\begin{tabular}{c | c | c | c | c | c | c}
{\bf Method} & {\bf Setting} & {\bf Moderate} & {\bf Easy} & {\bf Hard} & {\bf Runtime} & {\bf Environment}\\ \hline
BiProDet & & 84.44 \% & 90.16 \% & 77.71 \% & 0.1 s / GPU & \\
TED & & 84.36 \% & 92.60 \% & 78.43 \% & 0.1 s / 1 core & H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object
Detection for Autonomous Driving. AAAI 2023.\\
CasA++ & & 84.26 \% & 92.38 \% & 78.42 \% & 0.1 s / 1 core & H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D
Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and
Remote Sensing 2022.\\
LoGoNet & & 84.00 \% & 90.14 \% & 77.97 \% & 0.1 s / 1 core & X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object
Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.\\
3D HA Net & & 83.91 \% & 92.35 \% & 77.71 \% & 0.1 s / 1 core & Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary
Network for Object Detection. IEEE Transactions on Geoscience and
Remote Sensing 2023.\\
CasA & & 83.21 \% & 92.86 \% & 77.12 \% & 0.1 s / 1 core & H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D
Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and
Remote Sensing 2022.\\
HMFI & & 81.76 \% & 89.35 \% & 74.93 \% & 0.1 s / 1 core & X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and
Interaction for 3D Object Detection. ECCV 2022.\\
IMLIDAR(base) & & 81.72 \% & 90.91 \% & 75.19 \% & 0.1 s / 1 core & \\
RangeIoUDet & la & 81.67 \% & 90.43 \% & 74.90 \% & 0.02 s / GPU & Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time
3D
Object Detector Optimized by Intersection Over
Union. CVPR 2021.\\
PA-RCNN & & 81.41 \% & 90.11 \% & 72.90 \% & 0.05 s / 1 core & \\
USVLab BSAODet & & 81.36 \% & 86.82 \% & 74.40 \% & 0.04 s / 1 core & W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective
for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and
Systems for Video Technology 2023.\\
PV-PMRTNet & & 81.12 \% & 89.07 \% & 74.38 \% & 0.1 s / 1 core & \\
CAT-Det & & 80.70 \% & 87.94 \% & 73.86 \% & 0.3 s / GPU & Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer
for Multi-modal 3D Object Detection. CVPR 2022.\\
Semantical PVRCNN & & 80.60 \% & 88.70 \% & 73.21 \% & 0.07 s / 1 core & \\
SPG\_mini & la & 80.58 \% & 87.77 \% & 74.86 \% & 0.09 s / GPU & Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for
3D Object Detection via Semantic Point
Generation. Proceedings of the IEEE conference on
computer vision and pattern recognition (ICCV) 2021.\\
DSA-PV-RCNN & la & 80.57 \% & 88.65 \% & 74.81 \% & 0.08 s / 1 core & P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.\\
SGDA3D & & 80.49 \% & 87.77 \% & 72.51 \% & 0.07 s / 1 core & \\
PIPC-3Ddet & & 80.49 \% & 89.69 \% & 73.73 \% & 0.05 s / 1 core & \\
BtcDet & la & 80.46 \% & 88.41 \% & 74.59 \% & 0.09 s / GPU & Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded
Shapes for 3D Object Detection. Proceedings of the AAAI Conference on
Artificial Intelligence 2022.\\
Rnet & & 80.44 \% & 87.56 \% & 73.55 \% & 0.1 s / 1 core & \\
MMLab PV-RCNN & la & 80.42 \% & 86.62 \% & 73.64 \% & 0.08 s / 1 core & S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set
Abstraction for
3D Object Detection. CVPR 2020.\\
EQ-PVRCNN & & 80.37 \% & 89.07 \% & 74.20 \% & 0.2 s / GPU & Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud
Understanding. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2022.\\
Anonymous & & 80.24 \% & 90.30 \% & 71.50 \% & 0.1 s / 1 core & \\
SPT & & 80.21 \% & 88.89 \% & 73.79 \% & 0.1 s / GPU & \\
POP-RCNN & & 80.20 \% & 90.41 \% & 71.46 \% & 0.1 s / 1 core & \\
Under Blind Review#2 & & 79.94 \% & 87.22 \% & 73.58 \% & 0.1 s / 1 core & \\
Anonymous & la & 79.92 \% & 87.70 \% & 73.16 \% & 0.05 s / GPU & \\
PDV & & 79.84 \% & 88.76 \% & 73.04 \% & 0.1 s / 1 core & J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.\\
CZY\_PPF\_Net2 & & 79.75 \% & 87.34 \% & 73.05 \% & 0.1 s / 1 core & \\
PEF & & 79.70 \% & 91.33 \% & 72.64 \% & N/A s / 1 core & \\
IKT3D & la & 79.38 \% & 87.43 \% & 72.87 \% & 0.05 s / 1 core & \\
M3DeTR & & 79.29 \% & 87.38 \% & 72.46 \% & n/a s / GPU & T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi-
scale, Mutual-relation 3D Object Detection with
Transformers. 2021.\\
VPNetv2 & & 79.22 \% & 89.12 \% & 70.60 \% & 0.1 s / 1 core & \\
