Bird's Eye View Evaluation 2017


The bird's eye view benchmark consists of 7481 training images and 7518 test images as well as the corresponding point clouds, comprising a total of 80.256 labeled objects. For evaluation, we compute precision-recall curves. To rank the methods we compute average precision. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate bird's eye view detection performance using the PASCAL criteria also used for 2D object detection. Far objects are thus filtered based on their bounding box height in the image plane. As only objects also appearing on the image plane are labeled, objects in don't car areas do not count as false positives. We note that the evaluation does not take care of ignoring detections that are not visible on the image plane — these detections might give rise to false positives. For cars we require a bounding box overlap of 70% in bird's eye view, while for pedestrians and cyclists we require an overlap of 50%. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results.

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 VirConv-S code 93.52 % 95.99 % 90.38 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
2 VirConv-T code 92.65 % 96.11 % 89.69 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
3 GraR-Po code 92.12 % 95.79 % 87.11 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
4 TED code 92.05 % 95.44 % 87.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
5 LIVOX_Det
This method makes use of Velodyne laser scans.
92.05 % 95.60 % 89.22 % n/a s 1 core @ 2.5 Ghz (Python + C/C++)
6 VirConv-L 91.95 % 95.53 % 87.07 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
7 HPC-Net 91.89 % 95.63 % 89.21 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
8 VPFNet code 91.86 % 93.02 % 86.94 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
9 SFD code 91.85 % 95.64 % 86.83 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
10 SE-SSD
This method makes use of Velodyne laser scans.
code 91.84 % 95.68 % 86.72 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
11 ACF-Net 91.78 % 92.91 % 87.06 % n/a s 1 core @ 2.5 Ghz (C/C++)
12 GraR-Vo code 91.72 % 95.27 % 86.51 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
13 PVT-SSD 91.63 % 95.23 % 86.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
14 SPANet 91.59 % 95.59 % 86.53 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
15 CasA code 91.54 % 95.19 % 86.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
16 LoGoNet 91.52 % 95.48 % 87.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
17 GraR-Pi code 91.52 % 95.06 % 86.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
18 CASDC 91.51 % 93.90 % 86.54 % 0.1 s 1 core @ 2.5 Ghz (Python)
19 HRNet 91.42 % 95.18 % 86.73 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
20 SA-Net 91.37 % 95.11 % 86.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
21 BiProDet code 91.36 % 92.96 % 86.80 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Bidirectional Propagation for Cross- Modal 3D Object Detection. International Conference on Learning Representations .
22 NSAW code 91.35 % 94.51 % 86.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
23 BADet code 91.32 % 95.23 % 86.48 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
24 VoCo 91.32 % 95.42 % 88.38 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
25 GT3D 91.31 % 95.05 % 86.67 % 0.1 s 1 core @ 2.5 Ghz (Python)
26 CasA++ code 91.22 % 94.57 % 88.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
27 R^2 R-CNN 91.17 % 93.02 % 86.62 % 0.1 s 1 core @ 2.5 Ghz (Python)
28 Anonymous 91.14 % 94.04 % 86.33 % n/a s 1 core @ 2.5 Ghz (C/C++)
29 SGFusion 91.11 % 94.76 % 86.27 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
30 Anonymous 91.06 % 95.00 % 86.48 % 0.1 s GPU @ 2.5 Ghz (Python)
31 SA-SSD code 91.03 % 95.03 % 85.96 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
32 BSH-Det3D 90.99 % 92.90 % 86.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
33 3D-BCM 90.95 % 94.36 % 86.16 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
34 VGT-RCNN 90.89 % 94.59 % 86.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
35 3D Dual-Fusion code 90.86 % 93.08 % 86.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
36 Anonymous
This method makes use of Velodyne laser scans.
90.82 % 94.89 % 86.39 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
37 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 90.65 % 94.98 % 86.14 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
38 PV-PMRTNet 90.58 % 94.69 % 86.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
39 VPFNet code 90.52 % 93.94 % 86.25 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
40 PDV code 90.48 % 94.56 % 86.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
41 Rnet 90.43 % 92.74 % 86.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
42 M3DeTR code 90.37 % 94.41 % 85.98 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
43 SGDA3D 90.36 % 92.53 % 86.09 % 0.07 s 1 core @ 2.5 Ghz (Python)
44 VoTr-TSD code 90.34 % 94.03 % 86.14 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
45 HybridPillars 90.34 % 94.65 % 86.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
46 Under Blind Review#2 90.27 % 92.51 % 86.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
47 IKT3D
This method makes use of Velodyne laser scans.
90.23 % 94.22 % 85.94 % 0.05 s 1 core @ 2.5 Ghz (Python)
48 DAF-SSD 90.22 % 95.91 % 84.77 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
49 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 90.13 % 92.42 % 85.93 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
50 XView 90.12 % 92.27 % 85.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
51 GraR-VoI code 90.10 % 95.69 % 86.85 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
52 CAT-Det 90.07 % 92.59 % 85.82 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
53 Anomynous 90.07 % 95.87 % 85.09 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
54 3D HA Net code 90.07 % 95.52 % 85.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
55 SoRL-V 89.93 % 93.73 % 82.79 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
56 NIV-SSD 89.92 % 95.59 % 84.58 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
57 SVGA-Net 89.88 % 92.07 % 85.59 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
58 EBM3DOD code 89.86 % 95.64 % 84.56 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
59 CIA-SSD
This method makes use of Velodyne laser scans.
code 89.84 % 93.74 % 82.39 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
60 CLOCs_PVCas code 89.80 % 93.05 % 86.57 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
61 GLENet-VR code 89.76 % 93.48 % 84.89 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation. arXiv preprint arXiv:2207.02466 2022.
62 RDIoU code 89.75 % 94.90 % 84.67 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
63 SoRL 89.72 % 95.40 % 84.79 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
64 HRNet++ 89.69 % 95.38 % 84.75 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
65 EBM3DOD baseline code 89.63 % 95.44 % 84.34 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
66 POP-RCNN 89.63 % 93.35 % 86.83 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
67 LightCPC code 89.62 % 92.99 % 86.51 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
68 MMF 89.61 % 93.33 % 86.70 % 1 s 1 core @ 2.5 Ghz (C/C++)
69 HPV-RCNN 89.60 % 93.33 % 84.60 % 0.08 s 1 core @ 2.5 Ghz (Python)
70 3SNet 89.58 % 93.26 % 84.80 % 0.07 s GPU @ 2.5 Ghz (Python)
71 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 89.56 % 93.52 % 82.45 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
72 OcTr 89.56 % 93.08 % 86.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
73 ImpDet 89.55 % 92.74 % 84.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
74 Struc info fusion II 89.54 % 95.26 % 82.31 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
75 SASA
This method makes use of Velodyne laser scans.
code 89.51 % 92.87 % 86.35 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
76 Anomynous 89.51 % 93.11 % 84.69 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
77 Fast-CLOCs 89.49 % 93.03 % 86.40 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
78 PA-RCNN code 89.49 % 95.18 % 86.73 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
79 IA-SSD (single) code 89.48 % 93.14 % 84.42 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
80 VoxelGraphRCNN 89.48 % 93.35 % 86.68 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
81 CLOCs code 89.48 % 92.91 % 86.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
82 Anonymous 89.47 % 92.84 % 84.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
83 PA3DNet 89.46 % 93.11 % 84.60 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
84 DVF-V 89.42 % 93.12 % 86.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
85 TADP 89.41 % 93.33 % 84.16 % 0.04 s GPU @ 2.5 Ghz (Python)
86 Anonymous 89.40 % 92.99 % 84.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
87 GS 89.39 % 92.69 % 86.16 % TBD s 1 core @ 2.5 Ghz (C/C++)
88 Struc info fusion I 89.38 % 94.91 % 84.29 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
89 SWA code 89.36 % 92.82 % 86.21 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
90 IPS 89.36 % 92.78 % 86.08 % TBD s 1 core @ 2.5 Ghz (C/C++)
91 DCGNN 89.36 % 94.57 % 84.13 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
92 ATT_SSD 89.34 % 92.58 % 86.08 % 0.01 s 1 core @ 2.5 Ghz (Python)
93 BtcDet
This method makes use of Velodyne laser scans.
code 89.34 % 92.81 % 84.55 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
94 IA-SSD (multi) code 89.33 % 92.79 % 84.35 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
95 GS-FPS code 89.28 % 92.79 % 86.06 % TBD s 1 core @ 2.5 Ghz (C/C++)
96 Anonymous 89.27 % 92.79 % 86.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
97 GEO_LOC 89.25 % 92.80 % 84.23 % TBD s 1 core @ 2.5 Ghz (C/C++)
98 KPSCC code 89.21 % 92.88 % 85.87 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
99 ACDet code 89.21 % 92.87 % 85.80 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
100 DVF-PV 89.20 % 93.08 % 86.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
101 TTT_SSD 89.20 % 92.55 % 86.07 % TBD s 1 core @ 2.5 Ghz (C/C++)
102 Anonymous 89.19 % 93.10 % 84.41 % 0.1 s GPU @ 2.5 Ghz (Python)
103 STD code 89.19 % 94.74 % 86.42 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
104 GS-FPS-LT 89.18 % 92.74 % 84.17 % TBD s 1 core @ 2.5 Ghz (C/C++)
105 DTSSD 89.18 % 92.77 % 86.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
106 Point-GNN
This method makes use of Velodyne laser scans.
code 89.17 % 93.11 % 83.90 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
107 Point-GNN_GT code 89.17 % 93.11 % 83.90 % 5 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
108 HMFI code 89.17 % 93.04 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
109 SSL-PointGNN code 89.16 % 92.92 % 83.99 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
110 DTSSD 89.15 % 92.61 % 85.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
111 SPG_mini
This method makes use of Velodyne laser scans.
