Stereo Evaluation 2015


The stereo 2015 / flow 2015 / scene flow 2015 benchmark consists of 200 training scenes and 200 test scenes (4 color images per scene, saved in loss less png format). Compared to the stereo 2012 and flow 2012 benchmarks, it comprises dynamic scenes for which the ground truth has been established in a semi-automatic process. Our evaluation server computes the percentage of bad pixels averaged over all ground truth pixels of all 200 test images. For this benchmark, we consider a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields. More details can be found in Object Scene Flow for Autonomous Vehicles (CVPR 2015).

Our evaluation table ranks all methods according to the number of erroneous pixels. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. Legend:

  • D1: Percentage of stereo disparity outliers in first frame
  • D2: Percentage of stereo disparity outliers in second frame
  • Fl: Percentage of optical flow outliers
  • SF: Percentage of scene flow outliers (=outliers in either D0, D1 or Fl)
  • bg: Percentage of outliers averaged only over background regions
  • fg: Percentage of outliers averaged only over foreground regions
  • all: Percentage of outliers averaged over all ground truth pixels


Note: On 13.03.2017 we have fixed several small errors in the flow (noc+occ) ground truth of the dynamic foreground objects and manually verified all images for correctness by warping them according to the ground truth. As a consequence, all error numbers have decreased slightly. Please download the devkit and the annotations with the improved ground truth for the training set again if you have downloaded the files prior to 13.03.2017 and consider reporting these new number in all future publications. The last leaderboards before these corrections can be found here (optical flow 2015) and here (scene flow 2015). The leaderboards for the KITTI 2015 stereo benchmarks did not change.

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Motion stereo: Method uses epipolar geometry for computing optical flow
  • Additional training data: Use of additional data sources for training (see details)

Evaluation ground truth        Evaluation area

Method Setting Code D1-bg D1-fg D1-all Density Runtime Environment
1 StereoBase code 1.28 % 2.26 % 1.44 % 100.00 % 0.29 s GPU @ 1.5 Ghz (Python)
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
2 NMRF-Stereo-SwinTiny code 1.20 % 2.67 % 1.45 % 100.00 % 0.11 s NVIDIA RTX 3090 (PyTorch)
3 TC-Stereo code 1.29 % 2.33 % 1.46 % 100.00 % 0.09 s NVIDIA RTX 3090 (Pytorch)
J. Zeng, C. Yao, Y. Wu and Y. Jia: Temporally Consistent Stereo Matching. European conference on computer vision 2024.
4 ViTAStereo 1.21 % 2.99 % 1.50 % 100.00 % 0.22 s NVIDIA RTX 4090 (PyTorch)
C. Liu, Q. Chen and R. Fan: Playing to Vision Foundation Model's Strengths in Stereo Matching. arXiv preprint arXiv:2404.06261 2024.
5 LargeStereo 1.31 % 2.54 % 1.51 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
6 AEACV 1.35 % 2.38 % 1.52 % 100.00 % 0.61 s 1 core @ 2.5 Ghz (Python)
7 IGEV-SFFRU 1.35 % 2.37 % 1.52 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
8 MoCha-V2 code 1.35 % 2.40 % 1.52 % 100.00 % 0.33 s NVIDIA Tesla A100 (Pytorch)
9 PANet 1.32 % 2.58 % 1.53 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
10 MoCha-Stereo code 1.36 % 2.43 % 1.53 % 100.00 % 0.34 s NVIDIA Tesla A6000 (PyTorch)
Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu: MoCha-Stereo: Motif Channel Attention Network for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
11 MR_Igev 1.35 % 2.49 % 1.54 % 100.00 % 0.5 s A800
12 DiffuVolume 1.35 % 2.51 % 1.54 % 100.00 % 0.36 s GPU @ 2.5 Ghz (Python)
D. Zheng, X. Wu, Z. Liu, J. Meng and W. Zheng: DiffuVolume: Diffusion Model for Volume based Stereo Matching. arXiv preprint arXiv:2308.15989 2023.
13 GANet+ADL code 1.38 % 2.38 % 1.55 % 100.00 % 0.67s NVIDIA RTX 3090 (PyTorch)
P. Xu, Z. Xiang, C. Qiao, J. Fu and T. Pu: Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
14 Selective-IGEV code 1.33 % 2.61 % 1.55 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
15 MIF-Stereo 1.36 % 2.51 % 1.55 % 100.00 % 0.46 s NVIDIA Tesla A100 (PyTorch)
16 MC-Stereo code 1.36 % 2.51 % 1.55 % 100.00 % 0.40 s GPU @ 2.5 Ghz (Python)
M. Feng, J. Cheng, H. Jia, L. Liu, G. Xu and X. Yang: MC-Stereo: Multi-peak Lookup and Cascade Search Range for Stereo Matching. International Conference on 3D Vision (3DV) 2024.
17 SR Stereo_32_update 1.37 % 2.49 % 1.56 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao and W. Zhao: Stepwise Regression and Pre-trained Edge for Robust Stereo Matching. arXiv preprint arXiv:2406.06953 2024.
18 DR Stereo 1.37 % 2.50 % 1.56 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
W. Xiao: Rectified Iterative Disparity for Stereo Matching. arXiv preprint arXiv:2406.10943 2024.
19 IGEVStereo-DCA 1.40 % 2.39 % 1.57 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
20 HART 1.39 % 2.49 % 1.57 % 100.00 % 0.25 s NVIDIA Tesla A100 (PyTorch)
21 StereoIM 1.42 % 2.31 % 1.57 % 100.00 % 0.94 s NVIDIA Tesla A100 (PyTorch)
22 DMIO 1.34 % 2.74 % 1.57 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
Y. Shi: Rethinking Iterative Stereo Matching from Diffusion Bridge Model Perspective. arXiv preprint arXiv:2404.09051 2024.
23 NMRF-Stereo code 1.28 % 3.07 % 1.57 % 100.00 % 0.09 s NVIDIA RTX 3090 (PyTorch)
T. Guan, C. Wang and Y. Liu: Neural Markov Random Field for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
24 IGEV-ICGNet 1.38 % 2.55 % 1.57 % 100.00 % 0.18 s NVIDIA Tesla A5000 (Pytorch)
25 SPRNet code 1.43 % 2.32 % 1.58 % 100.00 % 3 s 1 core @ 2.5 Ghz (C/C++)
26 yjlig 1.37 % 2.62 % 1.58 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (C/C++)
27 MDA 1.37 % 2.64 % 1.58 % 100.00 % 0.32 s 1 core @ 2.5 Ghz (Python)
28 testnet 1.38 % 2.59 % 1.58 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
29 UGNet 1.34 % 2.77 % 1.58 % 100.00 % 0.2 s GPU @ 3.0 Ghz (Python)
30 igev_refine 1.36 % 2.68 % 1.58 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
31 Any-IGEV 1.43 % 2.35 % 1.58 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
32 bflnet 1.37 % 2.68 % 1.58 % 100.00 % 0.27 s NVIDIA RTX 3090 (PyTorch)
33 OpenStereo-IGEV code 1.44 % 2.31 % 1.59 % 100.00 % 0.18 s NVIDIA-3090
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
34 GSSNet 1.31 % 2.96 % 1.59 % 100.00 % 0.78 s 1 core @ 2.5 Ghz (C/C++)
35 CWA-stereo-v1 1.38 % 2.66 % 1.59 % 100.00 % 0.23 s 2080
36 ICGNet-abl 1.38 % 2.64 % 1.59 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
37 MA-Stereo 1.38 % 2.66 % 1.59 % 100.00 % 0.06 s GPU @ 2.5 Ghz (Python)
38 CroCo-Stereo code 1.38 % 2.65 % 1.59 % 100.00 % 0.93s NVIDIA A100
P. Weinzaepfel, T. Lucas, V. Leroy, Y. Cabon, V. Arora, R. Br\'egier, G. Csurka, L. Antsfeld, B. Chidlovskii and J. Revaud: CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow. ICCV 2023.
39 IGEV-Stereo code 1.38 % 2.67 % 1.59 % 100.00 % 0.18 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023.
40 DN+ACVNet 1.32 % 2.95 % 1.60 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (C/C++)
J. Zhang, L. Huang, X. Bai, J. Zheng, L. Gu and E. Hancock: Exploring the Usage of Pre-trained Features for Stereo Matching. International Journal of Computer Vision 2024.
41 AMSCF-Net 1.32 % 2.98 % 1.60 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
42 SR-Stereo_step15_par 1.36 % 2.79 % 1.60 % 100.00 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
43 EGLCR-Stereo 1.38 % 2.71 % 1.60 % 100.00 % 0.45 s 1 core @ 2.5 Ghz (C/C++)
44 Fine-stereo 1.44 % 2.46 % 1.61 % 100.00 % 0.44 s 1 core @ 2.5 Ghz (C/C++)
45 ACVNet-DCA 1.41 % 2.61 % 1.61 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
46 MVACVNet 1.33 % 3.09 % 1.62 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
47 UPFNet 1.38 % 2.85 % 1.62 % 100.00 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Q. Chen, B. Ge and J. Quan: Unambiguous Pyramid Cost Volumes Fusion for Stereo Matching. IEEE Transactions on Circuits and Systems for Video Technology 2023.
48 yjlig 1.42 % 2.66 % 1.62 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (C/C++)
49 IGEV_MR 1.42 % 2.66 % 1.63 % 100.00 % 0.3 s GPU @ 2.5 Ghz (Python)
50 Selective-RAFT code 1.41 % 2.71 % 1.63 % 100.00 % 0.45 s 1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
51 GeoNet 1.40 % 2.80 % 1.63 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
52 SCVFormer 1.31 % 3.26 % 1.64 % 100.00 % 0.09 s NVIDIA RTX 3090 (PyTorch)
53 ADBM 1.45 % 2.61 % 1.64 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (Python)
54 raft-y 1.44 % 2.67 % 1.65 % 100.00 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
55 M-FUSE
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 1.40 % 2.91 % 1.65 % 100.00 % 1.3 s GPU
L. Mehl, A. Jahedi, J. Schmalfuss and A. Bruhn: M-FUSE: Multi-frame Fusion for Scene Flow Estimation. Proc. Winter Conference on Applications of Computer Vision (WACV) 2023.
56 SF2SE3
This method uses optical flow information.
code 1.40 % 2.91 % 1.65 % 100.00 % 2.7 s GPU @ >3.5 Ghz (Python)
L. Sommer, P. Schröppel and T. Brox: SF2SE3: Clustering Scene Flow into SE (3)-Motions via Proposal and Selection. DAGM German Conference on Pattern Recognition 2022.
57 LEAStereo code 1.40 % 2.91 % 1.65 % 100.00 % 0.30 s GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020.
58 EFLOW
This method uses optical flow information.
1.40 % 2.91 % 1.65 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (Python)
59 SplatFlow3D
This method uses optical flow information.
code 1.40 % 2.91 % 1.65 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
60 LoS 1.42 % 2.81 % 1.65 % 100.00 % 0.19 s 1 core @ 2.5 Ghz (Python)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
61 ACVNet code 1.37 % 3.07 % 1.65 % 100.00 % 0.2 s NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for Accurate and Efficient Stereo Matching. CVPR 2022.
62 Toi Depth 1.35 % 3.20 % 1.65 % 100.00 % 1 s 8 cores @ 3.5 Ghz (Python)
63 MPFV-Stereo 1.50 % 2.44 % 1.66 % 100.00 % 0.23 s 1 core @ 2.5 Ghz (C/C++)
64 DCANet 1.42 % 2.91 % 1.66 % 100.00 % 0.19 s 1 core @ 2.5 Ghz (C/C++)
65 PCWNet code 1.37 % 3.16 % 1.67 % 100.00 % 0.44 s 1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. European Conference on Computer Vision(ECCV) 2022.
66 PCMAnet 1.42 % 2.92 % 1.67 % 100.00 % 0.27 s 1 core @ 2.5 Ghz (C/C++)
67 LaC+GANet code 1.44 % 2.83 % 1.67 % 100.00 % 1.8 s GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
68 Sn-stereo 1.44 % 2.87 % 1.68 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (Python)
69 CREStereo code 1.45 % 2.86 % 1.69 % 100.00 % 0.41 s GPU @ >3.5 Ghz (Python)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation. 2022.
70 PCWNet-SCE 1.39 % 3.23 % 1.69 % 100.00 % 0.44 s 1 core @ 2.5 Ghz (C/C++)
71 DuMa-Net 1.40 % 3.18 % 1.70 % 100.00 % 0.38 s PyTorch GPU
S. Sun, R. liu and S. Sun: Range-free disparity estimation with self- adaptive dual-matching. IET Computer Vision .
72 EGA-Stereo code 1.42 % 3.12 % 1.70 % 100.00 % 0.41 s 1 core @ 2.5 Ghz (Python)
73 Any-RAFT 1.44 % 3.04 % 1.70 % 100.00 % 0.34 s GPU @ Nvidia A40 (Python)
74 DANet-Stereo 1.41 % 3.26 % 1.72 % 100.00 % 2.7 s GPU @ 2.5 Ghz (Python)
75 AEACV (RAFT-based) 1.52 % 2.72 % 1.72 % 100.00 % 0.41 s 1 core @ 2.5 Ghz (C/C++)
76 DKT-IGEV 1.46 % 3.05 % 1.72 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
J. Zhang, J. Li, L. Huang, X. Yu, L. Gu, J. Zheng and X. Bai: Robust Synthetic-to-Real Transfer for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
77 GINet+ANE filter 1.45 % 3.07 % 1.72 % 100.00 % 0.11 s 4 cores @ 2.5 Ghz (Python)
78 GPDF-Net 1.41 % 3.33 % 1.73 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
79 Patchmatch Stereo++ code 1.55 % 2.71 % 1.74 % 100.00 % 0.2 s
W. Ren, Q. Liao, Z. Shao, X. Lin, X. Yue, Y. Zhang and Z. Lu: Patchmatch Stereo++: Patchmatch Binocular Stereo with Continuous Disparity Optimization. Proceedings of the 31st ACM International Conference on Multimedia 2023.
80 OnestageStereo code 1.56 % 2.62 % 1.74 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
81 CSPN 1.51 % 2.88 % 1.74 % 100.00 % 1.0 s GPU @ 2.5 Ghz (Python)
X. Cheng, P. Wang and R. Yang: Learning Depth with Convolutional Spatial Propagation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence(T-PAMI) 2019.
82 NeXt-Stereo 1.51 % 2.93 % 1.75 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (Python)
83 4D-IteraStereo 1.60 % 2.48 % 1.75 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
84 ProNet 1.48 % 3.11 % 1.75 % 100.00 % 0.33 s GPU @ 2.5 Ghz (Python)
85 Fine-stereo 1.52 % 2.98 % 1.76 % 100.00 % 0.32 s 2 cores @ 2.5 Ghz (Python)
86 LaC+GwcNet code 1.43 % 3.44 % 1.77 % 100.00 % 0. 65 s GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
87 GMStereo code 1.49 % 3.14 % 1.77 % 100.00 % 0.17 s GPU (Python)
H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao and A. Geiger: Unifying Flow, Stereo and Depth Estimation. arXiv preprint arXiv:2211.05783 2022.