CZY\_PPF\_Net & & 79.03 \% & 88.09 \% & 73.83 \% & 0.1 s / 1 core & \\
HotSpotNet & & 78.81 \% & 86.06 \% & 71.74 \% & 0.04 s / 1 core & Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference
on Computer Vision (ECCV) 2020.\\
HybridPillars & & 78.81 \% & 87.30 \% & 72.25 \% & 0.05 s / 1 core & \\
IA-SSD (single) & & 78.71 \% & 88.99 \% & 72.03 \% & 0.013 s / 1 core & Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly
Efficient Point-based Detectors for 3D LiDAR Point
Clouds. CVPR 2022.\\
DGT-Det3D & & 78.69 \% & 87.54 \% & 71.86 \% & 0.02 s / 1 core & \\
Anomynous & & 78.51 \% & 90.18 \% & 71.38 \% & 0.09 s / 1 core & \\
3ONet & & 78.51 \% & 90.18 \% & 71.38 \% & 0.09 s / 1 core & \\
PA-Det3D & & 78.31 \% & 87.56 \% & 71.82 \% & 0.06 s / 1 core & \\
MMF & & 78.29 \% & 89.26 \% & 71.70 \% & 1 s / 1 core & \\
MMLab-PartA^2 & la & 78.29 \% & 88.90 \% & 71.19 \% & 0.08 s / GPU & S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from
Point Cloud with Part-aware and Part-aggregation
Network. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2020.\\
CZY\_3917 & & 78.11 \% & 86.51 \% & 71.65 \% & 0.1 s / 1 core & \\
F-ConvNet & la & 78.05 \% & 86.75 \% & 68.12 \% & 0.47 s / GPU & Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to
Aggregate Local Point-Wise Features for Amodal 3D
Object Detection. IROS 2019.\\
PointPainting & la & 78.04 \% & 87.70 \% & 69.27 \% & 0.4 s / GPU & S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object
Detection. CVPR 2020.\\
HPV-RCNN & & 77.94 \% & 89.26 \% & 71.06 \% & 0.08 s / 1 core & \\
U\_RVRCNN\_V2\_1 & & 77.90 \% & 86.33 \% & 71.12 \% & 0.1 s / 1 core & \\
MPFusion & & 77.90 \% & 90.42 \% & 72.35 \% & 0.1 s / 1 core & \\
FEMV-RCNN & & 77.83 \% & 87.12 \% & 70.66 \% & 0.03 s / 1 core & \\
DFAF3D & & 77.74 \% & 87.20 \% & 70.77 \% & 0.05 s / 1 core & Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free
single-stage 3D detector for point clouds. Image and Vision Computing 2023.\\
DCAN-Second & & 77.63 \% & 90.34 \% & 71.98 \% & 0.05 s / 1 core & \\
IA-SSDx & & 77.58 \% & 88.94 \% & 70.80 \% & 0.01 s / 1 core & \\
casx & & 77.58 \% & 88.94 \% & 70.80 \% & 0.01 s / 1 core & \\
VGA-RCNN & & 77.50 \% & 85.80 \% & 70.89 \% & 0.07 s / 1 core & \\
PVTr & & 77.49 \% & 89.71 \% & 70.58 \% & 0.1 s / 1 core & \\
IMOU\_ALG & & 77.46 \% & 86.30 \% & 69.79 \% & 0.01 s / 1 core & \\
RPF3D & & 77.20 \% & 89.45 \% & 70.36 \% & 0.1 s / 1 core & \\
IPS & & 77.19 \% & 89.29 \% & 70.72 \% & TBD s / 1 core & \\
GraphAlign & & 77.15 \% & 84.72 \% & 72.34 \% & 0.03 s / GPU & \\
CZY & & 77.13 \% & 88.80 \% & 70.33 \% & 0.1 s / 1 core & \\
WGVRF & & 77.01 \% & 85.88 \% & 70.70 \% & 0.1 s / 1 core & \\
Anonymous & & 76.98 \% & 88.37 \% & 70.15 \% & 0.1 s / 1 core & \\
P2V-RCNN & & 76.93 \% & 88.40 \% & 70.35 \% & 0.1 s / 2 cores & J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature
Learning for 3D Object Detection from Point
Clouds. IEEE Access 2021.\\
LightCPC & & 76.92 \% & 87.79 \% & 70.75 \% & 0.02 s / 1 core & \\
EOTL & & 76.88 \% & 85.62 \% & 66.04 \% & TBD s / 1 core & \\
PSA-Det3D & & 76.87 \% & 86.83 \% & 70.34 \% & 0.1 s / GPU & \\
MVMM & & 76.85 \% & 84.87 \% & 72.10 \% & 0.04 s / GPU & \\
RRC & & 76.81 \% & 86.81 \% & 66.59 \% & 3.6 s / GPU & J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using
Recurrent Rolling Convolution. CVPR 2017.\\
U\_PVRCNN\_V2 & & 76.72 \% & 86.37 \% & 70.09 \% & 0.1 s / 1 core & \\
GS-FPS-LT & & 76.50 \% & 86.71 \% & 70.53 \% & TBD s / 1 core & \\
MVENet & & 76.37 \% & 86.56 \% & 69.69 \% & 0.02 s / 1 core & \\
NV-RCNN & & 76.31 \% & 88.34 \% & 69.70 \% & 0.1 s / 1 core & \\
ACF-Net & & 76.15 \% & 86.92 \% & 71.33 \% & n/a s / 1 core & \\
GS & & 75.78 \% & 86.48 \% & 70.99 \% & TBD s / 1 core & \\
F3D & & 75.75 \% & 88.38 \% & 69.02 \% & 0.01 s / 1 core & \\
BASA & & 75.75 \% & 86.41 \% & 70.26 \% & 1s / 1 core & \\
DA-Net & & 75.64 \% & 86.64 \% & 71.06 \% & 0.1 s / 1 core & \\
DTSSD & & 75.55 \% & 87.11 \% & 69.43 \% & 0.1 s / 1 core & \\
ACDet & & 75.41 \% & 88.54 \% & 69.45 \% & 0.05 s / 1 core & J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion
for LiDAR-based 3D Object Detection. 3DV 2022.\\
B2PE & & 75.35 \% & 86.18 \% & 70.09 \% & 0.02 s / 1 core & \\
MS-CNN & & 75.30 \% & 84.88 \% & 65.27 \% & 0.4 s / GPU & Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep
Convolutional Neural Network for Fast Object
Detection. ECCV 2016.\\
LGSL & & 75.29 \% & 84.01 \% & 70.60 \% & 0.1 s / GPU & \\
STNet & & 75.22 \% & 87.47 \% & 68.28 \% & 0.60 s / 1 core & \\
TuSimple & & 75.22 \% & 83.68 \% & 65.22 \% & 1.6 s / GPU & F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector
with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2016.K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision
and pattern recognition 2016.\\
PSA-SSD & & 75.15 \% & 86.11 \% & 70.01 \% & 0.01 s / 1 core & \\
SVGA-Net & & 75.14 \% & 85.13 \% & 68.14 \% & 0.03s / 1 core & Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention
Network for 3D Object Detection from Point
Clouds. AAAI 2022.\\
Point-GNN & la & 75.08 \% & 85.75 \% & 68.69 \% & 0.6 s / GPU & W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D
Object Detection in a Point Cloud. CVPR 2020.\\
Fast-CLOCs & & 75.07 \% & 89.73 \% & 67.93 \% & 0.1 s / GPU & S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR
Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer
Vision (WACV) 2022.\\
DTSSD & & 74.81 \% & 86.18 \% & 68.26 \% & 0.1 s / 1 core & \\
OA-TSSD & & 74.79 \% & 87.90 \% & 68.52 \% & 20 s / 8 cores & \\
Deep3DBox & & 74.78 \% & 84.36 \% & 64.05 \% & 1.5 s / GPU & A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep
Learning and Geometry. CVPR 2017.\\
ATT\_SSD & & 74.75 \% & 87.02 \% & 69.63 \% & 0.01 s / 1 core & \\
ACCF & & 74.65 \% & 87.37 \% & 69.59 \% & 0.02 s / 1 core & \\
SWA & & 74.63 \% & 86.25 \% & 69.93 \% & 0.18 s / 1 core & \\
GEO\_LOC & & 74.60 \% & 86.95 \% & 69.67 \% & TBD s / 1 core & \\
VPFNet & & 74.52 \% & 82.60 \% & 66.04 \% & 0.2 s / 1 core & C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network
for Multi-class 3D Object Detection. 2021.\\
RealSynthesis-SECOND & & 74.37 \% & 87.41 \% & 66.91 \% & 0.05 s / 1 core & \\
TTT\_SSD & & 74.32 \% & 86.17 \% & 68.32 \% & TBD s / 1 core & \\
4cls-center-hirige & & 74.15 \% & 83.63 \% & 64.69 \% & 0.01 s / 1 core & \\
3DSSD & & 74.12 \% & 87.09 \% & 67.67 \% & 0.04 s / GPU & Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object
Detector. CVPR 2020.\\
SDP+RPN & & 73.85 \% & 82.59 \% & 64.87 \% & 0.4 s / GPU & F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN
Object Detector with Scale Dependent Pooling and
Cascaded Rejection Classifiers. Proceedings of the IEEE International
Conference on Computer Vision and Pattern
Recognition 2016.S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection
with region proposal networks. Advances in Neural Information Processing
Systems 2015.\\
U\_SECOND\_V4 & & 73.81 \% & 86.35 \% & 67.26 \% & 0.1 s / 1 core & \\
AGS-SSD[la] & & 73.72 \% & 85.27 \% & 67.95 \% & 0.04 s / 1 core & \\
PVRCNN\_8369 & & 73.68 \% & 85.41 \% & 66.98 \% & 0.1 s / 1 core & \\
SRDL & & 73.68 \% & 85.44 \% & 66.94 \% & 0.05 s / 1 core & ERROR: Wrong syntax in BIBTEX file.\\
DVFENet & & 73.66 \% & 85.45 \% & 67.10 \% & 0.05 s / 1 core & Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature
Extraction Network for 3D Object Detection. Neurocomputing 2021.\\
Faraway-Frustum & la & 73.63 \% & 85.43 \% & 66.64 \% & 0.1 s / GPU & H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.\\
sensekitti & & 73.48 \% & 82.90 \% & 64.03 \% & 4.5 s / GPU & B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.\\
MMLab-PointRCNN & la & 73.42 \% & 86.21 \% & 66.45 \% & 0.1 s / GPU & S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation
and
detection from point cloud. Proceedings of the IEEE Conference
on
Computer Vision and Pattern Recognition 2019.\\
HybridPillars (SSD) & & 73.24 \% & 82.36 \% & 67.38 \% & 0.02 s / 1 core & \\
SIF & & 73.19 \% & 85.18 \% & 65.41 \% & 0.1 s / 1 core & P. An: SIF. Submitted to CVIU 2021.\\
F-PointNet & la & 73.16 \% & 86.86 \% & 65.21 \% & 0.17 s / GPU & C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.\\
FromVoxelToPoint & & 73.16 \% & 87.07 \% & 65.98 \% & 0.1 s / 1 core & J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D
Object Detection for Point Cloud with Voxel-to-
Point Decoder. MM '21: The 29th ACM
International Conference on Multimedia (ACM MM) 2021.\\
XView & & 73.16 \% & 88.02 \% & 65.37 \% & 0.1 s / 1 core & L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D
Object Detector. 2021.\\