code 89.12 % 92.80 % 86.27 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
112 ITCA-SSD code 89.12 % 93.19 % 83.99 % 0.05 s 1 core @ 2.5 Ghz (Python)
113 PV-DT3D 89.10 % 92.65 % 86.43 % 1.4 s 1 core @ 2.5 Ghz (C/C++)
114 MPFusion 89.10 % 92.40 % 86.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
115 EQ-PVRCNN code 89.09 % 94.55 % 86.42 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
116 SPT 89.09 % 94.87 % 84.38 % 0.1 s GPU @ 2.5 Ghz (Python)
117 TBD code 89.09 % 92.61 % 83.85 % 0.1 s GPU @ 2.5 Ghz (Python)
118 RangeRCNN++ code 89.09 % 92.66 % 86.45 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
119 VoxSeT code 89.07 % 92.70 % 86.29 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
120 Multi-Weights 89.06 % 92.72 % 86.25 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
121 ChTR3D 89.04 % 92.72 % 86.29 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
122 3DSSD code 89.02 % 92.66 % 85.86 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
123 ACCF 89.02 % 92.31 % 84.13 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
124 EPNet++ 89.00 % 95.41 % 85.73 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
125 B2PE 89.00 % 92.30 % 84.01 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
126 Focals Conv code 89.00 % 92.67 % 86.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
127 ChTR3D 88.98 % 92.35 % 86.17 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
128 MVENet 88.97 % 94.28 % 86.14 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
129 VGRCNN++ 88.96 % 92.96 % 86.25 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
130 PTA-RCNN 88.94 % 92.32 % 85.63 % 0.08 s 1 core @ 2.5 Ghz (Python)
131 GV-RCNN code 88.94 % 94.52 % 86.24 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
132 SPNet code 88.92 % 92.29 % 86.16 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
133 USVLab BSAODet code 88.90 % 92.66 % 86.23 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
134 AGS-SSD[la] 88.90 % 92.51 % 85.96 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
135 R^2 R-CNN 88.89 % 92.40 % 84.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
136 BSConv 88.88 % 92.49 % 85.65 % 0.1 s 1 core @ 2.5 Ghz (Java)
137 CZY_PPF_Net2 88.88 % 94.68 % 86.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
138 H^23D R-CNN code 88.87 % 92.85 % 86.07 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
139 ChTR3D 88.85 % 92.58 % 85.98 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
140 Pyramid R-CNN 88.84 % 92.19 % 86.21 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
141 CityBrainLab-CT3D code 88.83 % 92.36 % 84.07 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
142 Voxel R-CNN code 88.83 % 94.85 % 86.13 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
143 HVNet 88.82 % 92.83 % 83.38 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
144 GD-MAE 88.82 % 94.22 % 83.54 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
145 VG-RCNN 88.81 % 92.75 % 86.12 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
146 FV2P v2 88.80 % 92.22 % 84.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
147 mbdf-netv1 code 88.77 % 94.45 % 83.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
148 BASA 88.76 % 92.72 % 83.71 % 1s 1 core @ 2.5 Ghz (python)
149 CZY_3917 88.71 % 94.23 % 86.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
150 SPG
This method makes use of Velodyne laser scans.
code 88.70 % 94.33 % 85.98 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
151 MVMM code 88.70 % 92.17 % 85.47 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
152 VGRCNN 88.69 % 92.58 % 86.02 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
153 DTE3D 88.69 % 92.61 % 85.77 % 0.15s 1 core @ 2.5 Ghz (C/C++)
154 DCAN-Second code 88.68 % 92.76 % 85.32 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
155 PSA-SSD 88.65 % 92.21 % 83.75 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
156 SIENet code 88.65 % 92.38 % 86.03 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
157 CZY_PPF_Net 88.65 % 92.78 % 85.83 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
158 P2V-RCNN 88.63 % 92.72 % 86.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
159 FromVoxelToPoint code 88.61 % 92.23 % 86.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
160 RangeIoUDet
This method makes use of Velodyne laser scans.
88.59 % 92.28 % 85.83 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
161 WGVRF 88.56 % 92.45 % 85.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
162 VGA-RCNN 88.53 % 92.37 % 85.77 % 0.07 s 1 core @ 2.5 Ghz (Python)
163 TVTr 88.51 % 94.30 % 85.80 % 0.08 s 1 core @ 2.5 Ghz (Python)
164 IA-SSDx 88.50 % 92.20 % 83.60 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
165 Anonymous 88.49 % 92.40 % 85.77 % 0.03s
166 EPNet code 88.47 % 94.22 % 83.69 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
167 CenterNet3D 88.46 % 91.80 % 83.62 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
168 FARP-Net code 88.45 % 91.20 % 86.01 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
169 DGT-Det3D code 88.41 % 92.57 % 85.50 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
170 Semantical PVRCNN 88.41 % 92.71 % 85.86 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
171 PVE 88.40 % 92.49 % 85.79 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
172 RangeRCNN
This method makes use of Velodyne laser scans.
88.40 % 92.15 % 85.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
173 Patches
This method makes use of Velodyne laser scans.
88.39 % 92.72 % 83.19 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
174 3D IoU-Net 88.38 % 94.76 % 81.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
175 StructuralIF 88.38 % 91.78 % 85.67 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
176 VPNet 88.37 % 92.11 % 85.63 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
177 PEF code 88.37 % 92.65 % 83.91 % N/A s 1 core @ 2.5 Ghz (C/C++)
178 NV-RCNN 88.36 % 91.41 % 85.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
179 HybridPillars (SSD) 88.36 % 91.80 % 83.27 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
180 FSFNet 88.35 % 94.88 % 83.58 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
181 KPP3D code 88.25 % 93.93 % 83.26 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
182 CLOCs_SecCas 88.23 % 91.16 % 82.63 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
183 U_SECOND_V4 88.22 % 91.95 % 85.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
184 Anonymous 88.21 % 91.77 % 85.52 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
185 U_RVRCNN_V2_1 88.21 % 92.05 % 85.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
186 UberATG-MMF
This method makes use of Velodyne laser scans.
88.21 % 93.67 % 81.99 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
187 Patches - EMP
This method makes use of Velodyne laser scans.
88.17 % 94.49 % 84.75 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
188 SRDL 88.17 % 92.01 % 85.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
189 PSA-Det3D 88.13 % 92.08 % 85.35 % 0.1 s GPU @ 2.5 Ghz (Python)
190 PVRCNN_8369 88.13 % 91.91 % 85.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
191 PointPainting
This method makes use of Velodyne laser scans.
88.11 % 92.45 % 83.36 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
192 GENet 88.11 % 91.59 % 85.48 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
193 SERCNN
This method makes use of Velodyne laser scans.
88.10 % 94.11 % 83.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
194 Associate-3Ddet code 88.09 % 91.40 % 82.96 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
195 HotSpotNet 88.09 % 94.06 % 83.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
196 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 88.08 % 91.90 % 85.35 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
197 SC-Voxel-RCNN 88.02 % 91.45 % 85.22 % 0.12 s GPU @ 1.0 Ghz (Python)
198 CZY 88.00 % 91.85 % 85.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
199 UberATG-HDNET
This method makes use of Velodyne laser scans.
87.98 % 93.13 % 81.23 % 0.05 s GPU @ 2.5 Ghz (Python)
B. Yang, M. Liang and R. Urtasun: HDNET: Exploiting HD Maps for 3D Object Detection. 2nd Conference on Robot Learning (CoRL) 2018.
200 RealSynthesis-SECOND 87.85 % 90.96 % 84.53 % 0.05 s 1 core @ 2.5 Ghz (Python)
201 STNet 87.85 % 91.73 % 85.13 % 0.60 s 1 core @ 2.5 Ghz (Python)
202 Fast Point R-CNN
This method makes use of Velodyne laser scans.
87.84 % 90.87 % 80.52 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
203 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 87.79 % 91.70 % 84.61 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
204 SIF 87.76 % 91.44 % 85.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
205 U_PVRCNN_V2 87.74 % 91.62 % 85.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
206 MVAF-Net code 87.73 % 91.95 % 85.00 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
207 DVFENet 87.68 % 90.93 % 84.60 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
208 S-AT GCN 87.68 % 90.85 % 84.20 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
209 RangeDet (Official) code 87.67 % 90.93 % 82.92 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
210 MODet
This method makes use of Velodyne laser scans.
87.56 % 90.80 % 82.69 % 0.05 s GTX1080Ti
Y. Zhang, Z. Xiang, C. Qiao and S. Chen: Accurate and Real-Time Object Detection Based on Bird's Eye View on 3D Point Clouds. 2019 International Conference on 3D Vision (3DV) 2019.
211 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 87.53 % 91.99 % 81.03 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
212 DTFI 87.51 % 91.01 % 84.25 % 0.03 s 1 core @ 2.5 Ghz (Python)
213 PointRGCN 87.49 % 91.63 % 80.73 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
214 Anonymous 87.48 % 90.98 % 84.22 % 1 1 core @ 2.5 Ghz (Python)
215 SECOND_7862 87.48 % 90.98 % 84.22 % 1 s 1 core @ 2.5 Ghz (Python)
216 MGAF-3DSSD code 87.47 % 92.70 % 82.19 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
217 OA-TSSD 87.41 % 89.88 % 84.45 % 20 s 8 cores @ 2.5 Ghz (C/C++)
218 PC-CNN-V2
This method makes use of Velodyne laser scans.
87.40 % 91.19 % 79.35 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
219 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 87.39 % 92.13 % 82.72 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
220 Sem-Aug
This method makes use of Velodyne laser scans.
87.37 % 93.35 % 82.43 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
221 MAFF-Net(DAF-Pillar) 87.34 % 90.79 % 77.66 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
222 Harmonic PointPillar code 87.28 % 90.89 % 82.54 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, M. Mekala, Z. Nain, D. Yang, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
223 ZMMPP 87.25 % 90.47 % 82.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
224 HRI-VoxelFPN 87.21 % 92.75 % 79.82 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
225 epBRM
This method makes use of Velodyne laser scans.
code 87.13 % 90.70 % 81.92 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
226 T_PVRCNN 86.97 % 91.63 % 82.20 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
227 SARPNET 86.92 % 92.21 % 81.68 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
228 T_PVRCNN_V2 86.85 % 91.54 % 81.82 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
229 ARPNET 86.81 % 90.06 % 79.41 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
230 C-GCN 86.78 % 91.11 % 80.09 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
231 CAD
This method uses stereo information.
This method makes use of Velodyne laser scans.
86.56 % 90.00 % 81.62 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
232 PointPillars
This method makes use of Velodyne laser scans.
code 86.56 % 90.07 % 82.81 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
233 TANet code 86.54 % 91.58 % 81.19 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
234 SCNet
This method makes use of Velodyne laser scans.
86.48 % 90.07 % 81.30 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
235 CSNet8306 code 86.44 % 92.57 % 81.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
236 SegVoxelNet 86.37 % 91.62 % 83.04 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
237 VPNetv2 86.25 % 91.92 % 83.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
238 3D IoU Loss
This method makes use of Velodyne laser scans.
86.22 % 91.36 % 81.20 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
239 R-GCN 86.05 % 91.91 % 81.05 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
240 Anonymous Submission 86.02 % 91.25 % 80.99 % 1 s 1 core @ 2.5 Ghz (Python)
241 UberATG-PIXOR++
This method makes use of Velodyne laser scans.
86.01 % 93.28 % 80.11 % 0.035 s GPU @ 2.5 Ghz (Python)
B. Yang, M. Liang and R. Urtasun: HDNET: Exploiting HD Maps for 3D Object Detection. 2nd Conference on Robot Learning (CoRL) 2018.
242 CAT 85.97 % 91.48 % 80.93 % 1 s 1 core @ 2.5 Ghz (Python)
243 SSL_PP code 85.93 % 92.19 % 80.40 % 16ms GPU @ 1.5 Ghz (Python)
244 CSNet8299 code 85.91 % 91.64 % 80.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
245 Sem-Aug-PointRCNN++ 85.88 % 91.68 % 83.37 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
246 DASS 85.85 % 91.74 % 80.97 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
247 F-ConvNet
This method makes use of Velodyne laser scans.
code 85.84 % 91.51 % 76.11 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
248 PI-RCNN 85.81 % 91.44 % 81.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
249 PointRGBNet 85.73 % 91.39 % 80.68 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
250 AFTD 85.63 % 90.61 % 82.28 % 1 s 1 core @ 2.5 Ghz (Python + C/C++)
251 variance_point 85.39 % 91.90 % 81.13 % 0.05 s 1 core @ 2.5 Ghz (Python)
252 UberATG-ContFuse
This method makes use of Velodyne laser scans.
85.35 % 94.07 % 75.88 % 0.06 s GPU @ 2.5 Ghz (Python)
M. Liang, B. Yang, S. Wang and R. Urtasun: Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.
253 PFF3D
This method makes use of Velodyne laser scans.
code 85.08 % 89.61 % 80.42 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
254 AVOD
This method makes use of Velodyne laser scans.
code 84.95 % 89.75 % 78.32 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
255 WS3D
This method makes use of Velodyne laser scans.
84.93 % 90.96 % 77.96 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
256 AVOD-FPN
This method makes use of Velodyne laser scans.
code 84.82 % 90.99 % 79.62 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
257 F-PointNet
This method makes use of Velodyne laser scans.
code 84.67 % 91.17 % 74.77 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
258 Voxel-MAE+SECOND code 83.96 % 87.41 % 81.67 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
259 3DBN
This method makes use of Velodyne laser scans.
83.94 % 89.66 % 76.50 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
260 EOTL code 83.14 % 89.10 % 71.41 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
261 MLOD
This method makes use of Velodyne laser scans.
code 82.68 % 90.25 % 77.97 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
262 BirdNet+
This method makes use of Velodyne laser scans.
code 81.85 % 87.43 % 75.36 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
263 FD 81.47 % 88.34 % 75.07 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
264 CZY 81.21 % 89.10 % 76.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
265 DMF
This method uses stereo information.
80.29 % 84.64 % 76.05 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
266 UberATG-PIXOR
This method makes use of Velodyne laser scans.
80.01 % 83.97 % 74.31 % 0.035 s TITAN Xp (Python)
B. Yang, W. Luo and R. Urtasun: PIXOR: Real-time 3D Object Detection from Point Clouds. CVPR 2018.
267 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
78.98 % 86.49 % 72.23 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
268 DSGN++
This method uses stereo information.
code 78.94 % 88.55 % 69.74 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
269 MV3D
This method makes use of Velodyne laser scans.
78.93 % 86.62 % 69.80 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
270 StereoDistill 78.59 % 89.03 % 69.34 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
271 MMLAB LIGA-Stereo
This method uses stereo information.
code 76.78 % 88.15 % 67.40 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
272 RCD 75.83 % 82.26 % 69.61 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
273 LaserNet 74.52 % 79.19 % 68.45 % 12 ms GPU @ 2.5 Ghz (C/C++)
G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington: LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
274 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 73.80 % 84.61 % 65.59 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
275 SNVC
This method uses stereo information.
code 73.61 % 86.88 % 64.49 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
276 A3DODWTDA
This method makes use of Velodyne laser scans.
code 73.26 % 79.58 % 62.77 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
277 Complexer-YOLO
This method makes use of Velodyne laser scans.
68.96 % 77.24 % 64.95 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
278 Pseudo-Stereo++ 68.36 % 84.64 % 59.01 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
279 TopNet-Retina
This method makes use of Velodyne laser scans.
68.16 % 80.16 % 63.43 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
280 CG-Stereo
This method uses stereo information.
66.44 % 85.29 % 58.95 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
281 PLUME
This method uses stereo information.
66.27 % 82.97 % 56.70 % 0.15 s GPU @ 2.5 Ghz (Python)
Y. Wang, B. Yang, R. Hu, M. Liang and R. Urtasun: PLUME: Efficient 3D Object Detection from Stereo Images. IROS 2021.
282 CDN
This method uses stereo information.
code 66.24 % 83.32 % 57.65 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
283 PS++ 65.90 % 84.07 % 58.21 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
284 DSGN
This method uses stereo information.
code 65.05 % 82.90 % 56.60 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
285 TopNet-DecayRate
This method makes use of Velodyne laser scans.
64.60 % 79.74 % 58.04 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
286 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 63.33 % 84.80 % 61.23 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
287 3D FCN
This method makes use of Velodyne laser scans.
61.67 % 70.62 % 55.61 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
288 CDN-PL++
This method uses stereo information.
61.04 % 81.27 % 52.84 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
289 BirdNet
This method makes use of Velodyne laser scans.
59.83 % 84.17 % 57.35 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
290 TopNet-UncEst
This method makes use of Velodyne laser scans.
59.67 % 72.05 % 51.67 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
291 RT3D-GMP
This method uses stereo information.
59.00 % 69.14 % 45.49 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
292 Disp R-CNN (velo)
This method uses stereo information.
code 58.62 % 79.76 % 47.73 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
293 ESGN
This method uses stereo information.
58.12 % 78.10 % 49.28 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
294 Pseudo-LiDAR++
This method uses stereo information.
code 58.01 % 78.31 % 51.25 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
295 Disp R-CNN
This method uses stereo information.
code 57.98 % 79.61 % 47.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
296 ZoomNet
This method uses stereo information.
code 54.91 % 72.94 % 44.14 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
297 VoxelJones code 53.96 % 66.21 % 47.66 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
298 TopNet-HighRes
This method makes use of Velodyne laser scans.
53.05 % 67.84 % 46.99 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
299 OC Stereo
This method uses stereo information.
code 51.47 % 68.89 % 42.97 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
300 DSC3D
This method uses stereo information.
51.21 % 74.56 % 42.07 % 0.31 s GPU @ 2.5 Ghz (Python)
301 YOLOStereo3D
This method uses stereo information.
code 50.28 % 76.10 % 36.86 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
302 RT3DStereo
This method uses stereo information.
46.82 % 58.81 % 38.38 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
303 Pseudo-Lidar
This method uses stereo information.
code 45.00 % 67.30 % 38.40 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
304 RT3D
This method makes use of Velodyne laser scans.
44.00 % 56.44 % 42.34 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
305 Stereo CenterNet
This method uses stereo information.
42.12 % 62.97 % 35.37 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
306 SparseLiDAR_fusion 41.51 % 54.10 % 34.14 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
307 Stereo R-CNN
This method uses stereo information.
code 41.31 % 61.92 % 33.42 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
308 CIE + DM3D 33.13 % 46.17 % 28.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
309 StereoFENet
This method uses stereo information.
32.96 % 49.29 % 25.90 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
310 Anonymous 30.81 % 43.11 % 26.81 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
311 Mobile Stereo R-CNN
This method uses stereo information.
28.78 % 44.51 % 22.30 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
312 CIE 28.50 % 41.41 % 23.88 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
313 Anonymous 28.10 % 40.70 % 23.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
314 MonoLiG 26.83 % 35.73 % 24.24 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
315 MDS-Mono3D 26.33 % 41.07 % 21.22 % 0.12 s 1 core @ 2.5 Ghz (C/C++)
316 MonoATT_V2 code 26.30 % 35.95 % 24.20 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
317 MonoLSS 25.95 % 34.89 % 22.59 % 0.04 s 1 core @ 2.5 Ghz (Python)
318 CMKD code 25.82 % 38.98 % 22.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
319 MoGDE 25.60 % 38.38 % 22.91 % 0.03 s GPU @ 2.5 Ghz (Python)
320 BAIR 25.60 % 35.41 % 22.14 % 0.04 s 1 core @ 2.5 Ghz (Python)
321 AMNet 25.40 % 34.68 % 22.85 % 0.03 s GPU @ 1.0 Ghz (Python)
322 MonoXiver 25.37 % 34.14 % 22.20 % 0.03s GPU @ 2.5 Ghz (Python)
323 BSM3D 25.23 % 34.82 % 22.37 % 0.03 s 1 core @ 2.5 Ghz (Python)
324 LPCG-Monoflex code 24.81 % 35.96 % 21.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
325 DD3Dv2 code 24.67 % 35.70 % 21.73 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
326 NeurOCS 24.49 % 37.27 % 20.89 % 0.1 s GPU @ 2.5 Ghz (Python)
327 MonoATT code 24.42 % 36.87 % 21.88 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
328 out_dated 24.41 % 37.38 % 20.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
329 Mix-Teaching code 24.23 % 35.74 % 20.80 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
330 OccupancyM3D 24.18 % 35.38 % 21.37 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
331 Anonymous 23.82 % 34.35 % 20.80 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
332 PS-fld code 23.76 % 32.64 % 20.64 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
333 TempM3D 23.71 % 33.86 % 20.31 % 0.07 s 1 core @ 2.5 Ghz (Python)
334 SHUD 23.68 % 35.94 % 20.17 % 0.04 s 1 core @ 2.5 Ghz (Python)
335 ADD code 23.58 % 35.20 % 20.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
336 MonoNeRD 23.46 % 31.13 % 20.97 % na s 1 core @ 2.5 Ghz (C/C++)
337 MonoDDE 23.46 % 33.58 % 20.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
338 MonoA^2 23.45 % 32.35 % 20.71 % na s 1 core @ 2.5 Ghz (C/C++)
339 DD3D code 23.41 % 32.35 % 20.42 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
340 MonoA^2(new) 23.14 % 31.71 % 20.45 % na s 1 core @ 2.5 Ghz (C/C++)
341 SAD 22.81 % 34.34 % 19.44 % 0.05 s 1 core @ 2.5 Ghz (python)
342 UNM3D 22.79 % 33.45 % 20.79 % na s 1 core @ 2.5 Ghz (C/C++)
343 DID-M3D code 22.76 % 32.95 % 19.83 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
344 MonoAD 22.70 % 33.33 % 20.48 % 0.03 s GPU @ 2.5 Ghz (Python)
345 OPA-3D code 22.53 % 33.54 % 19.22 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
346 MM3DV2 22.49 % 32.18 % 19.80 % NA s 1 core @ 2.5 Ghz (C/C++)
347 Shape-Aware 22.13 % 32.55 % 18.94 % 0.05 s 1 core @ 2.5 Ghz (Python)
348 3DSeMoDLE code 21.78 % 30.99 % 18.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
349 Anonymous 21.74 % 32.44 % 18.38 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
350 MonoPPM code 21.66 % 30.54 % 18.64 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
351 SAD 21.56 % 33.90 % 19.08 % 0.05 s 1 core @ 2.5 Ghz (python)
352 DCD code 21.50 % 32.55 % 18.25 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
353 MonoDETR code 21.45 % 32.20 % 18.68 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
354 M3DGAF 21.39 % 31.34 % 19.28 % 0.07 s 1 core @ 2.5 Ghz (Python)
355 SGM3D code 21.37 % 31.49 % 18.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
356 DD3D-dequity 21.37 % 30.62 % 19.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
357 DEPT 21.22 % 30.85 % 18.47 % 0.03 s 1 core @ 2.5 Ghz (Python)
358 Mono3DMethod 21.21 % 32.57 % 18.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
359 GUPNet code 21.19 % 30.29 % 18.20 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
360 MonoInsight 21.06 % 29.65 % 18.22 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
361 MM3D 20.93 % 31.44 % 18.72 % NA s 1 core @ 2.5 Ghz (C/C++)
362 BCA 20.75 % 30.03 % 17.60 % 0.17 s GPU @ 2.5 Ghz (Python)
363 HomoLoss(monoflex) code 20.68 % 29.60 % 17.81 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
364 DEVIANT code 20.44 % 29.65 % 17.43 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
365 MonoDTR 20.38 % 28.59 % 17.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
366 MDSNet 20.14 % 32.81 % 15.77 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
367 AutoShape code 20.08 % 30.66 % 15.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
368 MonoPCNS 19.89 % 28.27 % 17.96 % 0.14 s GPU @ 2.5 Ghz (Python)
369 MonoFlex 19.75 % 28.23 % 16.89 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
370 MonoEF 19.70 % 29.03 % 17.26 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
371 HomoLoss(imvoxelnet) code 19.25 % 29.18 % 16.21 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
372 MonoAug 19.19 % 28.20 % 16.15 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
373 DFR-Net 19.17 % 28.17 % 14.84 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
374 DLE code 19.05 % 31.09 % 14.13 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
375 PCT code 19.03 % 29.65 % 15.92 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
376 CaDDN code 18.91 % 27.94 % 17.19 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
377 monodle code 18.89 % 24.79 % 16.00 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
378 Neighbor-Vote 18.65 % 27.39 % 16.54 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
379 MonoRCNN++ code 18.62 % 27.20 % 15.69 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
380 GrooMeD-NMS code 18.27 % 26.19 % 14.05 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
381 MonoRCNN code 18.11 % 25.48 % 14.10 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
382 Ground-Aware code 17.98 % 29.81 % 13.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
383 Aug3D-RPN 17.89 % 26.00 % 14.18 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
384 DDMP-3D 17.89 % 28.08 % 13.44 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
385 IAFA 17.88 % 25.88 % 15.35 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
386 FMF-occlusion-net 17.60 % 27.39 % 13.25 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
387 RefinedMPL 17.60 % 28.08 % 13.95 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
388 Kinematic3D code 17.52 % 26.69 % 13.10 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
389 MonoRUn code 17.34 % 27.94 % 15.24 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
390 AM3D 17.32 % 25.03 % 14.91 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
391 YoloMono3D code 17.15 % 26.79 % 12.56 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
392 CMAN 17.04 % 25.89 % 12.88 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
393 GAC3D 16.93 % 25.80 % 12.50 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
394 PatchNet code 16.86 % 22.97 % 14.97 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
395 Orient240_Loc441 16.73 % 24.91 % 15.01 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
396 MonoGhost 16.73 % 24.91 % 15.01 % 0.03 s GPU @ 2.5 Ghz (Python)
397 MonoAug 16.71 % 24.39 % 13.83 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
398 PGD-FCOS3D code 16.51 % 26.89 % 13.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
399 MDT code 16.47 % 24.22 % 13.42 % 0.01 s 1 core @ 2.5 Ghz (Python)
400 ImVoxelNet code 16.37 % 25.19 % 13.58 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
401 KM3D code 16.20 % 23.44 % 14.47 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
402 D4LCN code 16.02 % 22.51 % 12.55 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
403 tbd code 15.46 % 21.93 % 14.06 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
404 Init_Submit_240Orien 15.04 % 25.56 % 14.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
405 MonoPair 14.83 % 19.28 % 12.89 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
406 Decoupled-3D 14.82 % 23.16 % 11.25 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
407 QD-3DT
This is an online method (no batch processing).
code 14.71 % 20.16 % 12.76 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
408 SMOKE code 14.49 % 20.83 % 12.75 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
409 RTM3D code 14.20 % 19.17 % 11.99 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
410 Mono3D_PLiDAR code 13.92 % 21.27 % 11.25 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
411 init 13.78 % 21.67 % 12.60 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
412 M3D-RPN code 13.67 % 21.02 % 10.23 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
413 CSoR
This method makes use of Velodyne laser scans.
13.07 % 18.67 % 10.34 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
414 MonoPSR code 12.58 % 18.33 % 9.91 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
415 Plane-Constraints 12.06 % 17.31 % 10.05 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
416 MonoCInIS 11.64 % 22.28 % 9.95 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
417 SS3D 11.52 % 16.33 % 9.93 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
418 MonoGRNet code 11.17 % 18.19 % 8.73 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
419 MonoFENet 11.03 % 17.03 % 9.05 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
420 MonoCInIS 10.96 % 20.42 % 9.23 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
421 A3DODWTDA (image) code 8.66 % 10.37 % 7.06 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
422 TLNet (Stereo)
This method uses stereo information.
code 7.69 % 13.71 % 6.73 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
423 Shift R-CNN (mono) code 6.82 % 11.84 % 5.27 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
424 tbd 6.68 % 9.73 % 5.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
425 SparVox3D 6.39 % 10.20 % 5.06 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
426 GS3D 6.08 % 8.41 % 4.94 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
427 MVRA + I-FRCNN+ 5.84 % 9.05 % 4.50 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
428 WeakM3D code 5.66 % 11.82 % 4.08 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
429 ROI-10D 4.91 % 9.78 % 3.74 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
430 3D-GCK 4.57 % 5.79 % 3.64 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
431 ghost_bev 4.19 % 5.58 % 3.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
432 FQNet 3.23 % 5.40 % 2.46 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
433 1D_CONV 2.91 % 3.50 % 2.53 % 0.03 s 1 core @ 2.5 Ghz (Python)
434 3D-SSMFCNN code 2.63 % 3.20 % 2.40 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
435 Initial_submit code 1.13 % 1.43 % 1.08 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
436 VeloFCN
This method makes use of Velodyne laser scans.
0.14 % 0.02 % 0.21 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
437 MonoDET code 0.14 % 0.25 % 0.10 % 0.04 s 1 core @ 2.5 Ghz (Python)
438 Yolo5x6_Ghost 0.00 % 0.00 % 0.00 % 0.03 s GPU @ 2.5 Ghz (Python)
439 Yolo5x6_Ghost 0.00 % 0.00 % 0.00 % 0.03 s GPU @ 2.5 Ghz (Python)
440 multi-task CNN 0.00 % 0.00 % 0.00 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
441 Ghost3D object detec 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
442 aliii0 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
443 Res 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
444 GHos_3d 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
445 ALI_TRY1 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
446 BEV_GHOST 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
447 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 PiFeNet code 53.92 % 63.25 % 50.53 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
2 CasA++ code 53.84 % 60.14 % 51.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
3 TED code 53.48 % 60.13 % 50.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 BiProDet code 53.32 % 58.91 % 50.82 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Bidirectional Propagation for Cross- Modal 3D Object Detection. International Conference on Learning Representations .
5 DCAN-Second code 53.18 % 60.92 % 50.56 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
6 EQ-PVRCNN code 52.81 % 61.73 % 49.87 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
7 VPNetv2 52.67 % 59.06 % 48.97 % 0.1 s 1 core @ 2.5 Ghz (Python)
8 VPFNet code 52.41 % 60.07 % 50.28 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
9 3D HA Net code 52.29 % 59.71 % 49.79 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
10 Frustum-PointPillars code 52.23 % 60.98 % 48.30 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
11 LoGoNet 52.06 % 58.24 % 49.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
12 TANet code 51.38 % 60.85 % 47.54 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
13 CasA code 51.37 % 57.95 % 49.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
14 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 50.57 % 59.86 % 46.74 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
15 RPPF-Net 50.55 % 57.02 % 47.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
16 HotSpotNet 50.53 % 57.39 % 46.65 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
17 VMVS
This method makes use of Velodyne laser scans.
50.34 % 60.34 % 46.45 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
18 AVOD-FPN
This method makes use of Velodyne laser scans.
code 50.32 % 58.49 % 46.98 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
19 SPT 50.22 % 56.54 % 46.72 % 0.1 s GPU @ 2.5 Ghz (Python)
20 variance_point 50.03 % 57.72 % 46.27 % 0.05 s 1 core @ 2.5 Ghz (Python)
21 3DSSD code 49.94 % 60.54 % 45.73 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
22 PointPainting
This method makes use of Velodyne laser scans.
49.93 % 58.70 % 46.29 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
23 SemanticVoxels 49.93 % 58.91 % 47.31 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
24 ACDet code 49.82 % 58.35 % 47.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
25 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 49.81 % 59.04 % 45.92 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
26 USVLab BSAODet code 49.75 % 56.05 % 47.59 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
27 ACF-Net 49.74 % 58.07 % 47.27 % n/a s 1 core @ 2.5 Ghz (C/C++)
28 F-PointNet
This method makes use of Velodyne laser scans.
code 49.57 % 57.13 % 45.48 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
29 F-ConvNet
This method makes use of Velodyne laser scans.
code 48.96 % 57.04 % 44.33 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
30 MPFusion 48.95 % 57.82 % 46.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
31 HVNet 48.86 % 54.84 % 46.33 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
32 CAT-Det 48.78 % 57.13 % 45.56 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
33 STD code 48.72 % 60.02 % 44.55 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
34 PointPillars
This method makes use of Velodyne laser scans.
code 48.64 % 57.60 % 45.78 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
35 FV2P v2 48.58 % 54.90 % 45.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
36 HPV-RCNN 48.52 % 56.00 % 44.88 % 0.08 s 1 core @ 2.5 Ghz (Python)
37 EPNet++ 48.47 % 56.24 % 45.73 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
38 MGAF-3DSSD code 48.46 % 56.09 % 44.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
39 RFA 48.30 % 55.62 % 45.15 % 0.1s GPU @ 2 Ghz (python)
40 Fast-CLOCs 48.27 % 57.19 % 44.55 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
41 FromVoxelToPoint code 48.15 % 56.54 % 45.63 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
42 EOTL code 47.80 % 56.52 % 43.36 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
43 HMFI code 47.77 % 55.61 % 45.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
44 VoCo 47.47 % 52.94 % 45.41 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
45 P2V-RCNN 47.36 % 54.15 % 45.10 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
46 MMF 47.35 % 57.14 % 45.05 % 1 s 1 core @ 2.5 Ghz (C/C++)
47 CZY_PPF_Net2 47.22 % 51.95 % 45.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
48 PA-RCNN code 47.18 % 54.94 % 45.10 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
49 PV-PMRTNet 47.09 % 51.80 % 45.25 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
50 Point-GNN
This method makes use of Velodyne laser scans.
code 47.07 % 55.36 % 44.61 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
51 Anomynous 46.87 % 56.48 % 44.50 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
52 Anomynous 46.87 % 56.48 % 44.50 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
53 MVMM code 46.84 % 53.75 % 44.87 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
54 SCNet
This method makes use of Velodyne laser scans.
46.73 % 56.87 % 42.74 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
55 SGDA3D 46.66 % 52.65 % 44.62 % 0.07 s 1 core @ 2.5 Ghz (Python)
56 Anonymous
This method makes use of Velodyne laser scans.
46.65 % 52.20 % 44.61 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
57 DGT-Det3D code 46.59 % 54.25 % 44.15 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
58 Anonymous 46.48 % 55.23 % 42.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
59 PSA-Det3D 46.36 % 53.26 % 43.73 % 0.1 s GPU @ 2.5 Ghz (Python)
60 CZY_3917 46.31 % 51.01 % 44.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
61 3SNet 46.25 % 52.22 % 42.89 % 0.07 s GPU @ 2.5 Ghz (Python)
62 DTE3D 46.18 % 53.38 % 43.52 % 0.15s 1 core @ 2.5 Ghz (C/C++)
63 MVENet 46.16 % 53.44 % 42.78 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
64 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 46.13 % 54.77 % 42.84 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
65 POP-RCNN 45.98 % 53.74 % 43.90 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
66 ARPNET 45.92 % 55.48 % 42.54 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
67 Under Blind Review#2 45.85 % 52.35 % 44.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
68 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 45.82 % 52.03 % 43.81 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
69 U_SECOND_V4 45.79 % 53.57 % 43.52 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
70 SVGA-Net 45.68 % 53.09 % 43.30 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
71 Rnet 45.65 % 51.51 % 43.52 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
72 RealSynthesis-SECOND 45.64 % 53.25 % 42.92 % 0.05 s 1 core @ 2.5 Ghz (Python)
73 B2PE 45.53 % 53.12 % 42.64 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
74 epBRM
This method makes use of Velodyne laser scans.
code 45.49 % 52.48 % 42.75 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
75 KPSCC code 45.46 % 52.72 % 42.53 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
76 PDV code 45.45 % 51.95 % 43.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
77 Anonymous 45.45 % 52.69 % 43.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
78 MLOD
This method makes use of Velodyne laser scans.
code 45.40 % 55.09 % 41.42 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
79 RangeRCNN++ code 45.38 % 51.65 % 43.26 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
80 U_PVRCNN_V2 45.23 % 51.52 % 42.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
81 VPNet 45.12 % 52.68 % 42.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
82 IA-SSD (single) code 45.07 % 52.73 % 42.75 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
83 SRDL 44.84 % 52.42 % 42.56 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
84 PVRCNN_8369 44.83 % 52.41 % 42.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
85 CZY_PPF_Net 44.80 % 49.97 % 42.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
86 M3DeTR code 44.78 % 50.63 % 42.57 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
87 WGVRF 44.75 % 50.80 % 42.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
88 Semantical PVRCNN 44.75 % 49.40 % 41.94 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
89 AFTD 44.74 % 53.94 % 42.36 % 1 s 1 core @ 2.5 Ghz (Python + C/C++)
90 U_RVRCNN_V2_1 44.73 % 51.76 % 42.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
91 HybridPillars (SSD) 44.51 % 51.49 % 42.31 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
92 SIF 44.28 % 52.05 % 42.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
93 DVFENet 44.12 % 50.98 % 41.62 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
94 3D-BCM 44.01 % 50.58 % 41.51 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
95 STNet 43.89 % 51.30 % 41.88 % 0.60 s 1 core @ 2.5 Ghz (Python)
96 VGA-RCNN 43.89 % 51.80 % 41.57 % 0.07 s 1 core @ 2.5 Ghz (Python)
97 GS 43.88 % 50.53 % 40.93 % TBD s 1 core @ 2.5 Ghz (C/C++)
98 IKT3D
This method makes use of Velodyne laser scans.
43.88 % 49.25 % 41.79 % 0.05 s 1 core @ 2.5 Ghz (Python)
99 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 43.85 % 52.15 % 41.68 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
100 PSA-SSD 43.77 % 50.26 % 41.75 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
101 DTSSD 43.70 % 50.07 % 41.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
102 BASA 43.67 % 50.82 % 40.91 % 1s 1 core @ 2.5 Ghz (python)
103 AGS-SSD[la] 43.60 % 51.06 % 40.37 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
104 IPS 43.58 % 50.38 % 41.54 % TBD s 1 core @ 2.5 Ghz (C/C++)
105 IA-SSDx 43.57 % 51.26 % 40.95 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
106 S-AT GCN 43.43 % 50.63 % 41.58 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
107 HybridPillars 43.25 % 48.20 % 41.16 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
108 GEO_LOC 43.10 % 49.74 % 41.02 % TBD s 1 core @ 2.5 Ghz (C/C++)
109 GS-FPS-LT 42.89 % 49.33 % 40.63 % TBD s 1 core @ 2.5 Ghz (C/C++)
110 BirdNet+
This method makes use of Velodyne laser scans.
code 42.87 % 48.90 % 40.59 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
111 OA-TSSD 42.84 % 50.80 % 40.32 % 20 s 8 cores @ 2.5 Ghz (C/C++)
112 CZY 42.80 % 49.42 % 40.83 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
113 IA-SSD (multi) code 42.61 % 51.76 % 40.51 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
114 NV-RCNN 42.58 % 49.00 % 40.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
115 ACCF 42.51 % 49.98 % 40.20 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
116 XView 42.42 % 47.24 % 39.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
117 GS-FPS code 42.34 % 50.05 % 40.12 % TBD s 1 core @ 2.5 Ghz (C/C++)
118 ATT_SSD 42.24 % 49.55 % 40.13 % 0.01 s 1 core @ 2.5 Ghz (Python)
119 T_PVRCNN_V2 42.21 % 50.58 % 39.81 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
120 DTSSD 41.95 % 49.28 % 39.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
121 T_PVRCNN 41.87 % 49.87 % 39.44 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
122 PEF code 41.79 % 49.48 % 39.31 % N/A s 1 core @ 2.5 Ghz (C/C++)
123 SWA code 41.57 % 48.98 % 39.32 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
124 TTT_SSD 41.19 % 47.42 % 39.19 % TBD s 1 core @ 2.5 Ghz (C/C++)
125 SECOND_7862 40.96 % 47.55 % 38.85 % 1 s 1 core @ 2.5 Ghz (Python)
126 PFF3D
This method makes use of Velodyne laser scans.
code 40.94 % 48.74 % 38.54 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
127 CAD
This method uses stereo information.
This method makes use of Velodyne laser scans.
40.93 % 48.07 % 38.43 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
128 ZMMPP 39.11 % 46.50 % 37.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
129 DSGN++
This method uses stereo information.
code 38.92 % 50.26 % 35.12 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
130 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 38.79 % 47.51 % 35.85 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
131 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 38.28 % 45.53 % 35.37 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
132 LightCPC code 38.17 % 44.37 % 36.04 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
133 CSW3D
This method makes use of Velodyne laser scans.
37.96 % 49.27 % 33.83 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
134 KPP3D code 37.82 % 45.25 % 35.36 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
135 Voxel-MAE+SECOND code 37.77 % 43.80 % 35.45 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
136 StereoDistill 37.75 % 50.79 % 34.28 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
137 R^2 R-CNN 37.63 % 46.95 % 33.85 % 0.1 s 1 core @ 2.5 Ghz (Python)
138 DMF
This method uses stereo information.
34.92 % 42.08 % 32.69 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
139 SparsePool code 34.15 % 43.33 % 31.78 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
140 MMLAB LIGA-Stereo
This method uses stereo information.
code 34.13 % 44.71 % 30.42 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
141 AVOD
This method makes use of Velodyne laser scans.
code 33.57 % 42.58 % 30.14 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
142 SparsePool code 33.22 % 41.55 % 29.66 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
143 Pseudo-Stereo++ 32.38 % 43.37 % 28.66 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
144 CZY 32.05 % 39.50 % 29.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
145 PS++ 31.78 % 42.17 % 28.07 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
146 CG-Stereo
This method uses stereo information.
29.56 % 39.24 % 25.87 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
147 PointRGBNet 29.32 % 38.07 % 26.94 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
148 Disp R-CNN
This method uses stereo information.
code 29.12 % 42.72 % 25.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
149 Disp R-CNN (velo)
This method uses stereo information.
code 28.34 % 40.21 % 24.46 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
150 BirdNet
This method makes use of Velodyne laser scans.
23.06 % 28.20 % 21.65 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
151 DSC3D
This method uses stereo information.
22.72 % 32.40 % 19.09 % 0.31 s GPU @ 2.5 Ghz (Python)
152 OC Stereo
This method uses stereo information.
code 20.80 % 29.79 % 18.62 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
153 YOLOStereo3D
This method uses stereo information.
code 20.76 % 31.01 % 18.41 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
154 DSGN
This method uses stereo information.
code 20.75 % 26.61 % 18.86 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
155 Complexer-YOLO
This method makes use of Velodyne laser scans.
18.26 % 21.42 % 17.06 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
156 TopNet-Retina
This method makes use of Velodyne laser scans.
14.57 % 18.04 % 12.48 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
157 RT3D-GMP
This method uses stereo information.
14.22 % 19.92 % 12.83 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
158 TopNet-HighRes
This method makes use of Velodyne laser scans.
13.50 % 19.43 % 11.93 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
159 ESGN
This method uses stereo information.
13.03 % 17.94 % 11.54 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
160 DD3D code 12.51 % 18.58 % 10.65 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
161 MonoLSS 12.34 % 18.40 % 10.54 % 0.04 s 1 core @ 2.5 Ghz (Python)
162 DEPT 12.29 % 18.05 % 10.50 % 0.03 s 1 core @ 2.5 Ghz (Python)
163 PS-fld code 12.23 % 19.03 % 10.53 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
164 DD3Dv2 code 12.16 % 17.74 % 10.49 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
165 CIE 11.94 % 17.90 % 10.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
166 MonoInsight 11.28 % 16.08 % 9.69 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
167 OPA-3D code 11.01 % 17.14 % 9.94 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
168 BAIR 10.78 % 16.47 % 9.58 % 0.04 s 1 core @ 2.5 Ghz (Python)
169 DD3D-dequity 10.77 % 15.70 % 9.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
170 OccupancyM3D 10.65 % 16.54 % 9.16 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
171 MonoDTR 10.59 % 16.66 % 9.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
172 BSM3D 10.41 % 15.30 % 8.89 % 0.03 s 1 core @ 2.5 Ghz (Python)
173 GUPNet code 10.37 % 15.62 % 8.79 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
174 CMKD code 10.28 % 16.03 % 8.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
175 BCA 9.99 % 15.00 % 8.49 % 0.17 s GPU @ 2.5 Ghz (Python)
176 MM3DV2 9.94 % 16.01 % 8.73 % NA s 1 core @ 2.5 Ghz (C/C++)
177 MM3D 9.90 % 15.37 % 8.23 % NA s 1 core @ 2.5 Ghz (C/C++)
178 DEVIANT code 9.77 % 14.49 % 8.28 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
179 MonoNeRD 9.66 % 15.27 % 8.28 % na s 1 core @ 2.5 Ghz (C/C++)
180 MonoPCNS 9.65 % 15.56 % 8.27 % 0.14 s GPU @ 2.5 Ghz (Python)
181 Mono3DMethod 9.53 % 14.55 % 8.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
182 MonoAD 9.44 % 14.65 % 8.60 % 0.03 s GPU @ 2.5 Ghz (Python)
183 MonoA^2 9.42 % 13.82 % 7.99 % na s 1 core @ 2.5 Ghz (C/C++)
184 CaDDN code 9.41 % 14.72 % 8.17 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
185 SGM3D code 9.39 % 15.39 % 8.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
186 AMNet 9.30 % 14.10 % 8.02 % 0.03 s GPU @ 1.0 Ghz (Python)
187 Anonymous 9.08 % 13.35 % 7.63 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
188 MonoRCNN++ code 9.04 % 13.45 % 7.74 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
189 M3DGAF 8.93 % 13.42 % 7.58 % 0.07 s 1 core @ 2.5 Ghz (Python)
190 MonoXiver 8.93 % 13.75 % 7.61 % 0.03s GPU @ 2.5 Ghz (Python)
191 HomoLoss(monoflex) code 8.81 % 13.26 % 7.41 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
192 UNM3D 8.59 % 13.09 % 7.27 % na s 1 core @ 2.5 Ghz (C/C++)
193 MonoDDE 8.41 % 12.38 % 7.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
194 Mix-Teaching code 8.40 % 12.34 % 7.06 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
195 SparseLiDAR_fusion 8.23 % 12.59 % 6.82 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
196 MDSNet 8.18 % 12.05 % 7.03 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
197 Anonymous 8.11 % 11.89 % 6.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
198 DCD code 8.08 % 11.76 % 6.61 % 1 s 1 core @ 2.5 Ghz (C/C++)
199 MonoAug 7.94 % 12.66 % 6.64 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
200 LPCG-Monoflex code 7.92 % 12.11 % 6.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
201 RefinedMPL 7.92 % 13.09 % 7.25 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
202 3DSeMoDLE code 7.71 % 11.86 % 6.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
203 Shape-Aware 7.65 % 11.69 % 6.35 % 0.05 s 1 core @ 2.5 Ghz (Python)
204 MonoRUn code 7.59 % 11.70 % 6.34 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
205 MonoATT_V2 code 7.40 % 11.63 % 6.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
206 MonoFlex 7.36 % 10.36 % 6.29 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
207 MonoPair 7.04 % 10.99 % 6.29 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
208 monodle code 6.96 % 10.73 % 6.20 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
209 MonoAug 6.87 % 10.81 % 5.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
210 TopNet-DecayRate
This method makes use of Velodyne laser scans.
6.59 % 8.78 % 6.25 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
211 Shift R-CNN (mono) code 5.66 % 8.58 % 4.49 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
212 FMF-occlusion-net 5.62 % 8.69 % 5.25 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
213 Aug3D-RPN 5.22 % 7.14 % 4.21 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
214 TopNet-UncEst
This method makes use of Velodyne laser scans.
4.60 % 6.88 % 3.79 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
215 MonoPSR code 4.56 % 7.24 % 4.11 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
216 DFR-Net 4.52 % 6.66 % 3.71 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
217 MoGDE 4.51 % 7.22 % 3.83 % 0.03 s GPU @ 2.5 Ghz (Python)
218 QD-3DT
This is an online method (no batch processing).
code 4.23 % 6.62 % 3.39 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
219 M3D-RPN code 4.05 % 5.65 % 3.29 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
220 DDMP-3D 4.02 % 5.53 % 3.36 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
221 CMAN 3.96 % 5.24 % 3.18 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
222 D4LCN code 3.86 % 5.06 % 3.59 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
223 RT3DStereo
This method uses stereo information.
3.65 % 4.72 % 3.00 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
224 MonoEF 3.05 % 4.61 % 2.85 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
225 MonoLiG 2.72 % 3.74 % 2.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
226 SS3D 2.09 % 2.48 % 1.61 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
227 SparVox3D 2.05 % 2.90 % 1.69 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
228 PGD-FCOS3D code 1.88 % 2.82 % 1.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
229 Plane-Constraints 1.16 % 1.87 % 1.13 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
230 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 BiProDet code 78.19 % 89.65 % 71.13 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Bidirectional Propagation for Cross- Modal 3D Object Detection. International Conference on Learning Representations .
2 CasA++ code 76.99 % 88.93 % 70.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
3 TED code 76.95 % 89.54 % 70.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 CasA code 75.74 % 88.99 % 68.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
5 3D HA Net code 75.68 % 88.22 % 68.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
6 LoGoNet 74.92 % 85.85 % 67.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
7 USVLab BSAODet code 74.38 % 85.01 % 67.38 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
8 HMFI code 74.06 % 85.69 % 67.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
9 CZY_PPF_Net2 73.64 % 85.39 % 66.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
10 EQ-PVRCNN code 73.30 % 86.25 % 65.49 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
11 Semantical PVRCNN 73.14 % 86.75 % 64.87 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
12 VoCo 73.08 % 85.29 % 66.46 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
13 PA-RCNN code 73.00 % 87.18 % 64.79 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
14 SPT 72.90 % 86.10 % 65.13 % 0.1 s GPU @ 2.5 Ghz (Python)
15 DCAN-Second code 72.74 % 88.62 % 65.89 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
16 CZY_PPF_Net 72.73 % 86.92 % 65.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
17 PV-PMRTNet 72.67 % 85.73 % 65.79 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
18 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 72.61 % 83.93 % 65.82 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
19 HPV-RCNN 72.61 % 85.68 % 64.30 % 0.08 s 1 core @ 2.5 Ghz (Python)
20 CAT-Det 72.51 % 85.35 % 65.55 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
21 Anomynous 72.30 % 86.30 % 63.76 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
22 Anomynous 72.30 % 86.30 % 63.76 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
23 POP-RCNN 71.99 % 87.57 % 63.54 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
24 SGDA3D 71.90 % 84.81 % 64.88 % 0.07 s 1 core @ 2.5 Ghz (Python)
25 Under Blind Review#2 71.89 % 84.41 % 65.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
26 BtcDet
This method makes use of Velodyne laser scans.
code 71.76 % 84.48 % 64.70 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
27 ACF-Net 71.68 % 85.76 % 65.33 % n/a s 1 core @ 2.5 Ghz (C/C++)
28 Anonymous 71.63 % 85.82 % 63.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
29 PointPainting
This method makes use of Velodyne laser scans.
71.54 % 83.91 % 62.97 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
30 RangeIoUDet
This method makes use of Velodyne laser scans.
71.49 % 85.99 % 63.62 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
31 ACDet code 71.48 % 87.76 % 64.69 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
32 IA-SSD (single) code 71.44 % 85.91 % 63.41 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
33 3SNet 71.44 % 84.55 % 64.79 % 0.07 s GPU @ 2.5 Ghz (Python)
34 Anonymous
This method makes use of Velodyne laser scans.
71.43 % 84.75 % 64.89 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
35 PDV code 71.31 % 85.54 % 64.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
36 HVNet 71.17 % 83.97 % 63.65 % 0.03 s GPU @ 2.0 Ghz (Python)
M. Ye, S. Xu and T. Cao: HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. CVPR 2020.
37 Rnet 70.91 % 82.10 % 63.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
38 DTSSD 70.91 % 85.14 % 63.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
39 M3DeTR code 70.89 % 85.03 % 63.14 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
40 CZY_3917 70.73 % 83.46 % 63.16 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
41 KPSCC code 70.59 % 83.06 % 63.07 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
42 CZY 70.32 % 86.42 % 63.32 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
43 PEF code 70.27 % 86.47 % 61.95 % N/A s 1 core @ 2.5 Ghz (C/C++)
44 HybridPillars 70.19 % 83.02 % 62.80 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
45 MVMM code 70.17 % 81.84 % 63.84 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
46 SPG_mini
This method makes use of Velodyne laser scans.
code 70.09 % 82.66 % 63.61 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
47 VGA-RCNN 69.86 % 80.95 % 62.16 % 0.07 s 1 core @ 2.5 Ghz (Python)
48 FV2P v2 69.82 % 86.88 % 63.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
49 DTSSD 69.81 % 84.14 % 63.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
50 MMF 69.78 % 83.31 % 62.06 % 1 s 1 core @ 2.5 Ghz (C/C++)
51 IKT3D
This method makes use of Velodyne laser scans.
69.74 % 81.92 % 62.59 % 0.05 s 1 core @ 2.5 Ghz (Python)
52 MPFusion 69.72 % 84.50 % 62.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
53 RangeRCNN++ code 69.71 % 84.18 % 63.10 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
54 DGT-Det3D code 69.47 % 81.26 % 61.88 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
55 Anonymous 69.19 % 82.82 % 62.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
56 VPNetv2 69.02 % 82.99 % 60.89 % 0.1 s 1 core @ 2.5 Ghz (Python)
57 B2PE 68.96 % 80.85 % 61.65 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
58 IPS 68.94 % 83.95 % 61.33 % TBD s 1 core @ 2.5 Ghz (C/C++)
59 ACCF 68.92 % 85.26 % 62.37 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
60 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 68.89 % 82.49 % 62.41 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
61 F-ConvNet
This method makes use of Velodyne laser scans.
code 68.88 % 84.16 % 60.05 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
62 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 68.73 % 83.43 % 61.85 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
63 WGVRF 68.71 % 82.04 % 62.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
64 U_RVRCNN_V2_1 68.65 % 80.63 % 61.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
65 HotSpotNet 68.51 % 83.29 % 61.84 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
66 LightCPC code 68.24 % 84.48 % 61.82 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
67 BASA 68.22 % 81.97 % 61.48 % 1s 1 core @ 2.5 Ghz (python)
68 OA-TSSD 68.14 % 83.96 % 61.53 % 20 s 8 cores @ 2.5 Ghz (C/C++)
69 P2V-RCNN 68.06 % 81.09 % 60.73 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
70 KPP3D code 67.97 % 81.23 % 60.72 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
71 H^23D R-CNN code 67.90 % 82.76 % 60.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
72 RealSynthesis-SECOND 67.89 % 84.13 % 60.49 % 0.05 s 1 core @ 2.5 Ghz (Python)
73 MVENet 67.69 % 80.87 % 61.46 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
74 VPFNet code 67.66 % 80.83 % 61.36 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
75 3DSSD code 67.62 % 85.04 % 61.14 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
76 GS 67.57 % 80.63 % 61.45 % TBD s 1 core @ 2.5 Ghz (C/C++)
77 Fast-CLOCs 67.55 % 83.34 % 59.61 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
78 NV-RCNN 67.54 % 82.53 % 60.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
79 U_PVRCNN_V2 67.51 % 79.04 % 59.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
80 DVFENet 67.40 % 82.29 % 60.71 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
81 FromVoxelToPoint code 67.36 % 82.68 % 59.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
82 AGS-SSD[la] 67.35 % 81.70 % 60.41 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
83 Point-GNN
This method makes use of Velodyne laser scans.
code 67.28 % 81.17 % 59.67 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
84 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 67.24 % 82.56 % 60.28 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
85 STD code 67.23 % 81.36 % 59.35 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
86 STNet 67.14 % 81.70 % 59.48 % 0.60 s 1 core @ 2.5 Ghz (Python)
87 SVGA-Net 66.82 % 81.25 % 59.37 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
88 PSA-SSD 66.79 % 79.56 % 59.94 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
89 S-AT GCN 66.71 % 78.53 % 60.19 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
90 T_PVRCNN_V2 66.49 % 80.88 % 58.51 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
91 ATT_SSD 66.41 % 80.73 % 60.16 % 0.01 s 1 core @ 2.5 Ghz (Python)
92 ARPNET 66.39 % 82.32 % 58.80 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
93 IA-SSD (multi) code 66.29 % 81.30 % 59.58 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
94 HybridPillars (SSD) 66.23 % 79.60 % 60.48 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
95 T_PVRCNN 66.17 % 79.84 % 59.04 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
96 SWA code 66.08 % 78.96 % 60.18 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
97 GEO_LOC 66.08 % 79.15 % 58.56 % TBD s 1 core @ 2.5 Ghz (C/C++)
98 MGAF-3DSSD code 66.00 % 83.03 % 57.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
99 IA-SSDx 65.88 % 80.28 % 59.70 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
100 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 65.85 % 80.00 % 58.69 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
101 U_SECOND_V4 65.84 % 80.94 % 58.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
102 EOTL code 65.76 % 81.44 % 56.47 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
103 PSA-Det3D 65.51 % 79.21 % 59.06 % 0.1 s GPU @ 2.5 Ghz (Python)
104 TTT_SSD 65.31 % 78.56 % 59.27 % TBD s 1 core @ 2.5 Ghz (C/C++)
105 ZMMPP 65.23 % 77.62 % 58.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
106 VPNet 64.95 % 79.83 % 58.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
107 GS-FPS-LT 64.86 % 79.49 % 58.93 % TBD s 1 core @ 2.5 Ghz (C/C++)
108 PVRCNN_8369 64.56 % 79.60 % 57.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
109 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 64.54 % 79.65 % 57.84 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
110 SRDL 64.52 % 79.64 % 57.90 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
111 SIF 64.13 % 79.32 % 57.38 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
112 GS-FPS code 64.04 % 78.96 % 57.34 % TBD s 1 core @ 2.5 Ghz (C/C++)
113 AFTD 64.03 % 82.99 % 55.93 % 1 s 1 core @ 2.5 Ghz (Python + C/C++)
114 SECOND_7862 63.95 % 78.30 % 57.28 % 1 s 1 core @ 2.5 Ghz (Python)
115 variance_point 63.90 % 78.49 % 56.51 % 0.05 s 1 core @ 2.5 Ghz (Python)
116 TANet code 63.77 % 79.16 % 56.21 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
117 DTE3D 63.10 % 79.79 % 56.94 % 0.15s 1 core @ 2.5 Ghz (C/C++)
118 XView 63.06 % 81.32 % 56.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
119 R^2 R-CNN 62.97 % 82.33 % 56.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
120 EPNet++ 62.94 % 78.57 % 56.62 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
121 PointPillars
This method makes use of Velodyne laser scans.
code 62.73 % 79.90 % 55.58 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
122 CAD
This method uses stereo information.
This method makes use of Velodyne laser scans.
62.05 % 77.71 % 54.56 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
123 3D-BCM 61.65 % 77.90 % 54.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
124 F-PointNet
This method makes use of Velodyne laser scans.
code 61.37 % 77.26 % 53.78 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
125 Voxel-MAE+SECOND code 60.67 % 75.30 % 54.19 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
126 epBRM
This method makes use of Velodyne laser scans.
code 59.79 % 75.13 % 53.36 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
127 BirdNet+
This method makes use of Velodyne laser scans.
code 59.58 % 70.84 % 54.20 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
128 DMF
This method uses stereo information.
57.99 % 71.92 % 51.55 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
129 PointRGBNet 57.59 % 73.09 % 51.78 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
130 AVOD-FPN
This method makes use of Velodyne laser scans.
code 57.12 % 69.39 % 51.09 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
131 PiFeNet code 56.94 % 72.80 % 50.04 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
132 CZY 56.71 % 70.64 % 50.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
133 SCNet
This method makes use of Velodyne laser scans.
56.39 % 73.73 % 49.99 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
134 PFF3D
This method makes use of Velodyne laser scans.
code 55.71 % 72.67 % 49.58 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
135 MLOD
This method makes use of Velodyne laser scans.
code 55.06 % 73.03 % 48.21 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
136 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 52.15 % 72.45 % 46.57 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
137 DSGN++
This method uses stereo information.
code 49.37 % 68.29 % 43.79 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
138 StereoDistill 48.37 % 69.46 % 42.69 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
139 AVOD
This method makes use of Velodyne laser scans.
code 48.15 % 64.11 % 42.37 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
140 BirdNet
This method makes use of Velodyne laser scans.
41.56 % 58.64 % 36.94 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
141 SparsePool code 40.74 % 56.52 % 36.68 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
142 MMLAB LIGA-Stereo
This method uses stereo information.
code 40.60 % 58.95 % 35.27 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
143 TopNet-Retina
This method makes use of Velodyne laser scans.
36.83 % 47.48 % 33.58 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
144 CG-Stereo
This method uses stereo information.
36.25 % 55.33 % 32.17 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
145 Pseudo-Stereo++ 35.75 % 54.06 % 31.17 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
146 SparsePool code 35.24 % 43.55 % 30.15 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
147 PS++ 35.06 % 53.45 % 30.32 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
148 Disp R-CNN (velo)
This method uses stereo information.
code 27.04 % 44.19 % 23.58 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
149 Disp R-CNN
This method uses stereo information.
code 27.04 % 44.19 % 23.58 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
150 Complexer-YOLO
This method makes use of Velodyne laser scans.
25.43 % 32.00 % 22.88 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
151 DSGN
This method uses stereo information.
code 21.04 % 31.23 % 18.93 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
152 OC Stereo
This method uses stereo information.
code 19.23 % 32.47 % 17.11 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
153 TopNet-DecayRate
This method makes use of Velodyne laser scans.
16.00 % 23.02 % 13.24 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
154 RT3D-GMP
This method uses stereo information.
13.92 % 20.59 % 12.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
155 TopNet-UncEst
This method makes use of Velodyne laser scans.
9.18 % 12.31 % 8.14 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
156 ESGN
This method uses stereo information.
9.02 % 15.78 % 7.96 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
157 CMKD code 8.15 % 14.66 % 7.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
158 PS-fld code 7.29 % 12.80 % 6.05 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
159 DD3Dv2 code 7.02 % 10.67 % 5.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
160 Anonymous 6.66 % 11.44 % 5.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
161 MonoLiG 6.49 % 9.48 % 5.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
162 TopNet-HighRes
This method makes use of Velodyne laser scans.
6.48 % 9.99 % 6.76 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
163 BSM3D 6.42 % 10.59 % 5.50 % 0.03 s 1 core @ 2.5 Ghz (Python)
164 DD3D-dequity 6.11 % 9.23 % 5.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
165 MonoPSR code 5.78 % 9.87 % 4.57 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
166 DD3D code 5.69 % 9.20 % 5.20 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
167 BAIR 5.57 % 9.42 % 5.02 % 0.04 s 1 core @ 2.5 Ghz (Python)
168 MonoLSS 5.52 % 8.88 % 4.98 % 0.04 s 1 core @ 2.5 Ghz (Python)
169 CaDDN code 5.38 % 9.67 % 4.75 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
170 Mix-Teaching code 5.36 % 8.56 % 4.62 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
171 Anonymous 5.17 % 7.71 % 4.31 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
172 LPCG-Monoflex code 4.90 % 8.14 % 3.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
173 MonoAD 4.85 % 8.13 % 4.71 % 0.03 s GPU @ 2.5 Ghz (Python)
174 Plane-Constraints 4.79 % 8.67 % 3.90 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
175 DEPT 4.71 % 8.82 % 4.15 % 0.03 s 1 core @ 2.5 Ghz (Python)
176 Shape-Aware 4.60 % 8.00 % 4.50 % 0.05 s 1 core @ 2.5 Ghz (Python)
177 MM3D 4.50 % 8.45 % 3.56 % NA s 1 core @ 2.5 Ghz (C/C++)
178 3DSeMoDLE code 4.47 % 7.51 % 3.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
179 MonoATT_V2 code 4.44 % 6.73 % 3.75 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
180 BCA 4.42 % 6.89 % 3.91 % 0.17 s GPU @ 2.5 Ghz (Python)
181 MonoDDE 4.36 % 6.68 % 3.76 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
182 OccupancyM3D 4.35 % 8.58 % 3.55 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
183 SparseLiDAR_fusion 4.26 % 7.77 % 3.45 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
184 MonoDTR 4.11 % 5.84 % 3.48 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
185 RT3DStereo
This method uses stereo information.
4.10 % 7.03 % 3.88 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
186 HomoLoss(monoflex) code 4.09 % 6.81 % 3.78 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
187 DFR-Net 4.00 % 5.99 % 3.95 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
188 MonoInsight 3.99 % 6.56 % 3.49 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
189 DEVIANT code 3.97 % 6.42 % 3.51 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
190 GUPNet code 3.85 % 6.94 % 3.64 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
191 MoGDE 3.76 % 6.04 % 3.09 % 0.03 s GPU @ 2.5 Ghz (Python)
192 OPA-3D code 3.75 % 6.01 % 3.56 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
193 CIE 3.74 % 6.13 % 3.18 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
194 MonoAug 3.71 % 5.66 % 3.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
195 SGM3D code 3.63 % 7.05 % 3.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
196 DCD code 3.62 % 5.84 % 3.33 % 1 s 1 core @ 2.5 Ghz (C/C++)
197 AMNet 3.61 % 5.54 % 3.19 % 0.03 s GPU @ 1.0 Ghz (Python)
198 Aug3D-RPN 3.33 % 5.44 % 2.82 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
199 monodle code 3.28 % 5.34 % 2.83 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
200 MDSNet 3.22 % 5.99 % 2.62 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
201 MonoXiver 3.17 % 4.66 % 2.69 % 0.03s GPU @ 2.5 Ghz (Python)
202 DDMP-3D 3.14 % 4.92 % 2.44 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
203 MonoA^2 3.04 % 5.41 % 2.67 % na s 1 core @ 2.5 Ghz (C/C++)
204 QD-3DT
This is an online method (no batch processing).
code 3.02 % 5.71 % 2.73 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
205 M3DGAF 3.02 % 5.33 % 2.87 % 0.07 s 1 core @ 2.5 Ghz (Python)
206 MonoPair 2.87 % 4.76 % 2.42 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
207 MonoNeRD 2.80 % 5.24 % 2.55 % na s 1 core @ 2.5 Ghz (C/C++)
208 MonoFlex 2.67 % 4.41 % 2.50 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
209 Mono3DMethod 2.50 % 4.09 % 2.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
210 MonoAug 2.46 % 4.31 % 2.21 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
211 MonoPCNS 2.46 % 4.65 % 2.42 % 0.14 s GPU @ 2.5 Ghz (Python)
212 RefinedMPL 2.42 % 4.23 % 2.14 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
213 MonoRCNN++ code 2.31 % 3.50 % 2.01 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
214 SS3D 1.89 % 3.45 % 1.44 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
215 D4LCN code 1.82 % 2.72 % 1.79 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
216 PGD-FCOS3D code 1.79 % 3.54 % 1.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
217 FMF-occlusion-net 1.65 % 1.91 % 1.75 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
218 MM3DV2 1.61 % 2.42 % 1.59 % NA s 1 core @ 2.5 Ghz (C/C++)
219 CMAN 1.48 % 1.76 % 1.17 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
220 UNM3D 1.40 % 2.52 % 1.45 % na s 1 core @ 2.5 Ghz (C/C++)
221 MonoEF 1.18 % 2.36 % 1.15 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
222 M3D-RPN code 0.81 % 1.25 % 0.78 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
223 MonoRUn code 0.73 % 1.14 % 0.66 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
224 Shift R-CNN (mono) code 0.38 % 0.76 % 0.41 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
225 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Related Datasets

Citation

When using this dataset in your research, we will be happy if you cite us:
@INPROCEEDINGS{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker