPU & \\
PUDet & & 51.41 \% & 62.39 \% & 49.08 \% & 0.3 s / GPU & \\
Test\_dif & & 51.35 \% & 60.86 \% & 49.27 \% & 0.01 s / 1 core & \\
Shift R-CNN (mono) & & 51.30 \% & 70.86 \% & 46.37 \% & 0.25 s / GPU & A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D
Object Detection With Closed-form Geometric
Constraints. ICIP 2019.\\
SeSame-point & & 51.27 \% & 60.29 \% & 49.06 \% & N/A s / TITAN RTX & H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object
Detection with Point-Wise Semantics. Proceedings of the Asian
Conference on Computer Vision (ACCV) 2024.\\
VoxelFSD-S & & 51.00 \% & 60.60 \% & 48.71 \% & 0.05 s / 1 core & \\
PL++: PV-RCNN++ & st la & 50.51 \% & 60.54 \% & 47.30 \% & 0.342 s / & \\
DensePointPillars & & 49.81 \% & 58.95 \% & 47.05 \% & 0.03 s / GPU & \\
SeSame-voxel & & 49.74 \% & 60.69 \% & 45.64 \% & N/A s / TITAN RTX & H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object
Detection with Point-Wise Semantics. Proceedings of the Asian
Conference on Computer Vision (ACCV) 2024.\\
SCNet & la & 49.61 \% & 60.95 \% & 46.91 \% & 0.04 s / GPU & Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.\\
MMLab-PointRCNN & la & 49.41 \% & 58.93 \% & 46.44 \% & 0.1 s / GPU & S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation
and
detection from point cloud. Proceedings of the IEEE Conference
on
Computer Vision and Pattern Recognition 2019.\\
HomoLoss(monoflex) & & 48.97 \% & 63.77 \% & 44.60 \% & 0.04 s / 1 core & J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object
Detection. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2022.\\
mdab & & 48.66 \% & 65.70 \% & 43.93 \% & 0.02 s / 1 core & \\
mdab & & 48.66 \% & 65.70 \% & 43.93 \% & 22 s / 1 core & \\
ACFD & la & 48.63 \% & 61.62 \% & 44.15 \% & 0.2 s / 4 cores & M. Dimitrievski, P. Veelaert and W. Philips: Semantically aware multilateral filter for depth upsampling in automotive
LiDAR point clouds. IEEE Intelligent Vehicles Symposium, IV 2017, Los Angeles, CA,
USA, June 11-14, 2017 2017.\\
R-CNN & & 48.57 \% & 62.88 \% & 43.05 \% & 4 s / GPU & J. Hosang, M. Omran, R. Benenson and B. Schiele: Taking a Deeper Look at Pedestrians. arXiv 2015.\\
GraphAlign(ICCV2023) & & 48.47 \% & 55.17 \% & 46.68 \% & 0.03 s / GPU & Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature
alignment by graph matching for multi-modal 3D
object detection. Proceedings of the IEEE/CVF
International Conference on Computer Vision 2023.\\
VSAC & & 48.22 \% & 60.72 \% & 45.55 \% & 0.07 s / 1 core & ERROR: Wrong syntax in BIBTEX file.\\
Fade-kd & & 47.74 \% & 58.54 \% & 45.51 \% & 0.01 s / 1 core & \\
MonoLiG & & 47.69 \% & 62.87 \% & 43.27 \% & 0.03 s / 1 core & A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi
Supervised Active Learning. 2023.\\
focal & & 47.64 \% & 55.88 \% & 45.66 \% & 100 s / 1 core & \\
MonoFlex & & 47.58 \% & 62.64 \% & 43.15 \% & 0.03 s / GPU & Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D
Object Detection. CVPR 2021.\\
BirdNet+ & la & 47.50 \% & 54.78 \% & 45.53 \% & 0.11 s / & A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection
in LiDAR through a Sparsity-Invariant Bird’s Eye
View. IEEE Access 2021.\\
geo-pillars & & 46.92 \% & 55.56 \% & 44.74 \% & 0.05 s / 1 core & ERROR: Wrong syntax in BIBTEX file.\\
CMKD & & 46.84 \% & 61.04 \% & 42.92 \% & 0.1 s / 1 core & Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge
Distillation Network for Monocular 3D Object
Detection. ECCV 2022.\\
MonOAPC & & 46.31 \% & 60.93 \% & 42.05 \% & 0035 s / 1 core & H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for
Monocular 3D Object Detection. IEEE Transactions on Intelligent
Transportation Systems 2023.\\
SS3D & & 45.79 \% & 61.58 \% & 41.14 \% & 48 ms / & E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained
End-to-End Using
Intersection-over-Union Loss. CoRR 2019.\\
MonoRCNN++ & & 45.76 \% & 60.29 \% & 39.39 \% & 0.07 s / GPU & X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D
Object Detection. WACV 2023.\\
ACF & & 45.67 \% & 59.81 \% & 40.88 \% & 1 s / 1 core & P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object
Detection. PAMI 2014.\\
UniCuboid & & 45.64 \% & 59.74 \% & 41.29 \% & 0.1 s / 1 core & \\
Fusion-DPM & la & 44.99 \% & 58.93 \% & 40.19 \% & ~ 30 s / 1 core & C. Premebida, J. Carreira, J. Batista and U. Nunes: Pedestrian Detection Combining RGB and
Dense LIDAR Data. IROS 2014.\\
ACF-MR & & 44.79 \% & 58.29 \% & 39.94 \% & 0.6 s / 1 core & R. Rajaram, E. Ohn-Bar and M. Trivedi: Looking at Pedestrians at Different
Scales: A Multi-resolution Approach and
Evaluations. T-ITS 2016.\\
SeSame-pillar & & 44.21 \% & 52.67 \% & 41.95 \% & N/A s / TITAN RTX & H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object
Detection with Point-Wise Semantics. Proceedings of the Asian
Conference on Computer Vision (ACCV) 2024.\\
LPCG-Monoflex & & 44.13 \% & 62.44 \% & 39.46 \% & 0.03 s / 1 core & L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D
Object Detection. ECCV 2022.\\
HA-SSVM & & 43.87 \% & 58.76 \% & 38.81 \% & 21 s / 1 core & J. Xu, S. Ramos, D. Vázquez and A. López: Hierarchical Adaptive Structural SVM for Domain Adaptation. IJCV 2016.\\
AB3DMOT & la on & 43.86 \% & 54.55 \% & 40.99 \% & 0.0047s / 1 core & X. Weng and K. Kitani: A Baseline for 3D Multi-Object
Tracking. arXiv:1907.03961 2019.\\
MonoEF & & 43.73 \% & 58.79 \% & 39.45 \% & 0.03 s / 1 core & Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An
Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2021.\\
D4LCN & & 43.50 \% & 59.55 \% & 37.12 \% & 0.2 s / GPU & M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for
Monocular 3D Object Detection. CVPR 2020.\\
DMF & st & 43.43 \% & 52.99 \% & 41.29 \% & 0.2 s / 1 core & X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for
Transportation Detection. IEEE Transactions on Intelligent
Transportation Systems 2022.\\
MonoDDE & & 43.36 \% & 57.80 \% & 39.00 \% & 0.04 s / 1 core & Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth
Clues for Reliable Monocular 3D Object Detection. CVPR 2022.\\
T-SSD & & 43.31 \% & 53.86 \% & 40.96 \% & 0.04 / 1 core & \\
DPM-VOC+VP & & 43.26 \% & 59.21 \% & 38.12 \% & 8 s / 1 core & B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part
Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 2015.\\
ACF-SC & & 42.97 \% & 53.30 \% & 38.12 \% & & C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding
System using Context-Aware Object Detection. Robotics and Automation (ICRA),
2015 IEEE International Conference on 2015.\\
SeSame-voxel w/score & & 42.88 \% & 50.84 \% & 40.76 \% & N/A s / GPU & H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object
Detection with Point-Wise Semantics. Proceedings of the Asian
Conference on Computer Vision (ACCV) 2024.\\
MonoDTR & & 42.86 \% & 59.44 \% & 38.57 \% & 0.04 s / 1 core & K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with
Depth-Aware Transformer. CVPR 2022.\\
