Bird's Eye View Evaluation 2017


The bird's eye view benchmark consists of 7481 training images and 7518 test images as well as the corresponding point clouds, comprising a total of 80.256 labeled objects. For evaluation, we compute precision-recall curves. To rank the methods we compute average precision. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate bird's eye view detection performance using the PASCAL criteria also used for 2D object detection. Far objects are thus filtered based on their bounding box height in the image plane. As only objects also appearing on the image plane are labeled, objects in don't car areas do not count as false positives. We note that the evaluation does not take care of ignoring detections that are not visible on the image plane — these detections might give rise to false positives. For cars we require a bounding box overlap of 70% in bird's eye view, while for pedestrians and cyclists we require an overlap of 50%. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results.

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 VirConv-S code 93.52 % 95.99 % 90.38 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
2 UDeerPEP code 93.33 % 95.21 % 89.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
3 VirConv-T code 92.65 % 96.11 % 89.69 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
4 GraR-Po code 92.12 % 95.79 % 87.11 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
5 TSSTDet 92.11 % 95.80 % 89.23 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
6 TED code 92.05 % 95.44 % 87.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
7 VirConv-L 91.95 % 95.53 % 87.07 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
8 HPC-Net 91.89 % 95.63 % 89.21 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
9 VPFNet code 91.86 % 93.02 % 86.94 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
10 SFD code 91.85 % 95.64 % 86.83 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
11 SE-SSD
This method makes use of Velodyne laser scans.
code 91.84 % 95.68 % 86.72 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
12 ACF-Net 91.78 % 92.91 % 87.06 % n/a s 1 core @ 2.5 Ghz (C/C++)
13 GraR-Vo code 91.72 % 95.27 % 86.51 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
14 NIV-SSD 91.69 % 95.66 % 86.72 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
15 CDF 91.67 % 92.68 % 86.62 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
16 Simi-fusion 91.64 % 95.45 % 89.13 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
17 PVT-SSD 91.63 % 95.23 % 86.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
18 HAF-PVP_test 91.60 % 95.33 % 86.71 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
19 SPANet 91.59 % 95.59 % 86.53 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
20 CasA code 91.54 % 95.19 % 86.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
21 LoGoNet code 91.52 % 95.48 % 87.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
22 GraR-Pi code 91.52 % 95.06 % 86.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
23 CASDC 91.51 % 93.90 % 86.54 % 0.1 s 1 core @ 2.5 Ghz (Python)
24 FYI3D
This method makes use of Velodyne laser scans.
91.50 % 95.27 % 86.84 % 0.1 s GPU @ 2.5 Ghz (Python)
25 HRNet 91.42 % 95.18 % 86.73 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
26 SA-Net 91.37 % 95.11 % 86.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
27 BADet code 91.32 % 95.23 % 86.48 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
28 GT3D 91.31 % 95.05 % 86.67 % 0.1 s 1 core @ 2.5 Ghz (Python)
29 LVP 91.29 % 94.53 % 86.48 % 0.04 s 1 core @ 2.5 Ghz (Python)
30 VDF 91.28 % 94.80 % 86.43 % 0.03 s GPU @ 2.5 Ghz (Python)
31 SFD++ 91.22 % 94.67 % 86.28 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
32 CasA++ code 91.22 % 94.57 % 88.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
33 RPF3D 91.18 % 92.94 % 86.58 % 0.1 s 1 core @ 2.5 Ghz (Python)
34 R^2 R-CNN 91.17 % 93.02 % 86.62 % 0.1 s 1 core @ 2.5 Ghz (Python)
35 3D HANet code 91.13 % 94.33 % 86.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
36 Anonymous 91.06 % 95.00 % 86.48 % 0.1 s GPU @ 2.5 Ghz (Python)
37 TEDx 91.05 % 92.74 % 88.17 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
38 SA-SSD code 91.03 % 95.03 % 85.96 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
39 L-AUG 91.00 % 94.52 % 88.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
40 BSH-Det3D 90.99 % 92.90 % 86.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
41 3D-BCM 90.95 % 94.64 % 86.16 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
42 SGFNet 90.91 % 94.01 % 86.12 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
43 VGT-RCNN 90.89 % 94.59 % 86.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
44 3D Dual-Fusion code 90.86 % 93.08 % 86.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
45 LGSL 90.85 % 94.35 % 88.27 % 0.1 s GPU @ 2.5 Ghz (Python)
46 GraphAlign 90.73 % 94.46 % 88.34 % 0.03 s GPU @ 2.0 Ghz (Python)
47 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 90.65 % 94.98 % 86.14 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
48 PV-PMRTNet 90.58 % 94.69 % 86.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
49 VPFNet code 90.52 % 93.94 % 86.25 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
50 PDV code 90.48 % 94.56 % 86.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
51 Rnet 90.43 % 92.74 % 86.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
52 M3DeTR code 90.37 % 94.41 % 85.98 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
53 VoTr-TSD code 90.34 % 94.03 % 86.14 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
54 HybridPillars 90.34 % 94.65 % 86.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
55 MSIT-Det 90.24 % 96.01 % 80.53 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
56 DAF-SSD 90.22 % 95.91 % 84.77 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
57 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 90.13 % 92.42 % 85.93 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
58 XView 90.12 % 92.27 % 85.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
59 GraR-VoI code 90.10 % 95.69 % 86.85 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
60 CAT-Det 90.07 % 92.59 % 85.82 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
61 3ONet 90.07 % 95.87 % 85.09 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
62 IMLIDAR(base) 89.93 % 93.57 % 85.02 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
63 SoRL-V 89.93 % 93.73 % 82.79 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
64 SVGA-Net 89.88 % 92.07 % 85.59 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
65 EBM3DOD code 89.86 % 95.64 % 84.56 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
66 U_PV_V2_ep_100_100 89.86 % 92.17 % 85.81 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
67 CIA-SSD
This method makes use of Velodyne laser scans.
code 89.84 % 93.74 % 82.39 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
68 CLOCs_PVCas code 89.80 % 93.05 % 86.57 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
69 GLENet-VR code 89.76 % 93.48 % 84.89 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
70 RDIoU code 89.75 % 94.90 % 84.67 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
71 fuf 89.72 % 95.47 % 84.59 % 10 s 1 core @ 2.5 Ghz (C/C++)
72 SoRL 89.72 % 95.40 % 84.79 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
73 HRNet++ 89.69 % 95.38 % 84.75 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
74 EBM3DOD baseline code 89.63 % 95.44 % 84.34 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
75 POP-RCNN 89.63 % 93.35 % 86.83 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
76 PIPC-3Ddet code 89.62 % 93.40 % 84.65 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
77 LightCPC code 89.62 % 92.99 % 86.51 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
78 MMF 89.61 % 93.33 % 86.70 % 1 s 1 core @ 2.5 Ghz (C/C++)
79 HPV-RCNN 89.60 % 93.33 % 84.60 % 0.08 s 1 core @ 2.5 Ghz (Python)
80 MAK code 89.59 % 93.21 % 86.84 % 0.03 s GPU @ 2.5 Ghz (Python)
81 IA-SSDx 89.58 % 93.39 % 84.75 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
82 casx 89.58 % 93.39 % 84.75 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
83 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 89.56 % 93.52 % 82.45 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
84 OcTr 89.56 % 93.08 % 86.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
85 Struc info fusion II 89.54 % 95.26 % 82.31 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
86 PSMS-Net
This method makes use of Velodyne laser scans.
89.53 % 95.32 % 86.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
87 IIOU code 89.52 % 92.90 % 84.56 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
88 SASA
This method makes use of Velodyne laser scans.
code 89.51 % 92.87 % 86.35 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
89 Fast-CLOCs 89.49 % 93.03 % 86.40 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
90 PA-RCNN code 89.49 % 95.18 % 86.73 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
91 IA-SSD (single) code 89.48 % 93.14 % 84.42 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
92 CAP 89.48 % 93.35 % 86.68 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
93 CLOCs code 89.48 % 92.91 % 86.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
94 Anonymous 89.47 % 92.84 % 84.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
95 PA3DNet 89.46 % 93.11 % 84.60 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
96 PG-RCNN code 89.46 % 93.39 % 86.54 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
97 DFAF3D 89.45 % 93.14 % 84.22 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
98 DVF-V 89.42 % 93.12 % 86.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
99 TADP 89.41 % 93.33 % 84.16 % 0.04 s GPU @ 2.5 Ghz (Python)
100 Anonymous 89.40 % 92.99 % 84.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
101 GS 89.39 % 92.69 % 86.16 % TBD s 1 core @ 2.5 Ghz (C/C++)
102 Struc info fusion I 89.38 % 94.91 % 84.29 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
103 IPS 89.36 % 92.78 % 86.08 % TBD s 1 core @ 2.5 Ghz (C/C++)
104 ATT_SSD 89.34 % 92.58 % 86.08 % 0.01 s 1 core @ 2.5 Ghz (Python)
105 DA-Net 89.34 % 94.97 % 86.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
106 BtcDet
This method makes use of Velodyne laser scans.
code 89.34 % 92.81 % 84.55 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
107 casxv1 89.33 % 92.88 % 84.55 % 0.01 s 1 core @ 2.5 Ghz (Python)
108 IA-SSD (multi) code 89.33 % 92.79 % 84.35 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
109 GS-FPS code 89.28 % 92.79 % 86.06 % TBD s 1 core @ 2.5 Ghz (C/C++)
110 SS-3DSSD code 89.27 % 92.61 % 86.10 % 0.014s 1 core @ 2.5 Ghz (C/C++)
111 GEO_LOC 89.25 % 92.80 % 84.23 % TBD s 1 core @ 2.5 Ghz (C/C++)
112 DSASA code 89.22 % 92.71 % 86.00 % 0.05s GPU @ >3.5 Ghz (Python)
113 ACDet code 89.21 % 92.87 % 85.80 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
114 DVF-PV 89.20 % 93.08 % 86.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
115 Anonymous 89.19 % 93.10 % 84.41 % 0.1 s GPU @ 2.5 Ghz (Python)
116 STD code 89.19 % 94.74 % 86.42 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
117 GS-FPS-LT 89.18 % 92.74 % 84.17 % TBD s 1 core @ 2.5 Ghz (C/C++)
118 DTSSD 89.18 % 92.77 % 86.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
119 Point-GNN
This method makes use of Velodyne laser scans.
code 89.17 % 93.11 % 83.90 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
120 Point-GNN_GT code 89.17 % 93.11 % 83.90 % 5 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
121 HMFI code 89.17 % 93.04 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
122 SSL-PointGNN code 89.16 % 92.92 % 83.99 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
123 DTSSD 89.15 % 92.61 % 85.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
124 MMAE
This method makes use of Velodyne laser scans.