88 UNI code 1.51 % 3.06 % 1.77 % 100.00 % 2 s 1 core @ 2.5 Ghz (Python)
89 D2Stereo 1.58 % 2.70 % 1.77 % 100.00 % 0.25 s GPU @ 2.5 Ghz (Python)
90 NLCA-Net v2 code 1.41 % 3.56 % 1.77 % 100.00 % 0.67 s GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in Stereo Matching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS .
91 GANet+DSMNet 1.48 % 3.23 % 1.77 % 100.00 % 2.0 s GPU @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching Networks. Europe Conference on Computer Vision (ECCV) 2020.
92 ClearDepth 1.58 % 2.74 % 1.77 % 100.00 % 0.47 s GPU @ 2.5 Ghz (Python)
93 ff-stereo 1.62 % 2.56 % 1.78 % 100.00 % 0.15 s GPU @ 3.0 Ghz (Python)
94 DVANet 1.47 % 3.32 % 1.78 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
95 PFSMNet code 1.54 % 3.02 % 1.79 % 100.00 % 0.31 s 1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2021.
96 FSCN 1.57 % 2.91 % 1.79 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
97 RT-IGEV 1.48 % 3.37 % 1.79 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
98 DIGEV 1.66 % 2.47 % 1.80 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
99 SUW-Stereo 1.47 % 3.45 % 1.80 % 100.00 % 1.8 s 1 core @ 2.5 Ghz (C/C++)
H. Ren, A. Raj, M. El-Khamy and J. Lee: SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep Learning for Monocular Depth Estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 2020.
100 FGDS-Net 1.47 % 3.53 % 1.81 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
101 TemporalStereo
This method makes use of multiple (>2) views.
code 1.61 % 2.78 % 1.81 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
Y. Zhang, M. Poggi and S. Mattoccia: TemporalStereo: Efficient Spatial-Temporal Stereo Matching Network. IROS 2023.
102 Binary TTC
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 1.0 Ghz (Python)
A. Badki, O. Gallo, J. Kautz and P. Sen: Binary TTC: A Temporal Geofence for Autonomous Navigation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
103 ScaleRAFT
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
104 MonoFusion
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.7 s GPU @ 2.5 Ghz (Python)
105 CamLiRAFT
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning Optical Flow and Scene Flow with Bidirectional Camera-LiDAR Fusion. TPAMI 2023.
106 Scale-flow-ADF58
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
107 GAOSF
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
108 GS58_ScaleRES
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
109 Scale-flow
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 0.8 s GPU @ 2.5 Ghz (Python)
H. Ling, Q. Sun, Z. Ren, Y. Liu, H. Wang and Z. Wang: Scale-flow: Estimating 3D Motion from Video. Proceedings of the 30th ACM International Conference on Multimedia 2022.
110 RAFT-3D++
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (Python)
111 GS_ScaleFlow
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
112 ScaleRAFTRBO
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
113 OAMaskFlow
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
114 CamLiRAFT-NR
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning Optical Flow and Scene Flow with Bidirectional Camera-LiDAR Fusion. arXiv preprint arXiv:2303.12017 2023.
115 RAFT-3D
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Teed and J. Deng: RAFT-3D: Scene Flow using Rigid-Motion Embeddings. arXiv preprint arXiv:2012.00726 2020.
116 ADF_RESScaleFlow
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
117 GS58_Scale
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
118 GANet-deep code 1.48 % 3.46 % 1.81 % 100.00 % 1.8 s GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
119 Self-scale-flow-nerf
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
120 CamLiFlow
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 1.2 s GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu, W. Li and L. Chen: CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation. CVPR 2022.
121 Stereo expansion
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Upgrading Optical Flow to 3D Scene Flow through Optical Expansion. CVPR 2020.
122 Urban-3D 1.54 % 3.16 % 1.81 % 100.00 % 0.14 s GPU @ 2.5 Ghz (Python)
123 AIO-Stereo code 1.63 % 2.72 % 1.82 % 100.00 % 0.23 s 1 core @ 2.5 Ghz (C/C++)
124 Sn-Stereo 1.66 % 2.63 % 1.82 % 100.00 % 0.35 s GPU @ 1.5 Ghz (Python)
125 LightStereo-L* code 1.60 % 2.92 % 1.82 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need for Efficient 2D Cost Aggregation. arXiv preprint arXiv:2406.19833 2024.
126 TBFE-Net 1.52 % 3.36 % 1.82 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
127 OptStereo 1.50 % 3.43 % 1.82 % 100.00 % 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
128 LoS_RVC 1.58 % 3.08 % 1.83 % 100.00 % 0.19 s 1 core @ 2.5 Ghz (C/C++)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
129 NLCA-Net-3 code 1.45 % 3.78 % 1.83 % 100.00 % 0.44 s >8 cores @ 3.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
130 GOAT 1.71 % 2.51 % 1.84 % 100.00 % 0.29 s 1 core @ 2.5 Ghz (Python)
131 AMNet 1.53 % 3.43 % 1.84 % 100.00 % 0.9 s GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo Disparity Estimation Networks. 2019.
132 HCR 1.51 % 3.51 % 1.85 % 100.00 % 0.19 s GPU @ 2.5 Ghz (Python)
Y. Tuming Yuan: Hourglass cascaded recurrent stereo matching network. Image and Vision computing 2024.
133 UCFNet_RVC code 1.57 % 3.33 % 1.86 % 100.00 % 0.21 s GPU @ 2.5 Ghz (Python)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
134 MAF-Stereo code 1.62 % 3.15 % 1.87 % 100.00 % 0.07 s GPU @ 2.5 Ghz (Python)
135 EAC-Stereo code 1.52 % 3.68 % 1.88 % 100.00 % 0.38 s 1 core @ 2.5 Ghz (Python)
136 CFNet code 1.54 % 3.56 % 1.88 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
137 non-parametric 1.56 % 3.49 % 1.88 % 100.00 % 0.34 s GPU @ 2.5 Ghz (Python)
138 RigidMask+ISF
This method uses optical flow information.
code 1.53 % 3.65 % 1.89 % 100.00 % 3.3 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Learning to Segment Rigid Motions from Two Frames. CVPR 2021.
139 DCVSMNet code 1.60 % 3.33 % 1.89 % 100.00 % 0.07 s GPU @ 2.5 Ghz (Python)
M. Tahmasebi, S. Huq, K. Meehan and M. McAfee: DCVSMNet: Double Cost Volume Stereo Matching Network. 2024.
140 AcfNet code 1.51 % 3.80 % 1.89 % 100.00 % 0.48 s GPU @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching. AAAI 2020.
141 DualNet* 1.63 % 3.36 % 1.92 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
142 NLCA_NET_v2_RVC 1.51 % 3.97 % 1.92 % 100.00 % 0.67 s GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
143 CDN code 1.66 % 3.20 % 1.92 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
144 Abc-Net 1.47 % 4.20 % 1.92 % 100.00 % 0.83 s 4 core @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local attention network for stereo matching. The Visual Computer 2021.
145 UAIStereo 1.66 % 3.26 % 1.92 % 100.00 % 0.06 s GPU @ 3.5 Ghz (Python)
146 LightStereo-L code 1.78 % 2.64 % 1.93 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need for Efficient 2D Cost Aggregation. arXiv preprint arXiv:2406.19833 2024.
147 GANet-15 code 1.55 % 3.82 % 1.93 % 100.00 % 0.36 s GPU (Pytorch)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
148 PCVNet 1.68 % 3.19 % 1.93 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
J. Zeng, C. Yao, L. Yu, Y. Wu and Y. Jia: Parameterized Cost Volume for Stereo Matching. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
149 MDCTest code 1.65 % 3.37 % 1.94 % 100.00 % MDCT s 1 core @ 2.5 Ghz (Python)
150 FusionStereo 1.60 % 3.67 % 1.94 % 100.00 % 16 s 1 core @ 2.5 Ghz (Python)
151 CAL-Net 1.59 % 3.76 % 1.95 % 100.00 % 0.44 s 2 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for Stereo Matching. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021 2021.
152 NLCA-Net code 1.53 % 4.09 % 1.96 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
153 CFNet_RVC code 1.65 % 3.53 % 1.96 % 100.00 % 0.22 s GPU @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
154 PGNet 1.64 % 3.60 % 1.96 % 100.00 % 0.7 s 1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo matching. Neurocomputing 2021.
155 HITNet code 1.74 % 3.20 % 1.98 % 100.00 % 0.02 s GPU @ 2.5 Ghz (C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021.
156 SGNet 1.63 % 3.76 % 1.99 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo Matching. Proceedings of the Asian Conference on Computer Vision (ACCV) 2020.
157 GEMA-Stereo 1.66 % 3.65 % 1.99 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
158 ICGNet-gwc 1.62 % 3.90 % 2.00 % 100.00 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
159 CSN code 1.59 % 4.03 % 2.00 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python)
X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan and P. Tan: Cascade cost volume for high-resolution multi-view stereo and stereo matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
160 CoEx code 1.74 % 3.41 % 2.02 % 100.00 % 0.027 s GPU RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
161 HD^3-Stereo code 1.70 % 3.63 % 2.02 % 100.00 % 0.14 s NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition for Match Density Estimation. CVPR 2019.
162 SCV-Stereo code 1.67 % 3.78 % 2.02 % 100.00 % 0.08 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo matching from a sparse cost volume. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
163 AANet+ code 1.65 % 3.96 % 2.03 % 100.00 % 0.06 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
164 LightStereo-M code 1.81 % 3.22 % 2.04 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need for Efficient 2D Cost Aggregation. arXiv preprint arXiv:2406.19833 2024.
165 CFNet_SFC 1.75 % 3.53 % 2.05 % 100.00 % 0.12 s GPU @ 2.5 Ghz (Python)
166 LR-PSMNet code 1.65 % 4.13 % 2.06 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
W. Chuah, R. Tennakoon, R. Hoseinnezhad, A. Bab-Hadiashar and D. Suter: Adjusting Bias in Long Range Stereo Matching: A semantics guided approach. 2020.
167 iRaftStereo_RVC 1.88 % 3.03 % 2.07 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
H. Jiang, R. Xu and W. Jiang: An Improved RaftStereo Trained with A Mixed Dataset for the Robust Vision Challenge 2022. arXiv preprint arXiv:2210.12785 2022.
168 PSM + SMD-Nets code 1.69 % 4.01 % 2.08 % 100.00 % 0.41 s 1 core @ 2.5 Ghz (Python + C/C++)
F. Tosi, Y. Liao, C. Schmitt and A. Geiger: SMD-Nets: Stereo Mixture Density Networks. Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
169 MDCNet 1.76 % 3.68 % 2.08 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
W. Chen, X. Jia, M. Wu and Z. Liang: Multi-Dimensional Cooperative Network for Stereo Matching. IEEE Robotics and Automation Letters 2022.
170 EdgeStereo-V2 1.84 % 3.30 % 2.08 % 100.00 % 0.32s Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task learning network for stereo matching and edge detection. International Journal of Computer Vision (IJCV) 2019.
171 3D-MSNet / MSNet3D code 1.75 % 3.87 % 2.10 % 100.00 % 1.5s Python,1080Ti
F. Shamsafar, S. Woerz, R. Rahim and A. Zell: MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2022.
172 GwcNet-g code 1.74 % 3.93 % 2.11 % 100.00 % 0.32 s GPU @ 2.0 Ghz (Python + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network. CVPR 2019.
173 SSPCVNet 1.75 % 3.89 % 2.11 % 100.00 % 0.9 s 1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost Volumes. The IEEE International Conference on Computer Vision (ICCV) 2019.
174 WSMCnet code 1.72 % 4.19 % 2.13 % 100.00 % 0.39s Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network. Acta Optica Sinica 2019.
175 HSM-1.8x code 1.80 % 3.85 % 2.14 % 100.00 % 0.14 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
176 SG 1.75 % 4.13 % 2.15 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
177 DeepPruner (best) code 1.87 % 3.56 % 2.15 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch. ICCV 2019.
178 Stereo-fusion-SJTU 1.87 % 3.61 % 2.16 % 100.00 % 0.7 s Nvidia GTX Titan Xp
X. Song, X. Zhao, H. Hu and L. Fang: EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching. Asian Conference on Computer Vision 2018.
179 MCVFNet 1.82 % 3.94 % 2.18 % 100.00 % 0.029 s RTX 2080TI
180 AutoDispNet-CSS code 1.94 % 3.37 % 2.18 % 100.00 % 0.9 s 1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity Estimation with AutoML. The IEEE International Conference on Computer Vision (ICCV) 2019.
181 BGNet+ 1.81 % 4.09 % 2.19 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
182 Bi3D code 1.95 % 3.48 % 2.21 % 100.00 % 0.48 s GPU @ 1.5 Ghz (Python)
A. Badki, A. Troccoli, K. Kim, J. Kautz, P. Sen and O. Gallo: Bi3D: Stereo Depth Estimation via Binary Classifications. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
183 dh 1.86 % 4.01 % 2.22 % 100.00 % 1.9 s 1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
184 AGDNet 1.77 % 4.44 % 2.22 % 100.00 % 0.08 s 2 cores @ 2.5 Ghz (Python)
185 SENSE
This method uses optical flow information.
code 2.07 % 3.01 % 2.22 % 100.00 % 0.32s GPU, GTX 2080Ti
H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz: SENSE: A Shared Encoder Network for Scene-Flow Estimation. The IEEE International Conference on Computer Vision (ICCV) 2019.
186 DFGA-Net 1.88 % 3.96 % 2.23 % 100.00 % 0.09 s NVIDIA RTX 3090 (PyTorch)
187 SegStereo code 1.88 % 4.07 % 2.25 % 100.00 % 0.6 s Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic Information for Disparity Estimation. ECCV 2018.
188 DTF_SENSE
This method uses optical flow information.
This method makes use of multiple (>2) views.
2.08 % 3.13 % 2.25 % 100.00 % 0.76 s 1 core @ 2.5 Ghz (C/C++)
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
189 OpenStereo-PSMNet code 1.80 % 4.58 % 2.26 % 100.00 % 0.21 s GPU RTX3090
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
190 MCV-MFC 1.95 % 3.84 % 2.27 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Guo, Y. Feng, W. Chen, L. Qiao, L. Zhou, J. Zhang and H. Liu: Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE transactions on pattern analysis and machine intelligence 2019.
191 HSM-1.5x code 1.95 % 3.93 % 2.28 % 100.00 % 0.085 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
192 LightStereo-S code 2.00 % 3.80 % 2.30 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need for Efficient 2D Cost Aggregation. arXiv preprint arXiv:2406.19833 2024.
193 Separable Convs code 1.90 % 4.36 % 2.31 % 100.00 % 2 s 1 core @ 2.5 Ghz (Python)
R. Rahim, F. Shamsafar and A. Zell: Separable Convolutions for Optimizing 3D Stereo Networks. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
194 Separable Convs code 1.90 % 4.36 % 2.31 % 100.00 % 2 s 1 core @ 2.5 Ghz (Python)
R. Rahim, F. Shamsafar and A. Zell: Separable Convolutions for Optimizing 3D Stereo Networks. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
195 CFP-Net code 1.90 % 4.39 % 2.31 % 100.00 % 0.9 s 8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching. arXiv preprint 2019.
196 PSMNet code 1.86 % 4.62 % 2.32 % 100.00 % 0.41 s Nvidia GTX Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network. arXiv preprint arXiv:1803.08669 2018.
197 GANetREF_RVC code 1.88 % 4.58 % 2.33 % 100.00 % 1.62 s GPU @ >3.5 Ghz (Python + C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End- to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
198 TriStereoNet code 1.86 % 4.77 % 2.35 % 100.00 % 0.5 s Python,1080Ti
F. Shamsafar and A. Zell: TriStereoNet: A Trinocular Framework for Multi-baseline Disparity Estimation. arXiv preprint arXiv:2111.12502 2021.
199 MABNet_origin code 1.89 % 5.02 % 2.41 % 100.00 % 0.38 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
200 GhostStereoNet 1.91 % 5.08 % 2.44 % 100.00 % 0.04 s GPU @ 3.0 Ghz (Python)
201 ERSCNet 2.11 % 4.46 % 2.50 % 100.00 % 0.28 s GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
202 BGNet 2.07 % 4.74 % 2.51 % 100.00 % 0.02 s GPU @ >3.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
203 UberATG-DRISF
This method uses optical flow information.
2.16 % 4.49 % 2.55 % 100.00 % 0.75 s CPU+GPU @ 2.5 Ghz (Python)
W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Rigid Instance Scene Flow. CVPR 2019.
204 AANet code 1.99 % 5.39 % 2.55 % 100.00 % 0.062 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
205 GASN-FA 2.25 % 4.13 % 2.56 % 100.00 % 0.05 s NVIDIA RTX 3090 (PyTorch)
206 PDSNet 2.29 % 4.05 % 2.58 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (Python)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching. Proceedings of the international conference on Neural Information Processing Systems (NIPS) 2018.
207 DeepPruner (fast) code 2.32 % 3.91 % 2.59 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch. ICCV 2019.
208 FADNet code 2.50 % 3.10 % 2.60 % 100.00 % 0.05 s Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network for Disparity Estimation. arXiv preprint arXiv:2003.10758 2020.
209 LI-ACVNet 2.20 % 4.59 % 2.60 % 100.00 % 0.14 s GPU @ 2.5 Ghz (Python)
210 MMStereo 2.25 % 4.38 % 2.61 % 100.00 % 0.04 s Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for Robotic Manipulation in Homes. .
211 SCV code 2.22 % 4.53 % 2.61 % 100.00 % 0.36 s Nvidia GTX 1080 Ti
C. Lu, H. Uchiyama, D. Thomas, A. Shimada and R. Taniguchi: Sparse Cost Volume for Efficient Stereo Matching. Remote Sensing 2018.
212 WaveletStereo: 2.24 % 4.62 % 2.63 % 100.00 % 0.27 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients for stereo matching. arXiv: Computer Vision and Pattern Recognition 2019.
213 RLStereo code 2.09 % 5.38 % 2.64 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Anonymous: RLStereo: Real-time Stereo Matching based on Reinforcement Learning. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
214 AANet_RVC 2.23 % 4.89 % 2.67 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
215 CRL code 2.48 % 3.59 % 2.67 % 100.00 % 0.47 s Nvidia GTX 1080
J. Pang, W. Sun, J. Ren, C. Yang and Q. Yan: Cascade residual learning: A two-stage convolutional neural network for stereo matching. ICCV Workshop on Geometry Meets Deep Learning 2017.
216 CKDNet_1.0 2.26 % 5.02 % 2.72 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
217 SG_small 2.29 % 4.95 % 2.73 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
218 2D-MSNet / MSNet2D code 2.49 % 4.53 % 2.83 % 100.00 % 0.4s Python,1080Ti
F. Shamsafar, S. Woerz, R. Rahim and A. Zell: MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2022.
219 GC-NET 2.21 % 6.16 % 2.87 % 100.00 % 0.9 s Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. Proceedings of the International Conference on Computer Vision (ICCV) 2017.
220 DualNet 2.46 % 5.25 % 2.92 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
221 PVStereo 2.29 % 6.50 % 2.99 % 100.00 % 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
222 LRCR 2.55 % 5.42 % 3.03 % 100.00 % 49.2 s Nvidia GTX Titan X
Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng and W. Liu: Left-Right Comparative Recurrent Model for Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
223 CKDNet_0.5 2.35 % 6.70 % 3.07 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
224 Fast DS-CS code 2.83 % 4.31 % 3.08 % 100.00 % 0.02 s GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures. WACV 2020 (to appear).
225 AdaStereo 2.59 % 5.55 % 3.08 % 100.00 % 0.41 s GPU @ 2.5 Ghz (Python)
X. Song, G. Yang, X. Zhu, H. Zhou, Z. Wang and J. Shi: AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching. CVPR 2021.
X. Song, G. Yang, X. Zhu, H. Zhou, Y. Ma, Z. Wang and J. Shi: AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach. IJCV 2021.
226 RecResNet code 2.46 % 6.30 % 3.10 % 100.00 % 0.3 s GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN Architecture for Disparity Map Enhancement. In International Conference on 3D Vision (3DV) 2018.
227 NVStereoNet code 2.62 % 5.69 % 3.13 % 100.00 % 0.6 s NVIDIA Titan Xp
N. Smolyanskiy, A. Kamenev and S. Birchfield: On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach. arXiv preprint arXiv:1803.09719 2018.
228 DRR 2.58 % 6.04 % 3.16 % 100.00 % 0.4 s Nvidia GTX Titan X
S. Gidaris and N. Komodakis: Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling. arXiv preprint arXiv:1612.04770 2016.
229 DWARF
This method uses optical flow information.
3.20 % 3.94 % 3.33 % 100.00 % 0.14s - 1.43s TitanXP - JetsonTX2
F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia: Learning end-to-end scene flow by distilling single tasks knowledge. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) 2020.
230 SsSMnet 2.70 % 6.92 % 3.40 % 100.00 % 0.8 s P100
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo Matching with Self-Improving Ability. arXiv:1709.00930 2017.
231 L-ResMatch code 2.72 % 6.95 % 3.42 % 100.00 % 48 s 1 core @ 2.5 Ghz (C/C++)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway Networks and Reflective Loss. arXiv preprint arxiv:1701.00165 2016.
232 Displets v2 code 3.00 % 5.56 % 3.43 % 100.00 % 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
233 LBPS code 2.85 % 6.35 % 3.44 % 100.00 % 0.39 s GPU @ 2.5 Ghz (C/C++)
P. Knöbelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer and T. Pock: Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
234 ACOSF
This method uses optical flow information.
2.79 % 7.56 % 3.58 % 100.00 % 5 min 1 core @ 3.0 Ghz (Matlab + C/C++)
C. Li, H. Ma and Q. Liao: Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model. International Conference on Pattern Recognition (ICPR) 2020.
235 CNNF+SGM 2.78 % 7.69 % 3.60 % 100.00 % 71 s TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New Features for Effective Dense Matching. IEEE Transactions on Image Processing 2018.
236 PBCP 2.58 % 8.74 % 3.61 % 100.00 % 68 s Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.
237 SGM-Net 2.66 % 8.64 % 3.66 % 100.00 % 67 s Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural Networks. CVPR 2017.
238 CKDNet_0.3 2.84 % 7.77 % 3.66 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
239 SMFormer 2.79 % 8.17 % 3.68 % 100.00 % 0.36 s GPU @ 2.5 Ghz (Python)
240 DSMNet-synthetic 3.11 % 6.72 % 3.71 % 100.00 % 1.6 s 4 cores @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching Networks. Europe Conference on Computer Vision (ECCV) 2020.
241 CAS++ 3.10 % 6.89 % 3.73 % 99.98 % .1 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
242 HSM-Net_RVC code 2.74 % 8.73 % 3.74 % 100.00 % 0.97 s GPU @ 2.5 Ghz (Python)
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical deep stereo matching on high-resolution images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
243 DualNet-one stage 2.89 % 8.73 % 3.86 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
244 MABNet_tiny code 3.04 % 8.07 % 3.88 % 100.00 % 0.11 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
245 MC-CNN-acrt code 2.89 % 8.88 % 3.89 % 100.00 % 67 s Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. Submitted to JMLR .
246 FD-Fusion code 3.22 % 7.44 % 3.92 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations. International Conference on 3D Vision (3DV) 2019.
247 ADCPNet 3.27 % 7.58 % 3.98 % 100.00 % 0.007 s GPU @ 2.5 Ghz (Python)
H. Dai, X. Zhang, Y. Zhao, H. Sun and N. Zheng: Adaptive Disparity Candidates Prediction Network for Efficient Real-Time Stereo Matching. IEEE Transactions on Circuits and Systems for Video Technology 2022.
248 Reversing-PSMNet code 3.13 % 8.70 % 4.06 % 100.00 % 0.41 s 1 core @ 1.5 Ghz (Python)
F. Aleotti, F. Tosi, L. Zhang, M. Poggi and S. Mattoccia: Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation. European Conference on Computer Vision (ECCV) 2020.
249 DGS 3.21 % 8.62 % 4.11 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python + C/C++)
W. Chuah, R. Tennakoon, A. Bab-Hadiashar and D. Suter: Achieving Domain Robustness in Stereo Matching Networks by Removing Shortcut Learning. arXiv preprint arXiv:2106.08486 2021.
250 PRSM
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 3.02 % 10.52 % 4.27 % 99.99 % 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015.
251 DispNetC code 4.32 % 4.41 % 4.34 % 100.00 % 0.06 s Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.
252 SGM-Forest 3.11 % 10.74 % 4.38 % 99.92 % 6 seconds 1 core @ 3.0 Ghz (Python/C/C++)
J. Schönberger, S. Sinha and M. Pollefeys: Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching. European Conference on Computer Vision (ECCV) 2018.
253 SSF
This method uses optical flow information.
3.55 % 8.75 % 4.42 % 100.00 % 5 min 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Ren, D. Sun, J. Kautz and E. Sudderth: Cascaded Scene Flow Prediction using Semantic Segmentation. International Conference on 3D Vision (3DV) 2017.
254 SMV 3.45 % 9.32 % 4.43 % 100.00 % 0.5 s GPU @ 2.5 Ghz (C/C++)
W. Yuan, Y. Zhang, B. Wu, S. Zhu, P. Tan, M. Wang and Q. Chen: Stereo Matching by Self- supervision of Multiscopic Vision. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
255 ISF
This method uses optical flow information.
4.12 % 6.17 % 4.46 % 100.00 % 10 min 1 core @ 3 Ghz (C/C++)
A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. International Conference on Computer Vision (ICCV) 2017.
256 Content-CNN 3.73 % 8.58 % 4.54 % 100.00 % 1 s Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching. CVPR 2016.
257 SSMNet 3.93 % 7.85 % 4.58 % 100.00 % 0.01 s GPU @ 2.0 Ghz (Python)
258 MADnet code 3.75 % 9.20 % 4.66 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia and L. Di Stefano: Real-Time self-adaptive deep stereo. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
259 Self-SuperFlow-ft
This method uses optical flow information.
3.81 % 8.92 % 4.66 % 100.00 % 0.13 s GTX 1080 Ti
K. Bendig, R. Schuster and D. Stricker: Self-SuperFlow: Self-supervised Scene Flow Prediction in Stereo Sequences. International Conference on Image Processing (ICIP) 2022.
260 DTF_PWOC
This method uses optical flow information.
This method makes use of multiple (>2) views.
3.91 % 8.57 % 4.68 % 100.00 % 0.38 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
261 P3SNet+ code 4.15 % 7.59 % 4.72 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
262 SAFT-Stereo 3.44 % 11.48 % 4.78 % 100.00 % 0.007 s NVIDIA GeForce RTX 4090
263 VN 4.29 % 7.65 % 4.85 % 100.00 % 0.5 s GPU @ 3.5 Ghz (Python + C/C++)
P. Knöbelreiter and T. Pock: Learned Collaborative Stereo Refinement. German Conference on Pattern Recognition (GCPR) 2019.
264 Anonymous
This method uses optical flow information.
4.07 % 9.41 % 4.96 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
265 MC-CNN-WS code 3.78 % 10.93 % 4.97 % 100.00 % 1.35 s 1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep metrics for stereo reconstruction. ICCV 2017.
266 3DMST 3.36 % 13.03 % 4.97 % 100.00 % 93 s 1 core @ >3.5 Ghz (C/C++)
X. Lincheng Li and L. Zhang: 3D Cost Aggregation with Multiple Minimum Spanning Trees for Stereo Matching. submitted to Applied Optics .
267 CBMV_ROB code 3.55 % 12.09 % 4.97 % 100.00 % 250 s 6 core @ 3.0 Ghz (Python + C/C++)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
268 OSF+TC
This method uses optical flow information.
This method makes use of multiple (>2) views.
4.11 % 9.64 % 5.03 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Neoral and J. Šochman: Object Scene Flow with Temporal Consistency. 22nd Computer Vision Winter Workshop (CVWW) 2017.
269 P3SNet code 4.40 % 8.28 % 5.05 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
270 CBMV code 4.17 % 9.53 % 5.06 % 100.00 % 250 s 6 cores @ 3.0 Ghz (Python,C/C++,CUDA Nvidia TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. 2018.
271 PWOC-3D
This method uses optical flow information.
code 4.19 % 9.82 % 5.13 % 100.00 % 0.13 s GTX 1080 Ti
R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker: PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation. Intelligent Vehicles Symposium (IV) 2019.
272 StereoVAE 4.25 % 10.18 % 5.23 % 100.00 % 0.03 s Jetson AGX Xavier GPU
Q. Chang, X. Li, X. Xu, X. Liu, Y. Li and J. Miyazaki: StereoVAE: A lightweight stereo matching system using embedded GPUs. International Conference on Robotics and Automation 2023.
273 OSF 2018
This method uses optical flow information.
code 4.11 % 11.12 % 5.28 % 100.00 % 390 s 1 core @ 2.5 Ghz (Matlab + C/C++)
M. Menze, C. Heipke and A. Geiger: Object Scene Flow. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018.
274 SPS-St code 3.84 % 12.67 % 5.31 % 100.00 % 2 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
275 MDP
This method uses stereo information.
4.19 % 11.25 % 5.36 % 100.00 % 11.4 s 4 cores @ 3.5 Ghz (Matlab + C/C++)
A. Li, D. Chen, Y. Liu and Z. Yuan: Coordinating Multiple Disparity Proposals for Stereo Computation. IEEE Conference on Computer Vision and Pattern Recognition 2016.
276 UFD-PRiME
This method uses stereo information.
This method uses optical flow information.
3.66 % 15.05 % 5.55 % 100.00 % 0.55 s GPU @ 2.5 Ghz (Python)
277 SFF++
This method uses optical flow information.
This method makes use of multiple (>2) views.
4.27 % 12.38 % 5.62 % 100.00 % 78 s 4 cores @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker: SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation. International Journal of Computer Vision (IJCV) 2019.
278 TinyStereo 4.99 % 9.33 % 5.71 % 100.00 % 0.02 s Jetson AGX Xavier GPU
Q. Chang, X. Xu, A. Zha, M. Er, Y. Sun and Y. Li: TinyStereo: A Tiny Coarse-to-Fine Framework for Vision-Based Depth Estimation on Embedded GPUs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2024.
279 OSF
This method uses optical flow information.
code 4.54 % 12.03 % 5.79 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
280 StereoNet_unsup_DMB 4.68 % 12.06 % 5.91 % 100.00 % 0.02 min GPU @ 2.5 Ghz (Python)
281 CFNet_unsup_DMB 4.64 % 12.33 % 5.92 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
282 pSGM 4.84 % 11.64 % 5.97 % 100.00 % 7.77 s 4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal Matching. IEEE Signal Processing Letters 2018.
283 CSF
This method uses optical flow information.
4.57 % 13.04 % 5.98 % 99.99 % 80 s 1 core @ 2.5 Ghz (C/C++)
Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert: A Continuous Optimization Approach for Efficient and Accurate Scene Flow. European Conf. on Computer Vision (ECCV) 2016.
284 MBM 4.69 % 13.05 % 6.08 % 100.00 % 0.13 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo. IV 2015.
285 CRD-Fusion code 4.59 % 13.68 % 6.11 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion. Conference on Robots and Vision 2022.
286 PR-Sceneflow
This method uses optical flow information.
code 4.74 % 13.74 % 6.24 % 100.00 % 150 s 4 core @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. ICCV 2013.
287 DispSegNet 4.20 % 16.97 % 6.33 % 100.00 % 0.9 s GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End- to-End Learning of Disparity Estimation From Stereo Imagery. IEEE Robotics and Automation Letters 2019.
288 DeepCostAggr code 5.34 % 11.35 % 6.34 % 99.98 % 0.03 s GPU @ 2.5 Ghz (C/C++)
A. Kuzmin, D. Mikushin and V. Lempitsky: End-to-end Learning of Cost-Volume Aggregation for Real-time Dense Stereo. 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) 2017.
289 SGM_RVC 5.06 % 13.00 % 6.38 % 100.00 % 0.11 s Nvidia GTX 980
H. Hirschm\"uller: Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008.
290 UHP 5.00 % 13.70 % 6.45 % 100.00 % 0.02 s GPU @ 2.5 Ghz (C/C++)
R. Yang, X. Li, R. Cong and J. Du: Unsupervised Hierarchical Iterative Tile Refinement Network with 3D Planar Segmentation Loss. IEEE Robotics and Automation Letters 2024.
291 SceneFFields
This method uses optical flow information.
5.12 % 13.83 % 6.57 % 100.00 % 65 s 4 cores @ 3.7 Ghz (C/C++)
R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker: SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences. IEEE Winter Conference on Applications of Computer Vision (WACV) 2018.
292 SPS+FF++
This method uses optical flow information.
code 5.47 % 12.19 % 6.59 % 100.00 % 36 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller and D. Stricker: Dense Scene Flow from Stereo Disparity and Optical Flow. ACM Computer Science in Cars Symposium (CSCS) 2018.
293 Flow2Stereo 5.01 % 14.62 % 6.61 % 99.97 % 0.05 s GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching. CVPR 2020.
294 spsm-gan 5.42 % 12.84 % 6.65 % 100.00 % 0.8 s GPU @ 2.5 Ghz (Python)
295 PASMnet_DMB 5.24 % 13.96 % 6.69 % 100.00 % 10 s 1 core @ 2.5 Ghz (Python)
296 FSF+MS
This method uses optical flow information.
This method makes use of the epipolar geometry.
This method makes use of multiple (>2) views.
5.72 % 11.84 % 6.74 % 100.00 % 2.7 s 4 cores @ 3.5 Ghz (C/C++)
T. Taniai, S. Sinha and Y. Sato: Fast Multi-frame Stereo Scene Flow with Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) 2017.
297 AABM 4.88 % 16.07 % 6.74 % 100.00 % 0.08 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces. IV 2013.
298 SGM+C+NL
This method uses optical flow information.
code 5.15 % 15.29 % 6.84 % 100.00 % 4.5 min 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
D. Sun, S. Roth and M. Black: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them. IJCV 2013.
299 SGM+LDOF
This method uses optical flow information.
code 5.15 % 15.29 % 6.84 % 100.00 % 86 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
T. Brox and J. Malik: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. PAMI 2011.
300 SGM+SF
This method uses optical flow information.
5.15 % 15.29 % 6.84 % 100.00 % 45 min 16 core @ 3.2 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
M. Hornacek, A. Fitzgibbon and C. Rother: SphereFlow: 6 DoF Scene Flow from RGB-D Pairs. CVPR 2014.
301 SNCC 5.36 % 16.05 % 7.14 % 100.00 % 0.08 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation. DICTA 2010.
302 Permutation Stereo 5.53 % 15.47 % 7.18 % 99.93 % 30 s GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self- Supervised Stereo Matching Problem. 2022 19th Conference on Robots and Vision (CRV) 2022.
303 PASMnet code 5.41 % 16.36 % 7.23 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
L. Wang, Y. Guo, Y. Wang, Z. Liang, Z. Lin, J. Yang and W. An: Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence(T-PAMI) 2020.
304 AAFS 6.27 % 13.95 % 7.54 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices. Proceedings of the Asian Conference on Computer Vision 2020.
305 Z2ZNCC code 6.55 % 13.19 % 7.65 % 99.93 % 0.035s Jetson TX2 GPU @ 1.0 Ghz (CUDA)
Q. Chang, A. Zha, W. Wang, X. Liu, M. Onishi, L. Lei, M. Er and T. Maruyama: Efficient stereo matching on embedded GPUs with zero-means cross correlation. Journal of Systems Architecture 2022.
306 ReS2tAC
This method uses stereo information.
6.27 % 16.07 % 7.90 % 86.03 % 0.06 s Jetson AGX GPU @ 1.5 Ghz (C/C++)
B. Ruf, J. Mohrs, M. Weinmann, S. Hinz and J. Beyerer: ReS2tAC - UAV-Borne Real-Time SGM Stereo Optimized for Embedded ARM and CUDA Devices. Sensors 2021.
307 Self-SuperFlow
This method uses optical flow information.
5.78 % 19.76 % 8.11 % 100.00 % 0.13 s GTX 1080 Ti
K. Bendig, R. Schuster and D. Stricker: Self-SuperFlow: Self-supervised Scene Flow Prediction in Stereo Sequences. International Conference on Image Processing (ICIP) 2022.
308 CSCT+SGM+MF 6.91 % 14.87 % 8.24 % 100.00 % 0.0064 s Nvidia GTX Titan X @ 1.0 Ghz (CUDA)
D. Hernandez-Juarez, A. Chacon, A. Espinosa, D. Vazquez, J. Moure and A. Lopez: Embedded real-time stereo estimation via Semi-Global Matching on the GPU. Procedia Computer Science 2016.
309 MBMGPU 6.61 % 16.70 % 8.29 % 100.00 % 0.0019 s GPU @ 1.0 Ghz (CUDA)
Q. Chang and T. Maruyama: Real-Time Stereo Vision System: A Multi-Block Matching on GPU. IEEE Access 2018.
310 MeshStereo code 5.82 % 21.21 % 8.38 % 100.00 % 87 s 1 core @ 2.5 Ghz (C/C++)
C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao and Y. Rui: MeshStereo: A Global Stereo Model With Mesh Alignment Regularization for View Interpolation. The IEEE International Conference on Computer Vision (ICCV) 2015.
311 PCOF + ACTF
This method uses optical flow information.
6.31 % 19.24 % 8.46 % 100.00 % 0.08 s GPU @ 2.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
312 PCOF-LDOF
This method uses optical flow information.
6.31 % 19.24 % 8.46 % 100.00 % 50 s 1 core @ 3.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
313 OASM-Net 6.89 % 19.42 % 8.98 % 100.00 % 0.73 s GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning. Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
314 StereoNet_unsup 7.31 % 17.77 % 9.05 % 99.96 % 0.02 s GPU @ 2.5 Ghz (Python)
315 CFNet_Sup 7.22 % 18.54 % 9.11 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
316 SGM-DMB 7.96 % 16.68 % 9.41 % 99.98 % 10 s GPU @ 2.5 Ghz (Python)
317 ELAS_RVC code 7.38 % 21.15 % 9.67 % 100.00 % 0.19 s 4 cores @ >3.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
318 ELAS code 7.86 % 19.04 % 9.72 % 92.35 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
319 REAF code 8.43 % 18.51 % 10.11 % 100.00 % 1.1 s 1 core @ 2.5 Ghz (C/C++)
C. Cigla: Recursive Edge-Aware Filters for Stereo Matching. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2015.
320 iGF
This method makes use of multiple (>2) views.
8.64 % 21.85 % 10.84 % 100.00 % 220 s 1 core @ 3.0 Ghz (C/C++)
R. Hamzah, H. Ibrahim and A. Hassan: Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. Journal of Visual Communication and Image Representation 2016.
321 OCV-SGBM code 8.92 % 20.59 % 10.86 % 90.41 % 1.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching and mutual information. PAMI 2008.
322 SGM code 8.95 % 20.55 % 10.88 % 99.77 % 10 s 1 core @ 2.5 Ghz (Python)
323 TW-SMNet 11.92 % 12.16 % 11.96 % 100.00 % 0.7 s GPU @ 2.5 Ghz (Python)
M. El-Khamy, H. Ren, X. Du and J. Lee: TW-SMNet: Deep Multitask Learning of Tele-Wide Stereo Matching. arXiv:1906.04463 2019.
324 SDM 9.41 % 24.75 % 11.96 % 62.56 % 1 min 1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis in complex scenes. BMVC 2003.
325 SGM&FlowFie+
This method uses optical flow information.
11.93 % 20.57 % 13.37 % 81.24 % 29 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: Combining Stereo Disparity and Optical Flow for Basic Scene Flow. Commercial Vehicle Technology Symposium (CVTS) 2018.
326 GCSF
This method uses optical flow information.
code 11.64 % 27.11 % 14.21 % 100.00 % 2.4 s 1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by growing Correspondence Seeds. CVPR 2011.
327 3DG-DVO
This method uses optical flow information.
12.94 % 26.10 % 15.13 % 100.00 % 0.04 s GPU @ 1.5 Ghz (Python)
328 MT-TW-SMNet 15.47 % 16.25 % 15.60 % 100.00 % 0.4s GPU @ 2.5 Ghz (Python)
M. El-Khamy, X. Du, H. Ren and J. Lee: Multi-Task Learning of Depth from Tele and Wide Stereo Image Pairs. Proceedings of the IEEE Conference on Image Processing 2019.
329 Mono-SF
This method uses optical flow information.
14.21 % 26.94 % 16.32 % 100.00 % 41 s 1 core @ 3.5 Ghz (Matlab + C/C++)
F. Brickwedde, S. Abraham and R. Mester: Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes. Proc. of International Conference on Computer Vision (ICCV) 2019.
330 CostFilter code 17.53 % 22.88 % 18.42 % 100.00 % 4 min 1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. CVPR 2011.
331 MonoComb
This method uses optical flow information.
17.89 % 21.16 % 18.44 % 100.00 % 0.58 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow. ACM Computer Science in Cars Symposium (CSCS) 2020.
332 DWBSF
This method uses optical flow information.
19.61 % 22.69 % 20.12 % 100.00 % 7 min 4 cores @ 3.5 Ghz (C/C++)
C. Richardt, H. Kim, L. Valgaerts and C. Theobalt: Dense Wide-Baseline Scene Flow From Two Handheld Video Cameras. 3DV 2016.
333 RAFT-MSF
This method uses optical flow information.
18.10 % 36.82 % 21.21 % 100.00 % 0.18 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
334 monoResMatch code 22.10 % 19.81 % 21.72 % 100.00 % 0.16 s Titan X GPU
F. Tosi, F. Aleotti, M. Poggi and S. Mattoccia: Learning monocular depth estimation infusing traditional stereo knowledge. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
335 Self-Mono-SF-ft
This method uses optical flow information.
code 20.72 % 29.41 % 22.16 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
336 Multi-Mono-SF-ft
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 21.60 % 28.22 % 22.71 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame Monocular Scene Flow. CVPR 2021.
337 OCV-BM code 24.29 % 30.13 % 25.27 % 58.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library. Dr. Dobb's Journal of Software Tools 2000.
338 VSF
This method uses optical flow information.
code 27.31 % 21.72 % 26.38 % 100.00 % 125 min 1 core @ 2.5 Ghz (C/C++)
F. Huguet and F. Devernay: A Variational Method for Scene Flow Estimation from Stereo Sequences. ICCV 2007.
339 SED code 25.01 % 40.43 % 27.58 % 4.02 % 0.68 s 1 core @ 2.0 Ghz (C/C++)
D. Pe\~{n}a and A. Sutherland: Disparity Estimation by Simultaneous Edge Drawing. Computer Vision -- ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II 2017.
340 Multi-Mono-SF
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 27.48 % 47.30 % 30.78 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame Monocular Scene Flow. CVPR 2021.
341 mts1 code 28.03 % 46.55 % 31.11 % 2.52 % 0.18 s 4 cores @ 3.5 Ghz (C/C++)
R. Brandt, N. Strisciuglio, N. Petkov and M. Wilkinson: Efficient binocular stereo correspondence matching with 1-D Max-Trees. Pattern Recognition Letters 2020.
342 Self-Mono-SF
This method uses optical flow information.
code 31.22 % 48.04 % 34.02 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
343 MST code 45.83 % 38.22 % 44.57 % 100.00 % 7 s 1 core @ 2.5 Ghz (Matlab + C/C++)
Q. Yang: A Non-Local Cost Aggregation Method for Stereo Matching. CVPR 2012.
344 Stereo-RSSF
This method uses optical flow information.
code 56.60 % 73.05 % 59.34 % 9.26 % 2.5 s 8 core @ 2.5 Ghz (Matlab)
E. Salehi, A. Aghagolzadeh and R. Hosseini: Stereo-RSSF: stereo robust sparse scene-flow estimation. The Visual Computer 2023.
Table as LaTeX | Only published Methods




Related Datasets

  • HCI/Bosch Robust Vision Challenge: Optical flow and stereo vision challenge on high resolution imagery recorded at a high frame rate under diverse weather conditions (e.g., sunny, cloudy, rainy). The Robert Bosch AG provides a prize for the best performing method.
  • Image Sequence Analysis Test Site (EISATS): Synthetic image sequences with ground truth information provided by UoA and Daimler AG. Some of the images come with 3D range sensor information.
  • Middlebury Stereo Evaluation: The classic stereo evaluation benchmark, featuring four test images in version 2 of the benchmark, with very accurate ground truth from a structured light system. 38 image pairs are provided in total.
  • Daimler Stereo Dataset: Stereo bad weather highway scenes with partial ground truth for freespace
  • Make3D Range Image Data: Images with small-resolution ground truth used to learn and evaluate depth from single monocular images.
  • Lubor Ladicky's Stereo Dataset: Stereo Images with manually labeled ground truth based on polygonal areas.
  • Middlebury Optical Flow Evaluation: The classic optical flow evaluation benchmark, featuring eight test images, with very accurate ground truth from a shape from UV light pattern system. 24 image pairs are provided in total.

Citation

When using this dataset in your research, we will be happy if you cite us:
@article{Menze2018JPRS,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Object Scene Flow},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing (JPRS)},
  year = {2018}
}
@inproceedings{Menze2015ISA,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Joint 3D Estimation of Vehicles and Scene Flow},
  booktitle = {ISPRS Workshop on Image Sequence Analysis (ISA)},
  year = {2015}
}



eXTReMe Tracker