VPNet & & 72.88 \% & 85.66 \% & 66.16 \% & 0.1 s / 1 core & \\
T\_PVRCNN\_V2 & & 72.81 \% & 86.48 \% & 65.32 \% & 0.1 s / 1 core & \\
S-AT GCN & & 72.81 \% & 82.79 \% & 66.72 \% & 0.02 s / GPU & L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention
Graph Convolution Network based Feature
Enhancement for 3D Object
Detection. CoRR 2021.\\
T\_PVRCNN & & 72.79 \% & 85.61 \% & 66.40 \% & 0.1 s / 1 core & \\
H^23D R-CNN & & 72.73 \% & 85.50 \% & 65.81 \% & 0.03 s / 1 core & J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated
Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems
for Video Technology 2021.\\
ZMMPP & & 72.65 \% & 82.01 \% & 66.11 \% & 0.1 s / 1 core & \\
SECOND\_7862 & & 72.51 \% & 84.05 \% & 66.14 \% & 1 s / 1 core & \\
GS-FPS & & 72.17 \% & 84.60 \% & 66.52 \% & TBD s / 1 core & \\
Voxel-MAE+SECOND & & 72.09 \% & 82.55 \% & 65.45 \% & 0.05 s / 1 core & \\
MonoPSR & & 72.08 \% & 82.06 \% & 62.43 \% & 0.2 s / GPU & J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging
Accurate Proposals and Shape Reconstruction. CVPR 2019.\\
ARPNET & & 71.95 \% & 84.96 \% & 65.21 \% & 0.08 s / GPU & Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network
for 3D object detection. Science China Information Sciences 2019.\\
SubCNN & & 71.72 \% & 79.36 \% & 62.74 \% & 2 s / GPU & Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural
Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of
Computer Vision (WACV) 2017.\\
STD & & 71.63 \% & 83.99 \% & 64.92 \% & 0.08 s / GPU & Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for
Point Cloud. ICCV 2019.\\
single-src-hirige & & 70.46 \% & 80.95 \% & 60.99 \% & 0.01 s / GPU & \\
IA-SSD (multi) & & 70.46 \% & 84.98 \% & 65.55 \% & 0.014 s / 1 core & Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly
Efficient Point-based Detectors for 3D LiDAR Point
Clouds. CVPR 2022.\\
MGAF-3DSSD & & 70.41 \% & 86.42 \% & 63.26 \% & 0.1 s / 1 core & J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage
Detector with Mask-Guided Attention for Point
Cloud. MM '21: The 29th ACM
International Conference on Multimedia (ACM MM) 2021.\\
AB3DMOT & la on & 70.18 \% & 82.86 \% & 63.55 \% & 0.0047s / 1 core & X. Weng and K. Kitani: A Baseline for 3D Multi-Object
Tracking. arXiv:1907.03961 2019.\\
fuf & & 69.67 \% & 84.99 \% & 62.91 \% & 10 s / 1 core & \\
PointPillars & la & 68.98 \% & 83.97 \% & 62.17 \% & 16 ms / & A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from
Point Clouds. CVPR 2019.\\
Vote3Deep & la & 68.82 \% & 78.41 \% & 62.50 \% & 1.5 s / 4 cores & M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point
Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.\\
3DOP & st & 68.71 \% & 80.52 \% & 61.07 \% & 3s / GPU & X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class
Detection. NIPS 2015.\\
Pose-RCNN & & 68.40 \% & 81.53 \% & 59.43 \% & 2 s / >8 cores & M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and
pose estimation using 3D object proposals. Intelligent Transportation Systems
(ITSC), 2016 IEEE 19th International Conference
on 2016.\\
EPNet++ & & 68.30 \% & 80.27 \% & 63.00 \% & 0.1 s / GPU & Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for
Multi-Modal 3D Object Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2022.\\
DTE3D & & 68.23 \% & 82.63 \% & 61.99 \% & 0.15s / 1 core & \\
TANet & & 68.20 \% & 82.24 \% & 62.13 \% & 0.035s / GPU & Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from
Point Clouds with Triple Attention. AAAI 2020.\\
IVA & & 67.57 \% & 78.48 \% & 58.83 \% & 0.4 s / GPU & Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional
Regression Network for Pedestrian Detection. ACCV 2016.S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object
detection with region proposal networks. Advances in neural information
processing systems 2015.\\
MSAW & & 67.22 \% & 82.14 \% & 62.13 \% & 0.42 s / 2 cores & \\
DeepStereoOP & & 67.22 \% & 79.35 \% & 58.60 \% & 3.4 s / GPU & C. Pham and J. Jeon: Robust Object Proposals Re-ranking for
Object Detection in Autonomous Driving Using
Convolutional Neural Networks. Signal Processing: Image
Communiation 2017.\\
Cube R-CNN & & 66.98 \% & 81.99 \% & 58.56 \% & 0.05 s / GPU & G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and
Model for 3D Object Detection in the Wild. CVPR 2023.\\
CAD & st la & 66.75 \% & 80.00 \% & 59.59 \% & 0.1 s / 1 core & \\
APDM & & 66.65 \% & 80.16 \% & 60.51 \% & 0.7 s / 1 core & \\
FII-CenterNet & & 66.54 \% & 79.04 \% & 57.76 \% & 0.09 s / GPU & S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector
With Foreground Attention for Traffic Object
Detection. IEEE Transactions on Vehicular
Technology 2021.\\
epBRM & la & 66.51 \% & 79.65 \% & 60.31 \% & 0.10 s / 1 core & K. Shin: Improving a Quality of 3D Object Detection
by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.\\
DD3D-dequity & & 66.43 \% & 81.25 \% & 58.92 \% & 0.1 s / 1 core & \\
PFF3D & la & 66.25 \% & 79.44 \% & 60.11 \% & 0.05 s / GPU & L. Wen and K. Jo: Fast and
Accurate 3D Object Detection for Lidar-Camera-Based
Autonomous Vehicles Using One Shared Voxel-Based
Backbone. IEEE Access 2021.\\
DD3D & & 65.98 \% & 81.13 \% & 58.86 \% & n/a s / 1 core & D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D
Object detection?. IEEE/CVF International Conference on
Computer Vision (ICCV) .\\
PointRGBNet & & 65.98 \% & 79.87 \% & 59.75 \% & 0.08 s / 4 cores & P. Xie Desheng: Real-time Detection of 3D Objects
Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.\\
BirdNet+ & la & 65.40 \% & 72.96 \% & 60.23 \% & 0.11 s / & A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection
in LiDAR through a Sparsity-Invariant Bird’s Eye
View. IEEE Access 2021.\\
Mono3D & & 65.15 \% & 77.19 \% & 57.88 \% & 4.2 s / GPU & X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous
Driving. CVPR 2016.\\
MLAFF & & 64.41 \% & 80.28 \% & 58.52 \% & 0.39 s / 2 cores & \\
DMF & st & 63.39 \% & 74.69 \% & 56.96 \% & 0.2 s / 1 core & X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for
Transportation Detection. IEEE Transactions on Intelligent
Transportation Systems 2022.\\
PiFeNet & & 63.34 \% & 78.05 \% & 56.46 \% & 0.03 s / 1 core & D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian
Detection Using an Efficient Attentive Pillar
Network. IEEE Robotics and Automation Letters 2022.\\
Faster R-CNN & & 62.86 \% & 72.40 \% & 54.97 \% & 2 s / GPU & S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real-
Time
Object Detection with Region Proposal
Networks. NIPS 2015.\\
SCNet & la & 62.50 \% & 78.48 \% & 56.34 \% & 0.04 s / GPU & Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.\\
HA-PillarNet & & 62.19 \% & 76.12 \% & 55.82 \% & 0.05 s / 1 core & \\
DSGN++ & st & 62.10 \% & 77.71 \% & 55.78 \% & 0.2 s / & Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation
for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2022.\\
StereoDistill & & 61.46 \% & 80.92 \% & 54.64 \% & 0.4 s / 1 core & Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.\\
AVOD-FPN & la & 60.79 \% & 70.38 \% & 55.37 \% & 0.1 s / & J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.\\
SDP+CRC (ft) & & 60.72 \% & 75.63 \% & 53.00 \% & 0.6 s / GPU & F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN
Object Detector with Scale Dependent Pooling and
Cascaded Rejection Classifiers. Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition 2016.\\
MVAF-Net(3-classes) & & 60.04 \% & 74.01 \% & 55.71 \% & 0.1 s / 1 core & \\
BAIR & & 59.97 \% & 76.29 \% & 51.80 \% & 0.04 s / 1 core & \\
MonoInsight & & 59.86 \% & 76.21 \% & 51.17 \% & 0.03 s / 1 core & \\
MonoInsight & & 59.86 \% & 76.21 \% & 51.17 \% & 0.03 s / 1 core & \\
Complexer-YOLO & la & 59.78 \% & 66.94 \% & 55.63 \% & 0.06 s / GPU & M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object
Detection and Tracking on Semantic Point
Clouds. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)
Workshops 2019.\\
MVAF-Net(3-classes) & & 59.54 \% & 72.32 \% & 55.44 \% & 0.1 s / 1 core & \\
Mix-Teaching & & 58.65 \% & 75.15 \% & 50.54 \% & 30 s / 1 core & L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and
Effective Semi-Supervised Learning Framework for
Monocular 3D Object Detection. ArXiv 2022.\\
Regionlets & & 58.52 \% & 71.12 \% & 50.83 \% & 1 s / >8 cores & X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object
Detection. T-PAMI 2015.W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense
Neural Patterns and Regionlets. British Machine Vision Conference 2014.C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location
Relaxation and Regionlets Relocalization. Asian Conference on Computer
Vision 2014.\\
MonoLiG & & 58.35 \% & 80.41 \% & 51.21 \% & 0.03 s / 1 core & \\
FRCNN+Or & & 57.01 \% & 70.99 \% & 50.14 \% & 0.09 s / & C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.\\
QD-3DT & on & 56.51 \% & 75.55 \% & 49.70 \% & 0.03 s / GPU & H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.\\
MonoPair & & 56.37 \% & 74.77 \% & 48.37 \% & 0.06 s / GPU & Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection
Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2020.\\
MLOD & la & 56.04 \% & 75.35 \% & 49.11 \% & 0.12 s / GPU & J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.\\
Anonymous & & 55.47 \% & 74.27 \% & 47.25 \% & 0.1 s / 1 core & \\
MonoATT\_V2 & & 54.84 \% & 78.21 \% & 47.98 \% & 0.03 s / 1 core & \\
MonoFlex & & 54.76 \% & 72.41 \% & 46.21 \% & 0.03 s / GPU & Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D
Object Detection. CVPR 2021.\\
MonoLSS & & 54.63 \% & 74.54 \% & 47.98 \% & 0.04 s / 1 core & \\
BirdNet+ (legacy) & la & 54.61 \% & 74.97 \% & 50.29 \% & 0.1 s / & A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.\\
MMLAB LIGA-Stereo & st & 54.57 \% & 74.40 \% & 48.11 \% & 0.4 s / 1 core & X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry
Aware Representations for Stereo-based 3D
Detector. Proceedings of the IEEE/CVF
International Conference on Computer Vision
(ICCV) 2021.\\
HomoLoss(monoflex) & & 54.12 \% & 70.14 \% & 46.16 \% & 0.04 s / 1 core & J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object
Detection. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2022.\\
YOLOv5x6\_1280 & & 54.07 \% & 71.49 \% & 47.82 \% & 0.019 s / GPU & \\
YOLOv5x6\_1280\_Q & & 53.78 \% & 71.22 \% & 47.60 \% & 0.016 s / GPU & \\
MonoUNI & & 53.71 \% & 71.68 \% & 45.26 \% & 0.04 s / 1 core & \\
monodle & & 53.29 \% & 70.78 \% & 45.01 \% & 0.04 s / GPU & X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for
Monocular 3D Object Detection. CVPR 2021 .\\
LPCG-Monoflex & & 53.04 \% & 72.36 \% & 46.11 \% & 0.03 s / 1 core & L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D
Object Detection. ECCV 2022.\\
AVOD & la & 52.60 \% & 66.45 \% & 46.39 \% & 0.08 s / & J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object
Detection from View Aggregation. IROS 2018.\\
YOLOv5x6\_1920 & & 52.29 \% & 75.21 \% & 45.67 \% & 0.05 s / GPU & \\
PS++ & & 52.29 \% & 72.60 \% & 46.82 \% & 0.4 s / 1 core & \\
CMKD & & 51.76 \% & 73.18 \% & 45.37 \% & 0.1 s / 1 core & Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge
Distillation Network for Monocular 3D Object
Detection. ECCV 2022.\\
MonoDDE & & 51.10 \% & 70.85 \% & 44.02 \% & 0.04 s / 1 core & Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth
Clues for Reliable Monocular 3D Object Detection. CVPR 2022.\\
Mono3DMethod & & 50.24 \% & 67.46 \% & 43.86 \% & 0.1 s / 1 core & \\
3DSeMoDLE & & 49.71 \% & 69.51 \% & 43.11 \% & 0.1 s / 1 core & \\
MonoDTR & & 49.48 \% & 64.93 \% & 42.76 \% & 0.04 s / 1 core & K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with
Depth-Aware Transformer. CVPR 2022.\\
MonoRUn & & 49.13 \% & 67.47 \% & 43.41 \% & 0.07 s / GPU & H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.\\
MonoRCNN++ & & 48.84 \% & 67.78 \% & 42.44 \% & 0.07 s / GPU & X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D
Object Detection. WACV 2023.\\
CG-Stereo & st & 48.46 \% & 69.98 \% & 42.41 \% & 0.57 s / & C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object
Detection with
Split Depth Estimation. IROS 2020.\\
MonoInsight & & 47.72 \% & 67.52 \% & 41.00 \% & 0.03 s / 1 core & \\
BirdNet & la & 47.64 \% & 64.91 \% & 44.59 \% & 0.11 s / & J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework
from LiDAR Information. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
BCA & & 46.50 \% & 67.68 \% & 39.47 \% & 0.17 s / GPU & \\
DEVIANT & & 46.42 \% & 67.71 \% & 39.44 \% & 0.04 s / & A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.\\
Disp R-CNN (velo) & st & 46.37 \% & 63.22 \% & 40.15 \% & 0.387 s / GPU & J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via
Shape Prior Guided Instance Disparity Estimation. CVPR 2020.\\
Disp R-CNN & st & 46.37 \% & 63.24 \% & 40.15 \% & 0.387 s / GPU & J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection
via Shape Prior Guided Instance Disparity
Estimation. CVPR 2020.\\
DD3Dv2 & & 45.35 \% & 63.42 \% & 39.61 \% & 0.1 s / 1 core & \\
MonoAD & & 44.87 \% & 66.02 \% & 39.94 \% & 0.03 s / GPU & \\
SparsePool & & 44.57 \% & 60.53 \% & 40.37 \% & 0.13 s / 8 cores & Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and
front view camera image for deep object
detection. arXiv preprint arXiv:1711.06703 2017.\\
MonoA^2 & & 44.12 \% & 59.98 \% & 37.93 \% & na s / 1 core & \\
Anonymous & & 43.31 \% & 64.66 \% & 36.52 \% & 0.03 s / 1 core & \\
Shift R-CNN (mono) & & 42.96 \% & 63.24 \% & 38.22 \% & 0.25 s / GPU & A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D
Object Detection With Closed-form Geometric
Constraints. ICIP 2019.\\
D4LCN & & 42.86 \% & 65.29 \% & 36.29 \% & 0.2 s / GPU & M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for
Monocular 3D Object Detection. CVPR 2020.\\
GUPNet & & 42.78 \% & 67.11 \% & 37.94 \% & NA s / 1 core & Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network
for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.\\
M3D-RPN & & 41.54 \% & 61.54 \% & 35.23 \% & 0.16 s / GPU & G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal
Network for Object Detection . ICCV 2019 .\\
BiResFPN & & 41.47 \% & 61.79 \% & 35.99 \% & 0.071s / 1 core & \\
MonoEF & & 41.19 \% & 51.06 \% & 35.70 \% & 0.03 s / 1 core & Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An
Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2021.\\
PS-fld & & 41.13 \% & 58.13 \% & 35.90 \% & 0.25 s / 1 core & Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object
Detection in Autonomous Driving. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2022.\\
Plane-Constraints & & 41.01 \% & 58.71 \% & 35.35 \% & 0.05 s / 4 cores & H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular
3D object detection via intra-and inter-plane
constraints. Neural Networks 2023.\\
MV-RGBD-RF & la & 40.94 \% & 51.10 \% & 34.83 \% & 4 s / 4 cores & A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.\\
DDMP-3D & & 38.62 \% & 58.70 \% & 34.10 \% & 0.18 s / 1 core & L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for
Monocular 3D Object Detection. CVPR 2020.\\
CMAN & & 38.36 \% & 58.12 \% & 31.79 \% & 0.15 s / 1 core & C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation
for
Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.\\
OPA-3D & & 38.35 \% & 55.98 \% & 33.83 \% & 0.04 s / 1 core & Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise
Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.\\
Aug3D-RPN & & 36.69 \% & 51.49 \% & 30.04 \% & 0.08 s / 1 core & C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.\\
SparsePool & & 36.26 \% & 44.21 \% & 32.57 \% & 0.13 s / 8 cores & Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and
front view camera image for deep object
detection. arXiv preprint arXiv:1711.06703 2017.\\
BSM3D & & 35.89 \% & 54.56 \% & 30.71 \% & 0.03 s / 1 core & \\
SS3D & & 35.48 \% & 52.97 \% & 31.07 \% & 48 ms / & E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained
End-to-End Using
Intersection-over-Union Loss. CoRR 2019.\\
Yolo5x6\_Ghost & & 35.20 \% & 50.96 \% & 31.53 \% & 0.03 s / GPU & \\
Yolo5x6\_Ghost & & 35.20 \% & 50.96 \% & 31.53 \% & 0.03 s / GPU & \\
DSGN & st & 35.15 \% & 49.10 \% & 31.41 \% & 0.67 s / & Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D
Object Detection. CVPR 2020.\\
pAUCEnsT & & 34.90 \% & 50.51 \% & 30.35 \% & 60 s / 1 core & S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.\\
Res & & 34.56 \% & 49.83 \% & 30.90 \% & 0.03 s / 1 core & \\
GHos\_3d & & 34.56 \% & 49.83 \% & 30.90 \% & 0.1 s / 1 core & \\
ALI\_TRY1 & & 34.56 \% & 49.83 \% & 30.90 \% & 0.03 s / 1 core & \\
SparseLiDAR\_fusion & & 33.00 \% & 48.74 \% & 28.68 \% & 0.08 s / 1 core & \\
TopNet-Retina & la & 31.98 \% & 47.51 \% & 29.84 \% & 52ms / & S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in
Occupancy Grid Maps Using Deep Convolutional
Networks. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
DFR-Net & & 31.93 \% & 48.34 \% & 27.95 \% & 0.18 s / & Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding:
The devil is in the task: Exploiting reciprocal
appearance-localization features for monocular 3d
object detection
. ICCV 2021.\\
Yolov5ObjectDetector & & 31.69 \% & 45.65 \% & 29.37 \% & 0.1 s / 1 core & \\