SquaresICF & & 42.61 \% & 57.08 \% & 37.85 \% & 1 s / GPU & R. Benenson, M. Mathias, T. Tuytelaars and L. Gool: Seeking the strongest rigid detector. CVPR 2013.\\
CG-Stereo & st & 42.54 \% & 54.64 \% & 38.45 \% & 0.57 s / & C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object
Detection with
Split Depth Estimation. IROS 2020.\\
BirdNet+ (legacy) & la & 41.97 \% & 51.38 \% & 40.15 \% & 0.1 s / & A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.\\
DDMP-3D & & 41.54 \% & 56.73 \% & 35.52 \% & 0.18 s / 1 core & L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for
Monocular 3D Object Detection. CVPR 2020.\\
CSW3D & la & 41.50 \% & 53.76 \% & 37.25 \% & 0.03 s / 4 cores & J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time
3D Region Proposal for Pedestrian Detection. ROBIO 2019.\\
M3D-RPN & & 41.46 \% & 56.64 \% & 37.31 \% & 0.16 s / GPU & G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal
Network for Object Detection . ICCV 2019 .\\
YOLOStereo3D & st & 41.46 \% & 56.20 \% & 37.07 \% & 0.1 s / & Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for
Efficient Stereo 3D Detection. 2021 International Conference on
Robotics and Automation (ICRA) 2021.\\
MonoFRD & & 41.20 \% & 54.06 \% & 37.53 \% & 0.01 s / 1 core & \\
CIE & & 41.04 \% & 53.27 \% & 37.73 \% & 0.1 s / 1 core & Anonymities: Consistency of Implicit and Explicit
Features Matters for Monocular 3D Object
Detection. arXiv preprint arXiv:2207.07933 2022.\\
SubCat & & 40.50 \% & 53.75 \% & 35.66 \% & 1.2 s / 6 cores & E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using
Visual Subcategories. Computer Vision and Pattern
Recognition
Workshops Mobile Vision 2014.\\
PS-fld & & 40.47 \% & 55.47 \% & 36.65 \% & 0.25 s / 1 core & Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object
Detection in Autonomous Driving. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2022.\\
SeSame-pillar w/scor & & 40.24 \% & 48.38 \% & 38.25 \% & N/A s / 1 core & H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object
Detection with Point-Wise Semantics. Proceedings of the Asian
Conference on Computer Vision (ACCV) 2024.\\
DSGN & st & 39.93 \% & 49.28 \% & 38.13 \% & 0.67 s / & Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D
Object Detection. CVPR 2020.\\
RT3D-GMP & st & 39.83 \% & 55.56 \% & 35.18 \% & 0.06 s / GPU & H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.\\
SparsePool & & 39.59 \% & 50.81 \% & 35.91 \% & 0.13 s / 8 cores & Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and
front view camera image for deep object
detection. arXiv preprint arXiv:1711.06703 2017.\\
SparsePool & & 39.43 \% & 50.94 \% & 35.78 \% & 0.13 s / 8 cores & Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and
front view camera image for deep object
detection. arXiv preprint arXiv:1711.06703 2017.\\
AVOD & la & 39.43 \% & 50.90 \% & 35.75 \% & 0.08 s / & J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object
Detection from View Aggregation. IROS 2018.\\
ACF & & 39.12 \% & 48.42 \% & 35.03 \% & 0.2 s / 1 core & P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object
Detection. PAMI 2014.P. Doll\'ar: Piotr's Image and Video
Matlab Toolbox (PMT). .\\
LSVM-MDPM-sv & & 37.26 \% & 50.74 \% & 33.13 \% & 10 s / 4 cores & P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.\\
multi-task CNN & & 37.00 \% & 49.38 \% & 33.46 \% & 25.1 ms / GPU & M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.\\
Complexer-YOLO & la & 36.45 \% & 42.16 \% & 32.91 \% & 0.06 s / GPU & M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object
Detection and Tracking on Semantic Point
Clouds. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)
Workshops 2019.\\
LSVM-MDPM-us & & 35.92 \% & 48.73 \% & 31.70 \% & 10 s / 4 cores & P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.\\
CMAN & & 34.96 \% & 49.73 \% & 30.92 \% & 0.15 s / 1 core & C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation
for
Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.\\
Aug3D-RPN & & 34.95 \% & 47.22 \% & 30.64 \% & 0.08 s / 1 core & C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.\\
FMF-occlusion-net & & 34.74 \% & 49.26 \% & 30.37 \% & 0.16 s / 1 core & H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti-
occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.\\
Fade & & 34.70 \% & 43.64 \% & 32.98 \% & 0.01 s / 1 core & \\
MonoNeRD & & 34.43 \% & 46.50 \% & 31.06 \% & na s / 1 core & J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for
Monocular 3D Object Detection. ICCV 2023.\\
PS-SVDM & & 34.15 \% & 46.43 \% & 30.90 \% & 1 s / 1 core & Y. Shi: SVDM: Single-View Diffusion Model for
Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.\\
LLW & & 34.15 \% & 46.50 \% & 30.83 \% & 0.1 s / 1 core & \\
mdab & & 34.04 \% & 47.88 \% & 31.26 \% & 0.02 s / 1 core & \\
PointRGBNet & & 33.92 \% & 44.35 \% & 30.43 \% & 0.08 s / 4 cores & P. Xie Desheng: Real-time Detection of 3D Objects
Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.\\
PGD-FCOS3D & & 33.67 \% & 48.30 \% & 29.76 \% & 0.03 s / 1 core & T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth:
Detecting Objects in Perspective. Conference on Robot Learning
(CoRL) 2021.\\
Vote3D & la & 33.04 \% & 42.66 \% & 30.59 \% & 0.5 s / 4 cores & D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object
Detection. Proceedings of Robotics: Science and
Systems 2015.\\
ESGN & st & 32.60 \% & 44.09 \% & 29.10 \% & 0.06 s / GPU & A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network
for Fast 3D Object Detection. IEEE Transactions on Circuits and
Systems for Video Technology 2022.\\
SGM3D & & 32.48 \% & 45.03 \% & 28.58 \% & 0.03 s / 1 core & Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object
Detection. RA-L 2022.\\
CPD++(unsupervised) & & 32.46 \% & 39.25 \% & 30.79 \% & 0.1 s / GPU & \\
CaDDN & & 32.42 \% & 46.35 \% & 29.98 \% & 0.63 s / GPU & C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution
Network for Monocular 3D Object Detection. CVPR 2021.\\
PS-SVDM & & 32.24 \% & 44.02 \% & 29.08 \% & 1 s / 1 core & Y. Shi: SVDM: Single-View Diffusion Model for
Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.\\
DFR-Net & & 31.84 \% & 45.20 \% & 27.94 \% & 0.18 s / & Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding:
The devil is in the task: Exploiting reciprocal
appearance-localization features for monocular 3d
object detection
. ICCV 2021.\\
OC Stereo & st & 30.79 \% & 43.50 \% & 28.40 \% & 0.35 s / 1 core & A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D
Object Detection. ICRA 2020.\\
mBoW & la & 30.26 \% & 41.52 \% & 26.34 \% & 10 s / 1 core & J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.\\
BirdNet & la & 30.07 \% & 36.82 \% & 28.40 \% & 0.11 s / & J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework
from LiDAR Information. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
SeSame-point w/score & & 30.04 \% & 40.65 \% & 27.65 \% & N/A s / 1 core & H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object
Detection with Point-Wise Semantics. Proceedings of the Asian