89.15 % 92.42 % 84.01 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
125 SPG_mini
This method makes use of Velodyne laser scans.
code 89.12 % 92.80 % 86.27 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
126 PA-Det3D 89.11 % 92.40 % 86.51 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
127 DCAF code 89.11 % 95.36 % 85.90 % 0.12 s 1 core @ 2.5 Ghz (C/C++)
128 PV-DT3D 89.10 % 92.65 % 86.43 % 1.4 s 1 core @ 2.5 Ghz (C/C++)
129 MPFusion 89.10 % 92.40 % 86.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
130 EQ-PVRCNN code 89.09 % 94.55 % 86.42 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
131 FEMV-RCNN code 89.09 % 92.66 % 86.45 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
132 VoxSeT code 89.07 % 92.70 % 86.29 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
133 Multi-Weights 89.06 % 92.72 % 86.25 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
134 3DSSD code 89.02 % 92.66 % 85.86 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
135 ACCF 89.02 % 92.31 % 84.13 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
136 EPNet++ 89.00 % 95.41 % 85.73 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
137 B2PE 89.00 % 92.30 % 84.01 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
138 IOUFusion 89.00 % 92.47 % 84.10 % 0.1 s GPU @ 2.5 Ghz (Python)
139 Focals Conv code 89.00 % 92.67 % 86.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
140 MVENet 88.97 % 94.28 % 86.14 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
141 VGRCNN++ 88.96 % 92.96 % 86.25 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
142 CAFI-Pillars 88.96 % 92.32 % 86.24 % 30ms NVIDIA Tesla P40 GPU
143 USVLab BSAODet code 88.90 % 92.66 % 86.23 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
144 GENet 88.90 % 92.11 % 86.20 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
145 BSConv 88.88 % 92.49 % 85.65 % 0.1 s 1 core @ 2.5 Ghz (Java)
146 CZY_PPF_Net 88.88 % 94.68 % 86.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
147 H^23D R-CNN code 88.87 % 92.85 % 86.07 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
148 Pyramid R-CNN 88.84 % 92.19 % 86.21 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
149 CityBrainLab-CT3D code 88.83 % 92.36 % 84.07 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
150 Voxel R-CNN code 88.83 % 94.85 % 86.13 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
151 HVNet 88.82 % 92.83 % 83.38 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
152 GD-MAE 88.82 % 94.22 % 83.54 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
153 VG-RCNN 88.81 % 92.75 % 86.12 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
154 Under Blind Review#1 88.77 % 92.10 % 86.06 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
155 SPG
This method makes use of Velodyne laser scans.
code 88.70 % 94.33 % 85.98 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
156 F3D 88.70 % 92.26 % 85.84 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
157 DTE3D 88.69 % 92.61 % 85.77 % 0.15s 1 core @ 2.5 Ghz (C/C++)
158 SIENet code 88.65 % 92.38 % 86.03 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
159 P2V-RCNN 88.63 % 92.72 % 86.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
160 FromVoxelToPoint code 88.61 % 92.23 % 86.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
161 RangeIoUDet
This method makes use of Velodyne laser scans.
88.59 % 92.28 % 85.83 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
162 GA-RCNN 88.56 % 92.17 % 85.95 % 47ms 1 core @ 2.5 Ghz (C/C++)
163 RBEV-Voxel code 88.54 % 91.92 % 85.73 % 0.08 s GPU @ 2.5 Ghz (Python)
164 Anonymous 88.49 % 92.40 % 85.77 % 0.03s
165 EPNet code 88.47 % 94.22 % 83.69 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
166 CenterNet3D 88.46 % 91.80 % 83.62 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
167 FARP-Net code 88.45 % 91.20 % 86.01 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
168 HA-PillarNet 88.41 % 92.49 % 85.89 % 0.05 s 1 core @ 2.5 Ghz (Python)
169 RangeRCNN
This method makes use of Velodyne laser scans.
88.40 % 92.15 % 85.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
170 Patches
This method makes use of Velodyne laser scans.
88.39 % 92.72 % 83.19 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
171 3D IoU-Net 88.38 % 94.76 % 81.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
172 StructuralIF 88.38 % 91.78 % 85.67 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
173 PEF code 88.37 % 92.65 % 83.91 % N/A s 1 core @ 2.5 Ghz (C/C++)
174 HybridPillars (SSD) 88.36 % 91.80 % 83.27 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
175 FSFNet 88.35 % 94.88 % 83.58 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
176 U_PV_V2_ep100_80 88.25 % 91.88 % 85.67 % 0... s 1 core @ 2.5 Ghz (Python)
177 CLOCs_SecCas 88.23 % 91.16 % 82.63 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
178 U_RVRCNN_V2_1 88.21 % 92.05 % 85.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
179 UberATG-MMF
This method makes use of Velodyne laser scans.
88.21 % 93.67 % 81.99 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
180 U_VOXELRCNN_CAR_V3 88.18 % 91.67 % 85.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
181 MMpointpillars 88.17 % 91.76 % 81.13 % 0.05 s 1 core @ 2.5 Ghz (Python)
182 Patches - EMP
This method makes use of Velodyne laser scans.
88.17 % 94.49 % 84.75 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
183 SRDL 88.17 % 92.01 % 85.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
184 P2P code 88.15 % 91.92 % 81.12 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
185 PVRCNN_8369 88.13 % 91.91 % 85.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
186 PointPainting
This method makes use of Velodyne laser scans.
88.11 % 92.45 % 83.36 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
187 SERCNN
This method makes use of Velodyne laser scans.
88.10 % 94.11 % 83.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
188 Associate-3Ddet code 88.09 % 91.40 % 82.96 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
189 HotSpotNet 88.09 % 94.06 % 83.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
190 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 88.08 % 91.90 % 85.35 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
191 UberATG-HDNET
This method makes use of Velodyne laser scans.
87.98 % 93.13 % 81.23 % 0.05 s GPU @ 2.5 Ghz (Python)
B. Yang, M. Liang and R. Urtasun: HDNET: Exploiting HD Maps for 3D Object Detection. 2nd Conference on Robot Learning (CoRL) 2018.
192 RealSynthesis-SECOND 87.85 % 90.96 % 84.53 % 0.05 s 1 core @ 2.5 Ghz (Python)
193 STNet 87.85 % 91.73 % 85.13 % 0.60 s 1 core @ 2.5 Ghz (Python)
194 Fast Point R-CNN
This method makes use of Velodyne laser scans.
87.84 % 90.87 % 80.52 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
195 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 87.79 % 91.70 % 84.61 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
196 SIF 87.76 % 91.44 % 85.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
197 U_PVRCNN_V2 87.74 % 91.62 % 85.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
198 MVAF-Net code 87.73 % 91.95 % 85.00 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
199 DVFENet 87.68 % 90.93 % 84.60 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
200 S-AT GCN 87.68 % 90.85 % 84.20 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
201 RangeDet (Official) code 87.67 % 90.93 % 82.92 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
202 U_second_v4_ep_100_8 87.58 % 90.54 % 84.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
203 HA-SSD 87.56 % 90.70 % 84.36 % 1 s 1 core @ 2.5 Ghz (C/C++)
204 MODet
This method makes use of Velodyne laser scans.
87.56 % 90.80 % 82.69 % 0.05 s GTX1080Ti
Y. Zhang, Z. Xiang, C. Qiao and S. Chen: Accurate and Real-Time Object Detection Based on Bird's Eye View on 3D Point Clouds. 2019 International Conference on 3D Vision (3DV) 2019.
205 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 87.53 % 91.99 % 81.03 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
206 PointRGCN 87.49 % 91.63 % 80.73 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
207 MGAF-3DSSD code 87.47 % 92.70 % 82.19 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
208 OA-TSSD 87.41 % 89.88 % 84.45 % 20 s 8 cores @ 2.5 Ghz (C/C++)
209 PC-CNN-V2
This method makes use of Velodyne laser scans.
87.40 % 91.19 % 79.35 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
210 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 87.39 % 92.13 % 82.72 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
211 Sem-Aug
This method makes use of Velodyne laser scans.