AMNet & & 31.01 \% & 45.93 \% & 27.06 \% & 0.03 s / GPU & \\
OccupancyM3D & & 30.22 \% & 41.76 \% & 26.32 \% & 0.11 s / 1 core & \\
CIE & & 30.10 \% & 38.03 \% & 26.99 \% & 0.1 s / 1 core & Anonymities: Consistency of Implicit and Explicit
Features Matters for Monocular 3D Object
Detection. arXiv preprint arXiv:2207.07933 2022.\\
MonoNeRD & & 29.89 \% & 45.35 \% & 26.49 \% & na s / 1 core & \\
OC Stereo & st & 28.76 \% & 43.18 \% & 24.80 \% & 0.35 s / 1 core & A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D
Object Detection. ICRA 2020.\\
Vote3D & la & 27.99 \% & 39.81 \% & 25.19 \% & 0.5 s / 4 cores & D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object
Detection. Proceedings of Robotics: Science and
Systems 2015.\\
SGM3D & & 27.89 \% & 42.21 \% & 24.73 \% & 0.03 s / 1 core & Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object
Detection. RA-L 2022.\\
LSVM-MDPM-us & & 27.81 \% & 37.66 \% & 24.83 \% & 10 s / 4 cores & P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.\\
DPM-VOC+VP & & 27.73 \% & 41.58 \% & 24.61 \% & 8 s / 1 core & B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part
Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 2015.\\
RefinedMPL & & 27.17 \% & 44.47 \% & 22.84 \% & 0.15 s / GPU & J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR
for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.\\
CaDDN & & 27.13 \% & 40.03 \% & 23.23 \% & 0.63 s / GPU & C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution
Network for Monocular 3D Object Detection. CVPR 2021.\\
MonoXiver & & 26.95 \% & 39.81 \% & 23.32 \% & 0.03s / GPU & \\
PGD-FCOS3D & & 26.48 \% & 44.28 \% & 23.03 \% & 0.03 s / 1 core & T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth:
Detecting Objects in Perspective. Conference on Robot Learning
(CoRL) 2021.\\
LSVM-MDPM-sv & & 26.05 \% & 35.70 \% & 23.56 \% & 10 s / 4 cores & P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.\\
MM3D & & 25.98 \% & 35.92 \% & 22.18 \% & NA s / 1 core & \\
DPM-C8B1 & st & 25.57 \% & 41.47 \% & 21.93 \% & 15 s / 4 cores & J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.\\
MM3DV2 & & 25.28 \% & 30.00 \% & 22.67 \% & NA s / 1 core & \\
FMF-occlusion-net & & 23.59 \% & 37.41 \% & 21.20 \% & 0.16 s / 1 core & H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti-
occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.\\
RT3D-GMP & st & 22.90 \% & 33.64 \% & 19.87 \% & 0.06 s / GPU & H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.\\
MonoPCNS & & 22.75 \% & 31.31 \% & 20.12 \% & 0.14 s / GPU & \\
UNM3D & & 21.06 \% & 26.77 \% & 18.37 \% & na s / 1 core & \\
BEV\_GHOST & & 20.80 \% & 29.52 \% & 19.38 \% & 0.1 s / 1 core & \\
mBoW & la & 17.63 \% & 26.66 \% & 16.02 \% & 10 s / 1 core & J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.\\
MDSNet & & 16.64 \% & 28.23 \% & 14.14 \% & 0.05 s / 1 core & Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification
3D Object Detection from Monocular Images. Sensors 2022.\\
DCD & & 14.71 \% & 18.66 \% & 13.83 \% & 1 s / 1 core & \\
TopNet-HighRes & la & 13.98 \% & 22.86 \% & 14.52 \% & 101ms / & S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in
Occupancy Grid Maps Using Deep Convolutional
Networks. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.\\
ESGN & st & 13.45 \% & 21.13 \% & 11.72 \% & 0.06 s / GPU & A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network
for Fast 3D Object Detection. IEEE Transactions on Circuits and
Systems for Video Technology 2022.\\
RT3DStereo & st & 12.96 \% & 19.58 \% & 11.47 \% & 0.08 s / GPU & H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.\\
TopNet-UncEst & la & 12.00 \% & 18.14 \% & 11.85 \% & 0.09 s / & S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing
Object Detection Uncertainty in Multi-Layer Grid
Maps. 2019.\\
YOLOv2 & & 0.06 \% & 0.15 \% & 0.07 \% & 0.02 s / GPU & J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time
object detection. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2016.J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2017.\\
TopNet-DecayRate & la & 0.04 \% & 0.00 \% & 0.04 \% & 92 ms / & S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in
Occupancy Grid Maps Using Deep Convolutional
Networks. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC) 2018.
\end{tabular}