Conference on Computer Vision (ACCV) 2024.\\
RT3DStereo & st & 29.30 \% & 41.12 \% & 25.25 \% & 0.08 s / GPU & H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.\\
MDSNet & & 29.25 \% & 41.64 \% & 26.01 \% & 0.05 s / 1 core & Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification
3D Object Detection from Monocular Images. Sensors 2022.\\
AMNet+DDAD15M & & 28.50 \% & 37.11 \% & 25.83 \% & 0.03 s / 1 core & H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time
Monocular 3D Object Detection With Adaptive
Methods. IEEE Transactions on Intelligent
Transportation Systems 2025.\\
AMNet & & 26.21 \% & 34.68 \% & 23.62 \% & 0.03 s / GPU & H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time
Monocular 3D Object Detection With Adaptive
Methods. IEEE Transactions on Intelligent
Transportation Systems 2025.\\
DPM-C8B1 & st & 25.34 \% & 36.40 \% & 22.00 \% & 15 s / 4 cores & J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.\\
RefinedMPL & & 20.81 \% & 30.41 \% & 18.72 \% & 0.15 s / GPU & J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR
for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.\\
TopNet-Retina & la & 16.45 \% & 22.37 \% & 15.43 \% & 52ms / & S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in
Occupancy Grid Maps Using Deep Convolutional
Networks. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
TopNet-HighRes & la & 15.28 \% & 21.22 \% & 13.89 \% & 101ms / & S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in
Occupancy Grid Maps Using Deep Convolutional
Networks. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
CPD(unsupervised) & & 12.53 \% & 15.97 \% & 11.54 \% & 0.1 s / GPU & H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor
Unsupervised 3D Object Detection. CVPR 2024.\\
YOLOv2 & & 11.46 \% & 15.37 \% & 9.67 \% & 0.02 s / GPU & J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time
object detection. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2016.J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2017.\\
TopNet-UncEst & la & 8.58 \% & 13.00 \% & 7.38 \% & 0.09 s / & S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing
Object Detection Uncertainty in Multi-Layer Grid
Maps. 2019.\\
BIP-HETERO & & 7.05 \% & 8.51 \% & 6.30 \% & ~2 s / 1 core & A. Mekonnen, F. Lerasle, A. Herbulot and C. Briand: People Detection with Heterogeneous
Features and Explicit Optimization on Computation
Time. Pattern Recognition (ICPR), 2014 22nd
International Conference on 2014.\\
GATE3D & & 1.09 \% & 1.49 \% & 1.18 \% & 0.01 s / 1 core & \\
TopNet-DecayRate & la & 0.01 \% & 0.01 \% & 0.01 \% & 92 ms / & S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in
Occupancy Grid Maps Using Deep Convolutional
Networks. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
f3sd & & 0.01 \% & 0.01 \% & 0.01 \% & 1.67 s / 1 core & \\
DA3D+KM3D+v2-99 & & 0.00 \% & 0.00 \% & 0.00 \% & 0.120s / GPU & Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection
Through Data Augmentation Strategies. IEEE Transactions on Instrumentation
and Measurement 2024.\\
DA3D+KM3D & & 0.00 \% & 0.00 \% & 0.00 \% & 0.02 s / GPU & Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection
Through Data Augmentation Strategies. IEEE Transactions on Instrumentation
and Measurement 2024.\\
DA3D & & 0.00 \% & 0.00 \% & 0.00 \% & 0.03 s / 1 core & Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection
Through Data Augmentation Strategies. IEEE Transactions on Instrumentation
and Measurement 2024.
\end{tabular}