87.37 % 93.35 % 82.43 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
212 MAFF-Net(DAF-Pillar) 87.34 % 90.79 % 77.66 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
213 Harmonic PointPillar code 87.28 % 90.89 % 82.54 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
214 u_second_v4_epoch_10 87.23 % 89.67 % 84.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
215 PASS-PointPillar 87.23 % 91.07 % 81.98 % 1 s 1 core @ 2.5 Ghz (C/C++)
216 HRI-VoxelFPN 87.21 % 92.75 % 79.82 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
217 PVTr 87.17 % 91.25 % 84.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
218 epBRM
This method makes use of Velodyne laser scans.
code 87.13 % 90.70 % 81.92 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
219 APDM code 87.09 % 88.37 % 83.46 % 0.7 s 1 core @ 2.5 Ghz (Python)
220 SARPNET 86.92 % 92.21 % 81.68 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
221 ARPNET 86.81 % 90.06 % 79.41 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
222 C-GCN 86.78 % 91.11 % 80.09 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
223 PointPillars
This method makes use of Velodyne laser scans.
code 86.56 % 90.07 % 82.81 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
224 TANet code 86.54 % 91.58 % 81.19 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
225 MEDL-U 86.50 % 91.75 % 79.29 % 1 s GPU @ >3.5 Ghz (Python)
226 SCNet
This method makes use of Velodyne laser scans.
86.48 % 90.07 % 81.30 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
227 SegVoxelNet 86.37 % 91.62 % 83.04 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
228 IIOU_LDR code 86.31 % 91.80 % 81.30 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
229 VPNetv2 86.25 % 91.92 % 83.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
230 3D IoU Loss
This method makes use of Velodyne laser scans.
86.22 % 91.36 % 81.20 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
231 MSAW 86.16 % 91.27 % 81.21 % 0.42 s 2 cores @ 2.5 Ghz (Python)
232 ROT_S3D 86.11 % 91.33 % 81.17 % 0.1 s GPU @ 2.5 Ghz (Python)
233 R-GCN 86.05 % 91.91 % 81.05 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
234 UberATG-PIXOR++
This method makes use of Velodyne laser scans.
86.01 % 93.28 % 80.11 % 0.035 s GPU @ 2.5 Ghz (Python)
B. Yang, M. Liang and R. Urtasun: HDNET: Exploiting HD Maps for 3D Object Detection. 2nd Conference on Robot Learning (CoRL) 2018.
235 MMpp 85.97 % 91.28 % 80.82 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
236 CAT2 85.90 % 91.13 % 80.81 % 1 s 1 core @ 2.5 Ghz (C/C++)
237 Sem-Aug-PointRCNN++ 85.88 % 91.68 % 83.37 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
238 DASS 85.85 % 91.74 % 80.97 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
239 F-ConvNet
This method makes use of Velodyne laser scans.
code 85.84 % 91.51 % 76.11 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
240 MLAFF 85.84 % 91.02 % 80.93 % 0.39 s 2 cores @ 2.5 Ghz (Python)
241 PI-RCNN 85.81 % 91.44 % 81.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
242 PointRGBNet 85.73 % 91.39 % 80.68 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
243 HA PillarNet 85.69 % 90.43 % 80.75 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
244 WA 85.61 % 90.76 % 79.99 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
245 UberATG-ContFuse
This method makes use of Velodyne laser scans.
85.35 % 94.07 % 75.88 % 0.06 s GPU @ 2.5 Ghz (Python)
M. Liang, B. Yang, S. Wang and R. Urtasun: Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.
246 PFF3D
This method makes use of Velodyne laser scans.
code 85.08 % 89.61 % 80.42 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
247 AVOD
This method makes use of Velodyne laser scans.
code 84.95 % 89.75 % 78.32 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
248 WS3D
This method makes use of Velodyne laser scans.
84.93 % 90.96 % 77.96 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
249 ODGS 84.82 % 89.59 % 78.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
250 AVOD-FPN
This method makes use of Velodyne laser scans.
code 84.82 % 90.99 % 79.62 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
251 F-PointNet
This method makes use of Velodyne laser scans.
code 84.67 % 91.17 % 74.77 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
252 Anonymous Submission 84.60 % 90.35 % 79.82 % 1s 1 core @ 2.5 Ghz (Python)
253 Voxel-MAE+SECOND code 83.96 % 87.41 % 81.67 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
254 3DBN
This method makes use of Velodyne laser scans.
83.94 % 89.66 % 76.50 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
255 MVAF-Net(3-classes) 83.81 % 90.05 % 77.52 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
256 EOTL code 83.14 % 89.10 % 71.41 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
257 DFSemONet(Baseline) 82.80 % 90.00 % 77.90 % 0.04 s GPU @ 2.5 Ghz (Python)
258 MLOD
This method makes use of Velodyne laser scans.
code 82.68 % 90.25 % 77.97 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
259 MVAF-Net(3-classes) 82.32 % 90.67 % 77.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
260 BirdNet+
This method makes use of Velodyne laser scans.
code 81.85 % 87.43 % 75.36 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
261 DMF
This method uses stereo information.
80.29 % 84.64 % 76.05 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
262 UberATG-PIXOR
This method makes use of Velodyne laser scans.
80.01 % 83.97 % 74.31 % 0.035 s TITAN Xp (Python)
B. Yang, W. Luo and R. Urtasun: PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.
263 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
78.98 % 86.49 % 72.23 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
264 DSGN++
This method uses stereo information.
code 78.94 % 88.55 % 69.74 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
265 MV3D
This method makes use of Velodyne laser scans.
78.93 % 86.62 % 69.80 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
266 StereoDistill 78.59 % 89.03 % 69.34 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
267 MMLAB LIGA-Stereo
This method uses stereo information.
code 76.78 % 88.15 % 67.40 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
268 RCD 75.83 % 82.26 % 69.61 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
269 LaserNet 74.52 % 79.19 % 68.45 % 12 ms GPU @ 2.5 Ghz (C/C++)
G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington: LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
270 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 73.80 % 84.61 % 65.59 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
271 SNVC
This method uses stereo information.
code 73.61 % 86.88 % 64.49 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
272 A3DODWTDA
This method makes use of Velodyne laser scans.
code 73.26 % 79.58 % 62.77 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
273 Complexer-YOLO
This method makes use of Velodyne laser scans.
68.96 % 77.24 % 64.95 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
274 TopNet-Retina
This method makes use of Velodyne laser scans.
68.16 % 80.16 % 63.43 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
275 CG-Stereo
This method uses stereo information.
66.44 % 85.29 % 58.95 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
276 PLUME
This method uses stereo information.
66.27 % 82.97 % 56.70 % 0.15 s GPU @ 2.5 Ghz (Python)
Y. Wang, B. Yang, R. Hu, M. Liang and R. Urtasun: PLUME: Efficient 3D Object Detection from Stereo Images. IROS 2021.
277 CDN
This method uses stereo information.
code 66.24 % 83.32 % 57.65 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
278 PS++ 65.90 % 84.07 % 58.21 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
279 DSGN
This method uses stereo information.
code 65.05 % 82.90 % 56.60 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
280 TopNet-DecayRate
This method makes use of Velodyne laser scans.
64.60 % 79.74 % 58.04 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
281 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 63.33 % 84.80 % 61.23 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
282 3D FCN
This method makes use of Velodyne laser scans.
61.67 % 70.62 % 55.61 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
283 CDN-PL++
This method uses stereo information.
61.04 % 81.27 % 52.84 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
284 BirdNet
This method makes use of Velodyne laser scans.
59.83 % 84.17 % 57.35 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
285 TopNet-UncEst
This method makes use of Velodyne laser scans.
59.67 % 72.05 % 51.67 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
286 RT3D-GMP
This method uses stereo information.
59.00 % 69.14 % 45.49 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
287 Disp R-CNN (velo)
This method uses stereo information.
code 58.62 % 79.76 % 47.73 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
288 ESGN
This method uses stereo information.
58.12 % 78.10 % 49.28 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
289 Pseudo-LiDAR++
This method uses stereo information.
code 58.01 % 78.31 % 51.25 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
290 Disp R-CNN
This method uses stereo information.
code 57.98 % 79.61 % 47.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
291 ZoomNet
This method uses stereo information.
code 54.91 % 72.94 % 44.14 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
292 VoxelJones code 53.96 % 66.21 % 47.66 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
293 TopNet-HighRes
This method makes use of Velodyne laser scans.
53.05 % 67.84 % 46.99 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
294 OC Stereo
This method uses stereo information.
code 51.47 % 68.89 % 42.97 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
295 DSC3D
This method uses stereo information.
51.21 % 74.56 % 42.07 % 0.31 s GPU @ 2.5 Ghz (Python)
296 YOLOStereo3D
This method uses stereo information.
code 50.28 % 76.10 % 36.86 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
297 TS3D
This method uses stereo information.
48.59 % 73.34 % 36.98 % 0.09 s GPU @ 1.5 Ghz (Python + C/C++)
298 RT3DStereo
This method uses stereo information.
46.82 % 58.81 % 38.38 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
299 Pseudo-Lidar
This method uses stereo information.
code 45.00 % 67.30 % 38.40 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
300 BKDStereo3D code 44.02 % 70.19 % 32.78 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
301 RT3D
This method makes use of Velodyne laser scans.
44.00 % 56.44 % 42.34 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
302 Stereo CenterNet
This method uses stereo information.
42.12 % 62.97 % 35.37 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
303 Stereo R-CNN
This method uses stereo information.
code 41.31 % 61.92 % 33.42 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
304 BKDStereo3D w/o KD code 40.69 % 67.38 % 29.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
305 CIE + DM3D 33.13 % 46.17 % 28.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
306 StereoFENet
This method uses stereo information.
32.96 % 49.29 % 25.90 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
307 SVDM-VIEW 30.78 % 49.96 % 26.51 % 1 s 1 core @ 2.5 Ghz (Python)
308 Mobile Stereo R-CNN
This method uses stereo information.
28.78 % 44.51 % 22.30 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
309 CIE 28.50 % 41.41 % 23.88 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
310 Anonymous 28.10 % 40.70 % 23.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
311 DA3D 26.92 % 36.83 % 23.41 % 0.03 s 1 core @ 2.5 Ghz (Python)
312 MonoLiG code 26.83 % 35.73 % 24.24 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
313 MonoATT_V2 code 26.30 % 35.95 % 24.20 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
314 MonoLSS 25.95 % 34.89 % 22.59 % 0.04 s 1 core @ 2.5 Ghz (Python)
315 CMKD code 25.82 % 38.98 % 22.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
316 BAIR 25.60 % 35.41 % 22.14 % 0.04 s 1 core @ 2.5 Ghz (Python)
317 AMNet 25.40 % 34.68 % 22.85 % 0.03 s GPU @ 1.0 Ghz (Python)
318 MonoXiver 25.37 % 34.14 % 22.20 % 0.03s GPU @ 2.5 Ghz (Python)
319 3Dv2 25.25 % 35.64 % 22.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
320 LPCG-Monoflex code 24.81 % 35.96 % 21.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
321 Anonymous 24.66 % 34.65 % 20.77 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
322 NeurOCS 24.49 % 37.27 % 20.89 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
323 MonoATT code 24.42 % 36.87 % 21.88 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
324 out_dated 24.41 % 37.38 % 20.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
325 Mix-Teaching code 24.23 % 35.74 % 20.80 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
326 MonoInsight 24.23 % 34.85 % 20.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
327 MonoInsight 24.23 % 34.85 % 20.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
328 OccupancyM3D 24.18 % 35.38 % 21.37 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
329 MonoAux-v2 code 24.15 % 34.14 % 20.84 % 0.04 s GPU @ 2.5 Ghz (Python)
330 MonoSKD 24.08 % 37.12 % 20.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
331 PS-fld code 23.76 % 32.64 % 20.64 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
332 SHUD 23.68 % 35.94 % 20.17 % 0.04 s 1 core @ 2.5 Ghz (Python)
333 ADD code 23.58 % 35.20 % 20.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
334 MonoNeRD code 23.46 % 31.13 % 20.97 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
335 MonoDDE 23.46 % 33.58 % 20.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
336 MonoA^2 23.45 % 32.35 % 20.71 % na s 1 core @ 2.5 Ghz (C/C++)
337 DD3D code 23.41 % 32.35 % 20.42 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
338 MOPNet code 23.33 % 36.40 % 19.70 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
339 MonoA^2(new) 23.14 % 31.71 % 20.45 % na s 1 core @ 2.5 Ghz (C/C++)
340 MonoUNI code 23.05 % 33.28 % 19.39 % 0.04 s 1 core @ 2.5 Ghz (Python)
341 MonoAux 23.00 % 32.30 % 19.84 % 0.04 s GPU @ 2.5 Ghz (Python)
342 LWLANet code 22.84 % 34.73 % 19.52 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
343 UNM3D 22.79 % 33.45 % 20.79 % na s 1 core @ 2.5 Ghz (C/C++)
344 DID-M3D code 22.76 % 32.95 % 19.83 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
345 OPA-3D code 22.53 % 33.54 % 19.22 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
346 MM3DV2 22.49 % 32.18 % 19.80 % NA s 1 core @ 2.5 Ghz (C/C++)
347 MonoSTL 22.42 % 32.19 % 19.48 % na s 1 core @ 2.5 Ghz (Python)
348 MonoCDiT 21.97 % 30.32 % 18.80 % 0.05 s GPU @ >3.5 Ghz (Python)
349 MonoRoIDepth 21.85 % 32.11 % 18.20 % 1 s 1 core @ 2.5 Ghz (C/C++)
350 3DSeMoDLE code 21.78 % 30.99 % 18.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
351 BA2-Det+MonoFlex 21.54 % 31.61 % 18.35 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
352 DCD code 21.50 % 32.55 % 18.25 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
353 MonoDETR code 21.45 % 32.20 % 18.68 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
354 SGM3D code 21.37 % 31.49 % 18.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
355 DD3D-dequity 21.37 % 30.62 % 19.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
356 Mono3DMethod 21.21 % 32.57 % 18.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
357 Cube R-CNN code 21.20 % 31.70 % 18.43 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
358 GUPNet code 21.19 % 30.29 % 18.20 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
359 DE_Fusion 21.14 % 33.32 % 18.37 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
360 MM3D 20.93 % 31.44 % 18.72 % NA s 1 core @ 2.5 Ghz (C/C++)
361 BCA 20.75 % 30.03 % 17.60 % 0.17 s GPU @ 2.5 Ghz (Python)
362 HomoLoss(monoflex) code 20.68 % 29.60 % 17.81 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
363 DEVIANT code 20.44 % 29.65 % 17.43 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
364 MonoDTR 20.38 % 28.59 % 17.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
365 MDSNet 20.14 % 32.81 % 15.77 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
366 MonoSIM 20.09 % 28.68 % 18.28 % 0.16 s 1 core @ 2.5 Ghz (Python)
367 AutoShape code 20.08 % 30.66 % 15.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
368 MonoFlex 19.75 % 28.23 % 16.89 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
369 MonoEF 19.70 % 29.03 % 17.26 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
370 HomoLoss(imvoxelnet) code 19.25 % 29.18 % 16.21 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
371 DFR-Net 19.17 % 28.17 % 14.84 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
372 DLE code 19.05 % 31.09 % 14.13 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
373 PCT code 19.03 % 29.65 % 15.92 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
374 CaDDN code 18.91 % 27.94 % 17.19 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
375 monodle code 18.89 % 24.79 % 16.00 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
376 Neighbor-Vote 18.65 % 27.39 % 16.54 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
377 MonoRCNN++ code 18.62 % 27.20 % 15.69 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
378 GrooMeD-NMS code 18.27 % 26.19 % 14.05 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
379 MonoRCNN code 18.11 % 25.48 % 14.10 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
380 Ground-Aware code 17.98 % 29.81 % 13.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
381 Aug3D-RPN 17.89 % 26.00 % 14.18 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
382 DDMP-3D 17.89 % 28.08 % 13.44 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
383 IAFA 17.88 % 25.88 % 15.35 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
384 FMF-occlusion-net 17.60 % 27.39 % 13.25 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
385 RefinedMPL 17.60 % 28.08 % 13.95 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
386 Kinematic3D code 17.52 % 26.69 % 13.10 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
387 MonoRUn code 17.34 % 27.94 % 15.24 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
388 AM3D 17.32 % 25.03 % 14.91 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
389 YoloMono3D code 17.15 % 26.79 % 12.56 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
390 CMAN 17.04 % 25.89 % 12.88 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
391 GAC3D 16.93 % 25.80 % 12.50 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
392 PatchNet code 16.86 % 22.97 % 14.97 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
393 Orient240_Loc441 16.73 % 24.91 % 15.01 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
394 MonoGhost 16.73 % 24.91 % 15.01 % 0.03 s GPU @ 2.5 Ghz (Python)
395 PGD-FCOS3D code 16.51 % 26.89 % 13.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
396 ImVoxelNet code 16.37 % 25.19 % 13.58 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
397 KM3D code 16.20 % 23.44 % 14.47 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
398 D4LCN code 16.02 % 22.51 % 12.55 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
399 tbd code 15.46 % 21.93 % 14.06 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
400 Init_Submit_240Orien 15.04 % 25.56 % 14.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
401 MonoPair 14.83 % 19.28 % 12.89 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
402 Decoupled-3D 14.82 % 23.16 % 11.25 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
403 QD-3DT
This is an online method (no batch processing).
code 14.71 % 20.16 % 12.76 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
404 SMOKE code 14.49 % 20.83 % 12.75 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
405 RTM3D code 14.20 % 19.17 % 11.99 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
406 Mono3D_PLiDAR code 13.92 % 21.27 % 11.25 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
407 init 13.78 % 21.67 % 12.60 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
408 M3D-RPN code 13.67 % 21.02 % 10.23 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
409 CSoR
This method makes use of Velodyne laser scans.
13.07 % 18.67 % 10.34 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
410 MonoPSR code 12.58 % 18.33 % 9.91 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
411 Plane-Constraints 12.06 % 17.31 % 10.05 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
412 MonoCInIS 11.64 % 22.28 % 9.95 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
413 SS3D 11.52 % 16.33 % 9.93 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
414 MonoGRNet code 11.17 % 18.19 % 8.73 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
415 MonoFENet 11.03 % 17.03 % 9.05 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
416 MonoCInIS 10.96 % 20.42 % 9.23 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
417 A3DODWTDA (image) code 8.66 % 10.37 % 7.06 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
418 TLNet (Stereo)
This method uses stereo information.
code 7.69 % 13.71 % 6.73 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
419 Shift R-CNN (mono) code 6.82 % 11.84 % 5.27 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
420 tbd 6.68 % 9.73 % 5.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
421 SparVox3D 6.39 % 10.20 % 5.06 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
422 GS3D 6.08 % 8.41 % 4.94 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
423 MVRA + I-FRCNN+ 5.84 % 9.05 % 4.50 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
424 WeakM3D code 5.66 % 11.82 % 4.08 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
425 ROI-10D 4.91 % 9.78 % 3.74 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
426 3D-GCK 4.57 % 5.79 % 3.64 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
427 ghost_bev 4.19 % 5.58 % 3.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
428 FQNet 3.23 % 5.40 % 2.46 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
429 1D_CONV 2.91 % 3.50 % 2.53 % 0.03 s 1 core @ 2.5 Ghz (Python)
430 3D-SSMFCNN code 2.63 % 3.20 % 2.40 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
431 Initial_submit code 1.13 % 1.43 % 1.08 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
432 VeloFCN
This method makes use of Velodyne laser scans.
0.14 % 0.02 % 0.21 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
433 Yolo5x6_Ghost 0.00 % 0.00 % 0.00 % 0.03 s GPU @ 2.5 Ghz (Python)
434 Yolo5x6_Ghost 0.00 % 0.00 % 0.00 % 0.03 s GPU @ 2.5 Ghz (Python)
435 multi-task CNN 0.00 % 0.00 % 0.00 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
436 Ghost3D object detec 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
437 aliii0 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
438 Res 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
439 GHos_3d 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
440 ALI_TRY1 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
441 BEV_GHOST 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
442 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 PiFeNet code 53.92 % 63.25 % 50.53 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
2 CasA++ code 53.84 % 60.14 % 51.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
3 TED code 53.48 % 60.13 % 50.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 IMLIDAR(base) 53.36 % 62.73 % 49.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
5 EQ-PVRCNN code 52.81 % 61.73 % 49.87 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
6 VPNetv2 52.67 % 59.06 % 48.97 % 0.1 s 1 core @ 2.5 Ghz (Python)
7 VPFNet code 52.41 % 60.07 % 50.28 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
8 Frustum-PointPillars code 52.23 % 60.98 % 48.30 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
9 LGSL 52.09 % 60.15 % 48.71 % 0.1 s GPU @ 2.5 Ghz (Python)
10 LoGoNet code 52.06 % 58.24 % 49.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
11 TANet code 51.38 % 60.85 % 47.54 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
12 CasA code 51.37 % 57.95 % 49.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
13 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 50.57 % 59.86 % 46.74 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
14 DPPFA-Net 50.55 % 57.02 % 47.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
15 HotSpotNet 50.53 % 57.39 % 46.65 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
16 VMVS
This method makes use of Velodyne laser scans.
50.34 % 60.34 % 46.45 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
17 AVOD-FPN
This method makes use of Velodyne laser scans.
code 50.32 % 58.49 % 46.98 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
18 3DSSD code 49.94 % 60.54 % 45.73 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
19 PointPainting
This method makes use of Velodyne laser scans.
49.93 % 58.70 % 46.29 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
20 SemanticVoxels 49.93 % 58.91 % 47.31 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
21 ACDet code 49.82 % 58.35 % 47.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
22 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 49.81 % 59.04 % 45.92 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
23 USVLab BSAODet code 49.75 % 56.05 % 47.59 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
24 ACF-Net 49.74 % 58.07 % 47.27 % n/a s 1 core @ 2.5 Ghz (C/C++)
25 F-PointNet
This method makes use of Velodyne laser scans.
code 49.57 % 57.13 % 45.48 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
26 IOUFusion 49.45 % 57.53 % 45.42 % 0.1 s GPU @ 2.5 Ghz (Python)
27 F-ConvNet
This method makes use of Velodyne laser scans.
code 48.96 % 57.04 % 44.33 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
28 MPFusion 48.95 % 57.82 % 46.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
29 HVNet 48.86 % 54.84 % 46.33 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
30 CAT-Det 48.78 % 57.13 % 45.56 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
31 STD code 48.72 % 60.02 % 44.55 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
32 PSMS-Net
This method makes use of Velodyne laser scans.
48.66 % 55.15 % 45.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
33 PointPillars
This method makes use of Velodyne laser scans.
code 48.64 % 57.60 % 45.78 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
34 HPV-RCNN 48.52 % 56.00 % 44.88 % 0.08 s 1 core @ 2.5 Ghz (Python)
35 EPNet++ 48.47 % 56.24 % 45.73 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
36 MGAF-3DSSD code 48.46 % 56.09 % 44.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
37 RFA 48.30 % 55.62 % 45.15 % 0.1s GPU @ 2 Ghz (python)
38 Fast-CLOCs 48.27 % 57.19 % 44.55 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
39 RPF3D 48.24 % 55.50 % 45.80 % 0.1 s 1 core @ 2.5 Ghz (Python)
40 FromVoxelToPoint code 48.15 % 56.54 % 45.63 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
41 R^2 R-CNN 48.10 % 56.04 % 45.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
42 EOTL code 47.80 % 56.52 % 43.36 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
43 HMFI code 47.77 % 55.61 % 45.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
44 casxv1 47.75 % 55.52 % 44.19 % 0.01 s 1 core @ 2.5 Ghz (Python)
45 IIOU code 47.41 % 54.83 % 43.70 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
46 P2V-RCNN 47.36 % 54.15 % 45.10 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
47 MMF 47.35 % 57.14 % 45.05 % 1 s 1 core @ 2.5 Ghz (C/C++)
48 CZY_PPF_Net 47.22 % 51.95 % 45.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
49 PIPC-3Ddet code 47.22 % 52.71 % 44.02 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
50 PA-RCNN code 47.18 % 54.94 % 45.10 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
51 PV-PMRTNet 47.09 % 51.80 % 45.25 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
52 Point-GNN
This method makes use of Velodyne laser scans.
code 47.07 % 55.36 % 44.61 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
53 3ONet 46.87 % 56.48 % 44.50 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
54 F3D 46.77 % 53.69 % 43.89 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
55 SCNet
This method makes use of Velodyne laser scans.
46.73 % 56.87 % 42.74 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
56 PA-Det3D 46.55 % 53.88 % 44.13 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
57 Anonymous 46.48 % 55.23 % 42.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
58 IA-SSDx 46.44 % 54.61 % 42.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
59 casx 46.44 % 54.61 % 42.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
60 DTE3D 46.18 % 53.38 % 43.52 % 0.15s 1 core @ 2.5 Ghz (C/C++)
61 MVENet 46.16 % 53.44 % 42.78 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
62 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 46.13 % 54.77 % 42.84 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
63 POP-RCNN 45.98 % 53.74 % 43.90 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
64 DA-Net 45.96 % 56.48 % 41.73 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
65 ARPNET 45.92 % 55.48 % 42.54 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
66 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 45.82 % 52.03 % 43.81 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
67 DFSemONet(Baseline) 45.68 % 55.82 % 42.13 % 0.04 s GPU @ 2.5 Ghz (Python)
68 SVGA-Net 45.68 % 53.09 % 43.30 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
69 Rnet 45.65 % 51.51 % 43.52 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
70 RealSynthesis-SECOND 45.64 % 53.25 % 42.92 % 0.05 s 1 core @ 2.5 Ghz (Python)
71 B2PE 45.53 % 53.12 % 42.64 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
72 epBRM
This method makes use of Velodyne laser scans.
code 45.49 % 52.48 % 42.75 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
73 PG-RCNN code 45.48 % 51.63 % 43.30 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
74 PDV code 45.45 % 51.95 % 43.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
75 Anonymous 45.45 % 52.69 % 43.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
76 MLOD
This method makes use of Velodyne laser scans.
code 45.40 % 55.09 % 41.42 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
77 FEMV-RCNN code 45.38 % 51.65 % 43.26 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
78 U_PVRCNN_V2 45.23 % 51.52 % 42.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
79 IA-SSD (single) code 45.07 % 52.73 % 42.75 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
80 DFAF3D 45.01 % 52.86 % 42.73 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
81 HA-PillarNet 44.85 % 50.57 % 42.78 % 0.05 s 1 core @ 2.5 Ghz (Python)
82 SRDL 44.84 % 52.42 % 42.56 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
83 PVRCNN_8369 44.83 % 52.41 % 42.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
84 M3DeTR code 44.78 % 50.63 % 42.57 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
85 U_RVRCNN_V2_1 44.73 % 51.76 % 42.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
86 U_PV_V2_ep100_80 44.67 % 49.71 % 42.64 % 0... s 1 core @ 2.5 Ghz (Python)
87 HybridPillars (SSD) 44.51 % 51.49 % 42.31 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
88 U_second_v4_ep_100_8 44.46 % 51.36 % 42.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
89 u_second_v4_epoch_10 44.32 % 50.97 % 42.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
90 MSAW 44.28 % 54.36 % 40.72 % 0.42 s 2 cores @ 2.5 Ghz (Python)
91 SIF 44.28 % 52.05 % 42.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
92 U_PV_V2_ep_100_100 44.18 % 49.62 % 42.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
93 DVFENet 44.12 % 50.98 % 41.62 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
94 STNet 43.89 % 51.30 % 41.88 % 0.60 s 1 core @ 2.5 Ghz (Python)
95 GS 43.88 % 50.53 % 40.93 % TBD s 1 core @ 2.5 Ghz (C/C++)
96 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 43.85 % 52.15 % 41.68 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
97 DTSSD 43.70 % 50.07 % 41.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
98 HAF-PVP_test 43.70 % 50.24 % 40.12 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
99 MLAFF 43.67 % 53.43 % 41.41 % 0.39 s 2 cores @ 2.5 Ghz (Python)
100 HA-SSD 43.64 % 50.05 % 41.56 % 1 s 1 core @ 2.5 Ghz (C/C++)
101 IPS 43.58 % 50.38 % 41.54 % TBD s 1 core @ 2.5 Ghz (C/C++)
102 S-AT GCN 43.43 % 50.63 % 41.58 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
103 HybridPillars 43.25 % 48.20 % 41.16 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
104 GEO_LOC 43.10 % 49.74 % 41.02 % TBD s 1 core @ 2.5 Ghz (C/C++)
105 GS-FPS-LT 42.89 % 49.33 % 40.63 % TBD s 1 core @ 2.5 Ghz (C/C++)
106 BirdNet+
This method makes use of Velodyne laser scans.
code 42.87 % 48.90 % 40.59 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
107 L-AUG 42.84 % 50.32 % 40.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
108 OA-TSSD 42.84 % 50.80 % 40.32 % 20 s 8 cores @ 2.5 Ghz (C/C++)
109 IA-SSD (multi) code 42.61 % 51.76 % 40.51 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
110 ACCF 42.51 % 49.98 % 40.20 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
111 XView 42.42 % 47.24 % 39.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
112 GS-FPS code 42.34 % 50.05 % 40.12 % TBD s 1 core @ 2.5 Ghz (C/C++)
113 ATT_SSD 42.24 % 49.55 % 40.13 % 0.01 s 1 core @ 2.5 Ghz (Python)
114 PVTr 42.14 % 48.76 % 40.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
115 DTSSD 41.95 % 49.28 % 39.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
116 GraphAlign 41.95 % 46.61 % 40.05 % 0.03 s GPU @ 2.0 Ghz (Python)
117 PEF code 41.79 % 49.48 % 39.31 % N/A s 1 core @ 2.5 Ghz (C/C++)
118 APDM code 41.66 % 50.19 % 39.04 % 0.7 s 1 core @ 2.5 Ghz (Python)
119 MVAF-Net(3-classes) 41.47 % 50.56 % 38.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
120 PFF3D
This method makes use of Velodyne laser scans.
code 40.94 % 48.74 % 38.54 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
121 HA PillarNet 40.73 % 49.38 % 38.11 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
122 MMpointpillars 40.43 % 47.85 % 37.68 % 0.05 s 1 core @ 2.5 Ghz (Python)
123 IIOU_LDR code 40.24 % 48.51 % 37.03 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
124 ROT_S3D 40.08 % 46.62 % 38.33 % 0.1 s GPU @ 2.5 Ghz (Python)
125 DSGN++
This method uses stereo information.
code 38.92 % 50.26 % 35.12 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
126 MVAF-Net(3-classes) 38.87 % 46.92 % 36.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
127 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 38.79 % 47.51 % 35.85 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
128 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 38.28 % 45.53 % 35.37 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
129 LightCPC code 38.17 % 44.37 % 36.04 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
130 MMpp 38.07 % 45.74 % 35.75 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
131 CSW3D
This method makes use of Velodyne laser scans.
37.96 % 49.27 % 33.83 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
132 Voxel-MAE+SECOND code 37.77 % 43.80 % 35.45 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
133 StereoDistill 37.75 % 50.79 % 34.28 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
134 P2P code 36.71 % 44.67 % 34.86 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
135 DMF
This method uses stereo information.
34.92 % 42.08 % 32.69 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
136 SparsePool code 34.15 % 43.33 % 31.78 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
137 MMLAB LIGA-Stereo
This method uses stereo information.
code 34.13 % 44.71 % 30.42 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
138 AVOD
This method makes use of Velodyne laser scans.
code 33.57 % 42.58 % 30.14 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
139 SparsePool code 33.22 % 41.55 % 29.66 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
140 fuf 33.16 % 41.95 % 29.75 % 10 s 1 core @ 2.5 Ghz (C/C++)
141 PS++ 31.78 % 42.17 % 28.07 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
142 ODGS 31.23 % 37.54 % 28.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
143 CG-Stereo
This method uses stereo information.
29.56 % 39.24 % 25.87 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
144 PointRGBNet 29.32 % 38.07 % 26.94 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
145 Disp R-CNN
This method uses stereo information.
code 29.12 % 42.72 % 25.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
146 Disp R-CNN (velo)
This method uses stereo information.
code 28.34 % 40.21 % 24.46 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
147 BirdNet
This method makes use of Velodyne laser scans.
23.06 % 28.20 % 21.65 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
148 DSC3D
This method uses stereo information.
22.72 % 32.40 % 19.09 % 0.31 s GPU @ 2.5 Ghz (Python)
149 TS3D
This method uses stereo information.
21.69 % 32.90 % 19.27 % 0.09 s GPU @ 1.5 Ghz (Python + C/C++)
150 OC Stereo
This method uses stereo information.
code 20.80 % 29.79 % 18.62 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
151 YOLOStereo3D
This method uses stereo information.
code 20.76 % 31.01 % 18.41 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
152 DSGN
This method uses stereo information.
code 20.75 % 26.61 % 18.86 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
153 Complexer-YOLO
This method makes use of Velodyne laser scans.
18.26 % 21.42 % 17.06 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
154 BKDStereo3D code 17.44 % 25.47 % 14.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
155 BKDStereo3D w/o KD code 16.87 % 23.82 % 14.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
156 TopNet-Retina
This method makes use of Velodyne laser scans.
14.57 % 18.04 % 12.48 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
157 RT3D-GMP
This method uses stereo information.
14.22 % 19.92 % 12.83 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
158 TopNet-HighRes
This method makes use of Velodyne laser scans.
13.50 % 19.43 % 11.93 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
159 ESGN
This method uses stereo information.
13.03 % 17.94 % 11.54 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
160 DD3D code 12.51 % 18.58 % 10.65 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
161 MonoLSS 12.34 % 18.40 % 10.54 % 0.04 s 1 core @ 2.5 Ghz (Python)
162 PS-fld code 12.23 % 19.03 % 10.53 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
163 CIE 11.94 % 17.90 % 10.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
164 SVDM-VIEW 11.11 % 16.66 % 9.46 % 1 s 1 core @ 2.5 Ghz (Python)
165 OPA-3D code 11.01 % 17.14 % 9.94 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
166 MonoUNI code 10.90 % 16.54 % 9.17 % 0.04 s 1 core @ 2.5 Ghz (Python)
167 BAIR 10.78 % 16.47 % 9.58 % 0.04 s 1 core @ 2.5 Ghz (Python)
168 DD3D-dequity 10.77 % 15.70 % 9.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
169 OccupancyM3D 10.65 % 16.54 % 9.16 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
170 MonoDTR 10.59 % 16.66 % 9.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
171 GUPNet code 10.37 % 15.62 % 8.79 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
172 CMKD code 10.28 % 16.03 % 8.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
173 MonoSIM 10.08 % 15.80 % 8.64 % 0.16 s 1 core @ 2.5 Ghz (Python)
174 BCA 9.99 % 15.00 % 8.49 % 0.17 s GPU @ 2.5 Ghz (Python)
175 MonoInsight 9.98 % 15.20 % 8.90 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
176 MonoInsight 9.98 % 15.20 % 8.90 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
177 MM3DV2 9.94 % 16.01 % 8.73 % NA s 1 core @ 2.5 Ghz (C/C++)
178 MM3D 9.90 % 15.37 % 8.23 % NA s 1 core @ 2.5 Ghz (C/C++)
179 DEVIANT code 9.77 % 14.49 % 8.28 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
180 MonoNeRD code 9.66 % 15.27 % 8.28 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
181 Mono3DMethod 9.53 % 14.55 % 8.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
182 MonoA^2 9.42 % 13.82 % 7.99 % na s 1 core @ 2.5 Ghz (C/C++)
183 CaDDN code 9.41 % 14.72 % 8.17 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
184 SGM3D code 9.39 % 15.39 % 8.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
185 AMNet 9.30 % 14.10 % 8.02 % 0.03 s GPU @ 1.0 Ghz (Python)
186 MonoRCNN++ code 9.04 % 13.45 % 7.74 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
187 MonoXiver 8.93 % 13.75 % 7.61 % 0.03s GPU @ 2.5 Ghz (Python)
188 HomoLoss(monoflex) code 8.81 % 13.26 % 7.41 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
189 UNM3D 8.59 % 13.09 % 7.27 % na s 1 core @ 2.5 Ghz (C/C++)
190 MonoDDE 8.41 % 12.38 % 7.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
191 Mix-Teaching code 8.40 % 12.34 % 7.06 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
192 MDSNet 8.18 % 12.05 % 7.03 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
193 Anonymous 8.11 % 11.89 % 6.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
194 LPCG-Monoflex code 7.92 % 12.11 % 6.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
195 RefinedMPL 7.92 % 13.09 % 7.25 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
196 3DSeMoDLE code 7.71 % 11.86 % 6.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
197 Cube R-CNN code 7.65 % 11.67 % 6.60 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
198 MonoRUn code 7.59 % 11.70 % 6.34 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
199 MonoATT_V2 code 7.40 % 11.63 % 6.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
200 MonoFlex 7.36 % 10.36 % 6.29 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
201 MonoPair 7.04 % 10.99 % 6.29 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
202 monodle code 6.96 % 10.73 % 6.20 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
203 3Dv2 6.75 % 10.26 % 5.61 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
204 TopNet-DecayRate
This method makes use of Velodyne laser scans.
6.59 % 8.78 % 6.25 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
205 Anonymous 6.25 % 9.22 % 5.32 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
206 Shift R-CNN (mono) code 5.66 % 8.58 % 4.49 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
207 FMF-occlusion-net 5.62 % 8.69 % 5.25 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
208 Aug3D-RPN 5.22 % 7.14 % 4.21 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
209 TopNet-UncEst
This method makes use of Velodyne laser scans.
4.60 % 6.88 % 3.79 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
210 MonoPSR code 4.56 % 7.24 % 4.11 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
211 DFR-Net 4.52 % 6.66 % 3.71 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
212 QD-3DT
This is an online method (no batch processing).
code 4.23 % 6.62 % 3.39 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
213 M3D-RPN code 4.05 % 5.65 % 3.29 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
214 DDMP-3D 4.02 % 5.53 % 3.36 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
215 CMAN 3.96 % 5.24 % 3.18 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
216 D4LCN code 3.86 % 5.06 % 3.59 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
217 RT3DStereo
This method uses stereo information.
3.65 % 4.72 % 3.00 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
218 DA3D 3.27 % 4.93 % 2.74 % 0.03 s 1 core @ 2.5 Ghz (Python)
219 MonoEF 3.05 % 4.61 % 2.85 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
220 MonoLiG code 2.72 % 3.74 % 2.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
221 SS3D 2.09 % 2.48 % 1.61 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
222 SparVox3D 2.05 % 2.90 % 1.69 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
223 PGD-FCOS3D code 1.88 % 2.82 % 1.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
224 Plane-Constraints 1.16 % 1.87 % 1.13 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
225 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 CasA++ code 76.99 % 88.93 % 70.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
2 TED code 76.95 % 89.54 % 70.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
3 CasA code 75.74 % 88.99 % 68.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
4 LoGoNet code 74.92 % 85.85 % 67.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
5 USVLab BSAODet code 74.38 % 85.01 % 67.38 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
6 PSMS-Net
This method makes use of Velodyne laser scans.
74.30 % 85.06 % 66.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
7 IMLIDAR(base) 74.23 % 87.39 % 66.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
8 HMFI code 74.06 % 85.69 % 67.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
9 CZY_PPF_Net 73.64 % 85.39 % 66.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
10 EQ-PVRCNN code 73.30 % 86.25 % 65.49 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
11 U_PV_V2_ep100_80 73.17 % 86.95 % 66.01 % 0... s 1 core @ 2.5 Ghz (Python)
12 PA-RCNN code 73.00 % 87.18 % 64.79 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
13 PV-PMRTNet 72.67 % 85.73 % 65.79 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
14 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 72.61 % 83.93 % 65.82 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
15 HPV-RCNN 72.61 % 85.68 % 64.30 % 0.08 s 1 core @ 2.5 Ghz (Python)
16 CAT-Det 72.51 % 85.35 % 65.55 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
17 3ONet 72.30 % 86.30 % 63.76 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
18 POP-RCNN 71.99 % 87.57 % 63.54 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
19 PA-Det3D 71.93 % 84.41 % 65.36 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
20 BtcDet
This method makes use of Velodyne laser scans.
code 71.76 % 84.48 % 64.70 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
21 ACF-Net 71.68 % 85.76 % 65.33 % n/a s 1 core @ 2.5 Ghz (C/C++)
22 Anonymous 71.63 % 85.82 % 63.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
23 PointPainting
This method makes use of Velodyne laser scans.
71.54 % 83.91 % 62.97 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
24 PIPC-3Ddet code 71.53 % 85.58 % 64.66 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
25 RangeIoUDet
This method makes use of Velodyne laser scans.
71.49 % 85.99 % 63.62 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
26 ACDet code 71.48 % 87.76 % 64.69 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
27 IA-SSD (single) code 71.44 % 85.91 % 63.41 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
28 U_PV_V2_ep_100_100 71.35 % 84.08 % 63.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
29 PDV code 71.31 % 85.54 % 64.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
30 DFAF3D 71.27 % 85.75 % 64.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
31 HVNet 71.17 % 83.97 % 63.65 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
32 Rnet 70.91 % 82.10 % 63.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
33 DTSSD 70.91 % 85.14 % 63.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
34 M3DeTR code 70.89 % 85.03 % 63.14 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
35 HAF-PVP_test 70.66 % 83.99 % 62.42 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
36 PG-RCNN code 70.65 % 84.94 % 64.03 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
37 PEF code 70.27 % 86.47 % 61.95 % N/A s 1 core @ 2.5 Ghz (C/C++)
38 HybridPillars 70.19 % 83.02 % 62.80 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
39 SPG_mini
This method makes use of Velodyne laser scans.
code 70.09 % 82.66 % 63.61 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
40 DTSSD 69.81 % 84.14 % 63.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
41 MMF 69.78 % 83.31 % 62.06 % 1 s 1 core @ 2.5 Ghz (C/C++)
42 MPFusion 69.72 % 84.50 % 62.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
43 FEMV-RCNN code 69.71 % 84.18 % 63.10 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
44 HA-PillarNet 69.71 % 81.79 % 63.36 % 0.05 s 1 core @ 2.5 Ghz (Python)
45 PVTr 69.56 % 84.79 % 62.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
46 GraphAlign 69.43 % 80.71 % 63.57 % 0.03 s GPU @ 2.0 Ghz (Python)
47 Anonymous 69.19 % 82.82 % 62.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
48 F3D 69.13 % 84.32 % 62.24 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
49 LGSL 69.11 % 81.67 % 64.15 % 0.1 s GPU @ 2.5 Ghz (Python)
50 u_second_v4_epoch_10 69.10 % 84.24 % 62.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
51 DA-Net 69.04 % 84.10 % 64.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
52 VPNetv2 69.02 % 82.99 % 60.89 % 0.1 s 1 core @ 2.5 Ghz (Python)
53 B2PE 68.96 % 80.85 % 61.65 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
54 IPS 68.94 % 83.95 % 61.33 % TBD s 1 core @ 2.5 Ghz (C/C++)
55 ACCF 68.92 % 85.26 % 62.37 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
56 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 68.89 % 82.49 % 62.41 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
57 F-ConvNet
This method makes use of Velodyne laser scans.
code 68.88 % 84.16 % 60.05 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
58 IIOU code 68.82 % 83.89 % 60.14 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
59 RPF3D 68.81 % 82.97 % 62.15 % 0.1 s 1 core @ 2.5 Ghz (Python)
60 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 68.73 % 83.43 % 61.85 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
61 IA-SSDx 68.69 % 82.89 % 60.75 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
62 casx 68.69 % 82.89 % 60.75 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
63 U_RVRCNN_V2_1 68.65 % 80.63 % 61.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
64 U_second_v4_ep_100_8 68.62 % 82.37 % 61.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
65 HotSpotNet 68.51 % 83.29 % 61.84 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
66 LightCPC code 68.24 % 84.48 % 61.82 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
67 OA-TSSD 68.14 % 83.96 % 61.53 % 20 s 8 cores @ 2.5 Ghz (C/C++)
68 P2V-RCNN 68.06 % 81.09 % 60.73 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
69 H^23D R-CNN code 67.90 % 82.76 % 60.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
70 RealSynthesis-SECOND 67.89 % 84.13 % 60.49 % 0.05 s 1 core @ 2.5 Ghz (Python)
71 MVENet 67.69 % 80.87 % 61.46 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
72 VPFNet code 67.66 % 80.83 % 61.36 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
73 3DSSD code 67.62 % 85.04 % 61.14 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
74 GS 67.57 % 80.63 % 61.45 % TBD s 1 core @ 2.5 Ghz (C/C++)
75 Fast-CLOCs 67.55 % 83.34 % 59.61 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
76 U_PVRCNN_V2 67.51 % 79.04 % 59.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
77 DVFENet 67.40 % 82.29 % 60.71 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
78 FromVoxelToPoint code 67.36 % 82.68 % 59.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
79 Point-GNN
This method makes use of Velodyne laser scans.
code 67.28 % 81.17 % 59.67 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
80 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 67.24 % 82.56 % 60.28 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
81 STD code 67.23 % 81.36 % 59.35 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
82 STNet 67.14 % 81.70 % 59.48 % 0.60 s 1 core @ 2.5 Ghz (Python)
83 SVGA-Net 66.82 % 81.25 % 59.37 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
84 S-AT GCN 66.71 % 78.53 % 60.19 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
85 casxv1 66.50 % 81.01 % 60.09 % 0.01 s 1 core @ 2.5 Ghz (Python)
86 ATT_SSD 66.41 % 80.73 % 60.16 % 0.01 s 1 core @ 2.5 Ghz (Python)
87 ARPNET 66.39 % 82.32 % 58.80 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
88 IA-SSD (multi) code 66.29 % 81.30 % 59.58 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
89 HybridPillars (SSD) 66.23 % 79.60 % 60.48 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
90 GEO_LOC 66.08 % 79.15 % 58.56 % TBD s 1 core @ 2.5 Ghz (C/C++)
91 MGAF-3DSSD code 66.00 % 83.03 % 57.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
92 IOUFusion 65.88 % 82.98 % 59.11 % 0.1 s GPU @ 2.5 Ghz (Python)
93 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 65.85 % 80.00 % 58.69 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
94 EOTL code 65.76 % 81.44 % 56.47 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
95 HA-SSD 65.36 % 79.14 % 58.50 % 1 s 1 core @ 2.5 Ghz (C/C++)
96 GS-FPS-LT 64.86 % 79.49 % 58.93 % TBD s 1 core @ 2.5 Ghz (C/C++)
97 PVRCNN_8369 64.56 % 79.60 % 57.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
98 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 64.54 % 79.65 % 57.84 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
99 SRDL 64.52 % 79.64 % 57.90 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
100 SIF 64.13 % 79.32 % 57.38 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
101 fuf 64.12 % 82.07 % 56.34 % 10 s 1 core @ 2.5 Ghz (C/C++)
102 GS-FPS code 64.04 % 78.96 % 57.34 % TBD s 1 core @ 2.5 Ghz (C/C++)
103 TANet code 63.77 % 79.16 % 56.21 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
104 ROT_S3D 63.26 % 79.60 % 56.95 % 0.1 s GPU @ 2.5 Ghz (Python)
105 DTE3D 63.10 % 79.79 % 56.94 % 0.15s 1 core @ 2.5 Ghz (C/C++)
106 XView 63.06 % 81.32 % 56.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
107 EPNet++ 62.94 % 78.57 % 56.62 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
108 PointPillars
This method makes use of Velodyne laser scans.
code 62.73 % 79.90 % 55.58 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
109 L-AUG 62.56 % 75.41 % 56.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
110 MMpp 61.70 % 75.76 % 54.75 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
111 IIOU_LDR code 61.70 % 77.26 % 55.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
112 APDM code 61.49 % 77.56 % 54.83 % 0.7 s 1 core @ 2.5 Ghz (Python)
113 F-PointNet
This method makes use of Velodyne laser scans.
code 61.37 % 77.26 % 53.78 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
114 MMpointpillars 61.06 % 74.55 % 55.02 % 0.05 s 1 core @ 2.5 Ghz (Python)
115 P2P code 61.03 % 75.03 % 55.05 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
116 Voxel-MAE+SECOND code 60.67 % 75.30 % 54.19 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
117 epBRM
This method makes use of Velodyne laser scans.
code 59.79 % 75.13 % 53.36 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
118 BirdNet+
This method makes use of Velodyne laser scans.
code 59.58 % 70.84 % 54.20 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
119 MSAW 58.28 % 75.47 % 52.03 % 0.42 s 2 cores @ 2.5 Ghz (Python)
120 DMF
This method uses stereo information.
57.99 % 71.92 % 51.55 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
121 PointRGBNet 57.59 % 73.09 % 51.78 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
122 HA PillarNet 57.56 % 71.10 % 50.67 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
123 AVOD-FPN
This method makes use of Velodyne laser scans.
code 57.12 % 69.39 % 51.09 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
124 PiFeNet code 56.94 % 72.80 % 50.04 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
125 SCNet
This method makes use of Velodyne laser scans.
56.39 % 73.73 % 49.99 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
126 PFF3D
This method makes use of Velodyne laser scans.
code 55.71 % 72.67 % 49.58 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
127 DFSemONet(Baseline) 55.20 % 73.44 % 49.29 % 0.04 s GPU @ 2.5 Ghz (Python)
128 MLOD
This method makes use of Velodyne laser scans.
code 55.06 % 73.03 % 48.21 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
129 MVAF-Net(3-classes) 52.24 % 68.13 % 47.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
130 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 52.15 % 72.45 % 46.57 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
131 MLAFF 51.69 % 67.41 % 45.99 % 0.39 s 2 cores @ 2.5 Ghz (Python)
132 MVAF-Net(3-classes) 51.35 % 66.21 % 46.27 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
133 DSGN++
This method uses stereo information.
code 49.37 % 68.29 % 43.79 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
134 StereoDistill 48.37 % 69.46 % 42.69 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
135 AVOD
This method makes use of Velodyne laser scans.
code 48.15 % 64.11 % 42.37 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
136 BirdNet
This method makes use of Velodyne laser scans.
41.56 % 58.64 % 36.94 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
137 SparsePool code 40.74 % 56.52 % 36.68 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
138 MMLAB LIGA-Stereo
This method uses stereo information.
code 40.60 % 58.95 % 35.27 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
139 TopNet-Retina
This method makes use of Velodyne laser scans.
36.83 % 47.48 % 33.58 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
140 CG-Stereo
This method uses stereo information.
36.25 % 55.33 % 32.17 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
141 SparsePool code 35.24 % 43.55 % 30.15 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
142 PS++ 35.06 % 53.45 % 30.32 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
143 Disp R-CNN (velo)
This method uses stereo information.
code 27.04 % 44.19 % 23.58 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
144 Disp R-CNN
This method uses stereo information.
code 27.04 % 44.19 % 23.58 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
145 Complexer-YOLO
This method makes use of Velodyne laser scans.
25.43 % 32.00 % 22.88 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
146 DSGN
This method uses stereo information.
code 21.04 % 31.23 % 18.93 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
147 OC Stereo
This method uses stereo information.
code 19.23 % 32.47 % 17.11 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
148 TopNet-DecayRate
This method makes use of Velodyne laser scans.
16.00 % 23.02 % 13.24 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
149 RT3D-GMP
This method uses stereo information.
13.92 % 20.59 % 12.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
150 TopNet-UncEst
This method makes use of Velodyne laser scans.
9.18 % 12.31 % 8.14 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
151 ESGN
This method uses stereo information.
9.02 % 15.78 % 7.96 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
152 CMKD code 8.15 % 14.66 % 7.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
153 PS-fld code 7.29 % 12.80 % 6.05 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
154 Anonymous 6.66 % 11.44 % 5.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
155 SVDM-VIEW 6.57 % 11.33 % 5.94 % 1 s 1 core @ 2.5 Ghz (Python)
156 MonoLiG code 6.49 % 9.48 % 5.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
157 TopNet-HighRes
This method makes use of Velodyne laser scans.
6.48 % 9.99 % 6.76 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
158 DD3D-dequity 6.11 % 9.23 % 5.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
159 MonoPSR code 5.78 % 9.87 % 4.57 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
160 DD3D code 5.69 % 9.20 % 5.20 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
161 BAIR 5.57 % 9.42 % 5.02 % 0.04 s 1 core @ 2.5 Ghz (Python)
162 MonoLSS 5.52 % 8.88 % 4.98 % 0.04 s 1 core @ 2.5 Ghz (Python)
163 CaDDN code 5.38 % 9.67 % 4.75 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
164 Mix-Teaching code 5.36 % 8.56 % 4.62 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
165 Anonymous 5.23 % 8.88 % 4.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
166 MonoUNI code 5.03 % 8.25 % 4.50 % 0.04 s 1 core @ 2.5 Ghz (Python)
167 MonoInsight 4.97 % 7.40 % 4.09 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
168 MonoInsight 4.97 % 7.40 % 4.09 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
169 LPCG-Monoflex code 4.90 % 8.14 % 3.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
170 Plane-Constraints 4.79 % 8.67 % 3.90 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
171 MM3D 4.50 % 8.45 % 3.56 % NA s 1 core @ 2.5 Ghz (C/C++)
172 3DSeMoDLE code 4.47 % 7.51 % 3.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
173 MonoATT_V2 code 4.44 % 6.73 % 3.75 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
174 BCA 4.42 % 6.89 % 3.91 % 0.17 s GPU @ 2.5 Ghz (Python)
175 MonoDDE 4.36 % 6.68 % 3.76 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
176 OccupancyM3D 4.35 % 8.58 % 3.55 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
177 MonoDTR 4.11 % 5.84 % 3.48 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
178 RT3DStereo
This method uses stereo information.
4.10 % 7.03 % 3.88 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
179 HomoLoss(monoflex) code 4.09 % 6.81 % 3.78 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
180 DFR-Net 4.00 % 5.99 % 3.95 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
181 DEVIANT code 3.97 % 6.42 % 3.51 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
182 GUPNet code 3.85 % 6.94 % 3.64 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
183 OPA-3D code 3.75 % 6.01 % 3.56 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
184 CIE 3.74 % 6.13 % 3.18 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
185 SGM3D code 3.63 % 7.05 % 3.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
186 AMNet 3.61 % 5.54 % 3.19 % 0.03 s GPU @ 1.0 Ghz (Python)
187 3Dv2 3.60 % 6.73 % 3.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
188 Cube R-CNN code 3.35 % 5.01 % 3.23 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
189 Aug3D-RPN 3.33 % 5.44 % 2.82 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
190 monodle code 3.28 % 5.34 % 2.83 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
191 MDSNet 3.22 % 5.99 % 2.62 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
192 MonoXiver 3.17 % 4.66 % 2.69 % 0.03s GPU @ 2.5 Ghz (Python)
193 DDMP-3D 3.14 % 4.92 % 2.44 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
194 MonoSIM 3.05 % 5.40 % 2.60 % 0.16 s 1 core @ 2.5 Ghz (Python)
195 MonoA^2 3.04 % 5.41 % 2.67 % na s 1 core @ 2.5 Ghz (C/C++)
196 QD-3DT
This is an online method (no batch processing).
code 3.02 % 5.71 % 2.73 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
197 MonoPair 2.87 % 4.76 % 2.42 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
198 MonoNeRD code 2.80 % 5.24 % 2.55 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
199 MonoFlex 2.67 % 4.41 % 2.50 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
200 Mono3DMethod 2.50 % 4.09 % 2.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
201 RefinedMPL 2.42 % 4.23 % 2.14 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
202 MonoRCNN++ code 2.31 % 3.50 % 2.01 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
203 SS3D 1.89 % 3.45 % 1.44 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
204 DA3D 1.89 % 3.46 % 1.51 % 0.03 s 1 core @ 2.5 Ghz (Python)
205 D4LCN code 1.82 % 2.72 % 1.79 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
206 PGD-FCOS3D code 1.79 % 3.54 % 1.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
207 FMF-occlusion-net 1.65 % 1.91 % 1.75 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
208 MM3DV2 1.61 % 2.42 % 1.59 % NA s 1 core @ 2.5 Ghz (C/C++)
209 CMAN 1.48 % 1.76 % 1.17 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
210 UNM3D 1.40 % 2.52 % 1.45 % na s 1 core @ 2.5 Ghz (C/C++)
211 MonoEF 1.18 % 2.36 % 1.15 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
212 M3D-RPN code 0.81 % 1.25 % 0.78 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
213 MonoRUn code 0.73 % 1.14 % 0.66 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
214 Shift R-CNN (mono) code 0.38 % 0.76 % 0.41 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
215 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Related Datasets

Citation

When using this dataset in your research, we will be happy if you cite us:
@INPROCEEDINGS{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker