Object Detection Evaluation 2012


The object detection and object orientation estimation benchmark consists of 7481 training images and 7518 test images, comprising a total of 80.256 labeled objects. All images are color and saved as png. For evaluation, we compute precision-recall curves for object detection and orientation-similarity-recall curves for joint object detection and orientation estimation. In the latter case not only the object 2D bounding box has to be located correctly, but also the orientation estimate in bird's eye view is evaluated. To rank the methods we compute average precision and average orientation similiarity. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate object detection performance using the PASCAL criteria and object detection and orientation estimation performance using the measure discussed in our CVPR 2012 publication. For cars we require an overlap of 70%, while for pedestrians and cyclists we require an overlap of 50% for a detection. Detections in don't care areas or detections which are smaller than the minimum size do not count as false positive. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results. Note that for the hard evaluation ~2 % of the provided bounding boxes have not been recognized by humans, thereby upper bounding recall at 98 %. Hence, the hard evaluation is only given for reference.
Note 1: On 25.04.2017, we have fixed a bug in the object detection evaluation script. As of now, the submitted detections are filtered based on the min. bounding box height for the respective category which we have been done before only for the ground truth detections, thus leading to false positives for the category "Easy" when bounding boxes of height 25-39 Px were submitted (and to false positives for all categories if bounding boxes smaller than 25 Px were submitted). We like to thank Amy Wu, Matt Wilder, Pekka Jänis and Philippe Vandermersch for their feedback. The last leaderboards right before the changes can be found here!

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 MB3D 97.87 % 98.77 % 93.04 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
2 LVP(84.92) 97.84 % 98.70 % 93.07 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
3 MuTOD 97.69 % 98.78 % 94.62 % 0.04 s 1 core @ 2.5 Ghz (Python)
4 UDeerPEP code 97.57 % 98.42 % 95.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen: PeP: a Point enhanced Painting method for unified point cloud tasks. 2023.
5 OGMMDet code 97.54 % 98.44 % 92.88 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
6 VirConv-S code 97.27 % 98.00 % 94.53 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
7 ANM code 97.23 % 97.67 % 94.59 % ANM ANM
8 GraR-VoI code 96.38 % 96.81 % 91.20 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
9 VirConv-T code 96.38 % 98.93 % 93.56 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
10 LFT 96.27 % 99.29 % 88.94 % 0.1s 1 core @ 2.5 Ghz (C/C++)
11 GraR-Po code 96.18 % 96.84 % 91.11 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
12 SFD code 96.17 % 98.97 % 91.13 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
13 MLF-DET 96.17 % 96.89 % 88.90 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
14 VPFNet code 96.15 % 96.64 % 91.14 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
15 HDet3D 96.12 % 96.69 % 91.01 % 0.07 s >8 cores @ 2.5 Ghz (Python)
16 CLOCs code 96.07 % 96.77 % 91.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
17 ACFNet 96.06 % 96.68 % 93.36 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
18 PVFusion code 96.06 % 96.78 % 91.07 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
19 RDIoU code 96.05 % 98.79 % 91.03 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
20 GraR-Vo code 96.05 % 96.67 % 93.01 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
21 TED code 96.03 % 96.64 % 93.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
22 CLOCs_PVCas code 95.96 % 96.76 % 91.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
23 PVT-SSD 95.90 % 96.75 % 90.69 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
24 UPIDet code 95.89 % 96.25 % 93.25 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
25 GraR-Pi code 95.89 % 98.59 % 92.85 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
26 PIPC-3Ddet code 95.86 % 96.80 % 90.92 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
27 DiffCandiDet 95.85 % 96.59 % 93.03 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
28 OcTr 95.84 % 96.48 % 90.99 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
29 CDF 95.83 % 96.22 % 90.77 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
30 VPA 95.82 % 96.71 % 90.95 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
31 3D Dual-Fusion code 95.82 % 96.54 % 93.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
32 NIV-SSD 95.82 % 98.68 % 90.80 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
33 URFormer 95.81 % 98.52 % 93.03 % 0.1 s 1 core @ 2.5 Ghz (Python)
34 GLENet-VR code 95.81 % 96.85 % 90.91 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
Y. Zhang, J. Hou and Y. Yuan: A Comprehensive Study of the Robustness for LiDAR-based 3D Object Detectors against Adversarial Attacks. International Journal of Computer Vision 2023.
35 TSSTDet 95.81 % 96.65 % 93.05 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang, D. Bui and M. Yoo: TSSTDet: Transformation-Based 3-D Object Detection via a Spatial Shape Transformer. IEEE Sensors Journal 2024.
36 test 95.80 % 98.39 % 92.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
37 DVF-V 95.77 % 96.60 % 90.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
38 HAF-PVP_test 95.76 % 98.86 % 92.95 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
39 Fast-CLOCs 95.75 % 96.69 % 90.95 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
40 3D HANet code 95.73 % 98.61 % 92.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
41 MAK code 95.71 % 96.68 % 90.86 % 0.03 s GPU @ 2.5 Ghz (Python)
42 DSGN++
This method uses stereo information.
code 95.70 % 98.08 % 88.27 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
43 MAK_VOXEL_RCNN 95.67 % 98.63 % 92.97 % 0.03 s 1 core @ 2.5 Ghz (Python)
44 LVP 95.67 % 98.48 % 92.88 % 0.04 s 1 core @ 2.5 Ghz (Python)
45 CasA code 95.62 % 96.52 % 92.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
46 BADet code 95.61 % 98.75 % 90.64 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
47 SE-SSD
This method makes use of Velodyne laser scans.
code 95.60 % 96.69 % 90.53 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
48 SGFNet 95.60 % 98.46 % 92.74 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
49 FEIF3D
This method makes use of Velodyne laser scans.
95.59 % 96.44 % 92.95 % 0.1 s GPU @ 2.5 Ghz (Python)
50 PA-Det3D 95.59 % 96.37 % 90.97 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
51 PSMS-Net
This method makes use of Velodyne laser scans.
95.58 % 96.70 % 90.76 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
52 VDF 95.58 % 98.58 % 92.72 % 0.03 s GPU @ 2.5 Ghz (Python)
53 spark2 95.58 % 96.41 % 92.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
54 FARP-Net code 95.57 % 96.11 % 93.07 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
55 CAFI-Pillars 95.56 % 96.47 % 90.75 % 30ms NVIDIA Tesla P40 GPU
56 voxel_spark code 95.55 % 96.38 % 92.86 % 0.04 s GPU @ 2.5 Ghz (C/C++)
57 LoGoNet code 95.55 % 96.60 % 93.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
58 spark_voxel_rcnn code 95.55 % 96.41 % 92.84 % 0.04 s 1 core @ 2.5 Ghz (Python)
59 GD-MAE 95.54 % 98.38 % 90.42 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
60 spark 95.53 % 96.34 % 92.84 % 0.1 s 1 core @ 2.5 Ghz (Python)
61 DVF-PV 95.49 % 96.42 % 92.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
62 SFD++ 95.48 % 98.40 % 92.61 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
63 SS-3DSSD code 95.47 % 96.31 % 90.55 % 0.014s 1 core @ 2.5 Ghz (C/C++)
64 3D-BCM 95.47 % 98.50 % 92.70 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
65 SDGUFusion 95.46 % 98.55 % 92.89 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
66 SPANet 95.46 % 96.54 % 90.47 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
67 Voxel_Spark_focal_we code 95.45 % 96.37 % 92.77 % 0.08 s 1 core @ 2.5 Ghz (Python)
68 Anonymous 95.44 % 96.41 % 92.85 % 0.1 s 1 core @ 2.5 Ghz (Python)
69 LGNet-Car code 95.43 % 96.52 % 92.73 % 0.11 s 1 core @ 2.5 Ghz (Python + C/C++)
70 PG-RCNN code 95.40 % 96.66 % 90.55 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
71 SASA
This method makes use of Velodyne laser scans.
code 95.35 % 96.01 % 92.53 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
72 FIRM-Net 95.35 % 96.29 % 92.68 % 0.07 s 1 core @ 2.5 Ghz (Python)
73 TED-S Reproduced 95.33 % 98.45 % 92.75 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
74 SPG_mini
This method makes use of Velodyne laser scans.
code 95.32 % 96.23 % 92.68 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
75 EQ-PVRCNN code 95.32 % 98.23 % 92.65 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
76 DEF-Model 95.30 % 96.28 % 92.48 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
77 Focals Conv code 95.28 % 96.30 % 92.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
78 CasA++ code 95.28 % 95.83 % 94.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
79 TED_S_baseline code 95.26 % 96.25 % 92.62 % 0.09 s 1 core @ 2.5 Ghz (Python)
80 RPF3D 95.25 % 96.31 % 90.51 % 0.1 s 1 core @ 2.5 Ghz (Python)
81 VoxSeT code 95.23 % 96.16 % 90.49 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
82 LGSLNet 95.22 % 98.00 % 92.72 % 0.1 s GPU @ 2.5 Ghz (Python)
83 PC-CNN-V2
This method makes use of Velodyne laser scans.
95.20 % 96.06 % 89.37 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
84 PR-SSD 95.18 % 97.64 % 92.48 % 0.02 s GPU @ 2.5 Ghz (Python)
85 VPFNet code 95.17 % 96.06 % 92.66 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
86 F-PointNet
This method makes use of Velodyne laser scans.
code 95.17 % 95.85 % 85.42 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
87 EPNet++ 95.17 % 96.73 % 92.10 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
88 SA-SSD code 95.16 % 97.92 % 90.15 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
89 HMFI code 95.16 % 96.29 % 92.45 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
90 RBEV-Voxel code 95.15 % 96.43 % 90.32 % 0.08 s GPU @ 2.5 Ghz (Python)
91 USVLab BSAODet code 95.15 % 96.26 % 92.62 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
92 TEDx 95.14 % 96.15 % 92.45 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
93 Pyramid R-CNN 95.13 % 95.88 % 92.62 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
94 Voxel R-CNN code 95.11 % 96.49 % 92.45 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
95 3DSSD code 95.10 % 97.69 % 92.18 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
96 GF-pointnet 95.08 % 95.93 % 92.36 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
97 RAFDet 95.04 % 95.96 % 92.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
98 MonoSample (DID-M3D) 95.02 % 96.45 % 85.58 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
99 BPG3D 95.02 % 97.98 % 92.38 % 0.05 s 1 core @ 2.5 Ghz (Python)
100 PDV code 95.00 % 96.07 % 92.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
101 MVRA + I-FRCNN+ 94.98 % 95.87 % 82.52 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
102 SIENet code 94.97 % 96.02 % 92.40 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
103 VoTr-TSD code 94.94 % 95.97 % 92.44 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
104 L-AUG 94.92 % 95.84 % 92.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
105 SQD 94.92 % 98.21 % 92.37 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
106 AMVFNet code 94.87 % 96.12 % 92.33 % 0.04 s GPU @ 2.5 Ghz (Python)
107 GraphAlign(ICCV2023) code 94.87 % 98.06 % 92.47 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
108 CZY_PPF_Net 94.86 % 98.07 % 92.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
109 M3DeTR code 94.83 % 97.39 % 92.10 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
110 StructuralIF 94.81 % 96.14 % 92.12 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
111 spark_second_focal_w 94.80 % 95.45 % 92.02 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
112 Under Blind Review#1 94.79 % 95.63 % 92.35 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
113 U_PV_V2_ep100_80 94.78 % 95.82 % 92.27 % 0... s 1 core @ 2.5 Ghz (Python)
114 focalnet 94.78 % 98.07 % 92.32 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
115 XView 94.77 % 95.89 % 92.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
116 U_PV_V2_ep_100_100 94.76 % 95.76 % 92.18 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
117 Spark_partA22 94.76 % 96.00 % 92.09 % 10 s 1 core @ 2.5 Ghz (Python)
118 LGNet-3classes code 94.76 % 98.13 % 92.15 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
119 focalnet 94.75 % 98.09 % 92.31 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
120 F3D 94.75 % 95.99 % 92.28 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
121 HA-PillarNet 94.75 % 95.91 % 92.16 % 0.05 s 1 core @ 2.5 Ghz (Python)
122 Spark_PartA2_Soft_fo code 94.74 % 95.80 % 92.13 % 0.1 s 1 core @ 2.5 Ghz (Python)
123 P2V-RCNN 94.73 % 96.03 % 92.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
124 spark_second code 94.72 % 95.40 % 91.93 % . s 1 core @ 2.5 Ghz (Python)
125 sec_spark code 94.71 % 95.37 % 91.93 % 0.03 s GPU @ 2.5 Ghz (Python)
126 spark_second2 94.71 % 95.33 % 91.97 % 10 s 1 core @ 2.5 Ghz (Python)
127 SPG
This method makes use of Velodyne laser scans.
code 94.71 % 97.80 % 92.19 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
128 CAT-Det 94.71 % 95.97 % 92.07 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
129 bs 94.70 % 96.07 % 91.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
130 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 94.70 % 98.17 % 92.04 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
131 spark-part2 94.69 % 95.71 % 92.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
132 SDGUFusion 94.68 % 98.17 % 92.29 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
133 OFFNet 94.68 % 96.18 % 92.07 % 0.1 s GPU @ 2.5 Ghz (Python)
134 SVGA-Net 94.67 % 96.05 % 91.86 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
135 RangeDet (Official) code 94.64 % 95.50 % 91.77 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
136 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 94.64 % 95.86 % 92.10 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
137 PV-RCNN-Plus 94.63 % 95.76 % 92.17 % 1 s 1 core @ 2.5 Ghz (C/C++)
138 RangeIoUDet
This method makes use of Velodyne laser scans.
94.61 % 95.74 % 91.98 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
139 PASS-PV-RCNN-Plus 94.59 % 95.79 % 92.10 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
140 af 94.59 % 95.79 % 92.17 % 1 s GPU @ 2.5 Ghz (Python)
141 DVFENet 94.57 % 95.35 % 91.77 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
142 VoxelFSD 94.55 % 95.74 % 91.98 % 0.08 s 1 core @ 2.5 Ghz (Python)
143 GeVo 94.55 % 95.89 % 92.03 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
144 AAMVFNet code 94.53 % 95.89 % 91.98 % 0.04 s GPU @ 2.5 Ghz (Python)
145 TuSimple code 94.47 % 95.12 % 86.45 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
146 EPNet code 94.44 % 96.15 % 89.99 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
147 SERCNN
This method makes use of Velodyne laser scans.
94.42 % 96.33 % 89.96 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
148 Second_baseline code 94.41 % 95.19 % 91.51 % 0.03 s 1 core @ 2.5 Ghz (Python)
149 focal 94.41 % 98.28 % 92.09 % 100 s 1 core @ 2.5 Ghz (Python)
150 MSIT-Det 94.39 % 97.21 % 86.85 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
151 UberATG-MMF
This method makes use of Velodyne laser scans.
94.25 % 97.41 % 89.87 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
152 pointpillar_spark_fo 94.24 % 96.44 % 91.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
153 SRDL 94.24 % 95.86 % 91.80 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
154 SC-SSD 94.19 % 95.06 % 91.17 % 1 s 1 core @ 2.5 Ghz (C/C++)
155 u_second_v4_epoch_10 94.13 % 95.33 % 91.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
156 pointpillars_spark code 94.04 % 96.88 % 91.17 % 0.02 s GPU @ 2.5 Ghz (C/C++)
157 RangeRCNN
This method makes use of Velodyne laser scans.
94.03 % 95.48 % 91.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
158 SFA-GCL(80) code 94.01 % 96.93 % 91.12 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
159 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 93.99 % 95.81 % 91.72 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
160 DD3D code 93.99 % 94.69 % 89.37 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
161 spark_pointpillar code 93.98 % 96.88 % 91.11 % 0.02 s GPU @ 2.5 Ghz (Python)
162 SFA-GCL code 93.97 % 96.90 % 91.09 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
163 spark_pointpillar2 93.97 % 96.66 % 91.03 % 10 s 1 core @ 2.5 Ghz (Python)
164 SFA-GCL(80, k=4) code 93.96 % 96.88 % 91.07 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
165 U_second_v4_ep_100_8 93.96 % 94.85 % 91.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
166 SIF 93.95 % 95.51 % 91.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
167 DDF 93.95 % 96.90 % 88.91 % 0.1 s 1 core @ 2.5 Ghz (Python)
168 Anonymous code 93.90 % 96.83 % 88.84 % 0.04 s 1 core @ 2.5 Ghz (Python)
169 MGAF-3DSSD code 93.87 % 94.45 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
170 3ONet 93.87 % 96.97 % 88.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
171 LPCG-Monoflex code 93.86 % 96.90 % 83.94 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
172 MMLAB LIGA-Stereo
This method uses stereo information.
code 93.82 % 96.43 % 86.19 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
173 SFA-GCL(baseline) code 93.79 % 96.84 % 90.88 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
174 SFA-GCL_dataaug code 93.78 % 96.75 % 90.85 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
175 SFA-GCL code 93.78 % 96.87 % 90.84 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
176 Sem-Aug
This method makes use of Velodyne laser scans.
93.77 % 96.79 % 88.78 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
177 DGEnhCL code 93.76 % 96.77 % 90.84 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
178 IMLIDAR(base) 93.75 % 96.76 % 88.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
179 Patches - EMP
This method makes use of Velodyne laser scans.
93.75 % 97.91 % 90.56 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
180 KPTr 93.73 % 96.55 % 90.84 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
181 CIA-SSD
This method makes use of Velodyne laser scans.
code 93.72 % 96.87 % 86.20 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
182 IIOU code 93.72 % 96.45 % 90.91 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
183 QD-3DT
This is an online method (no batch processing).
code 93.66 % 94.26 % 83.63 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
184 MVAF-Net code 93.66 % 95.37 % 90.90 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
185 SSL-PointGNN code 93.65 % 96.61 % 88.53 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
186 PA3DNet 93.62 % 96.57 % 88.65 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
187 IA-SSD (multi) code 93.56 % 96.10 % 90.68 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
188 MonoLiG code 93.56 % 96.70 % 83.74 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
189 MonoPair 93.55 % 96.61 % 83.55 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
190 casx 93.55 % 96.67 % 90.88 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
191 MMAE
This method makes use of Velodyne laser scans.
93.55 % 96.52 % 90.53 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
192 IA-SSD (single) code 93.54 % 96.26 % 88.49 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
193 EBM3DOD code 93.54 % 96.81 % 88.33 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
194 fuf 93.53 % 96.74 % 88.43 % 10 s 1 core @ 2.5 Ghz (C/C++)
195 casxv1 93.52 % 96.67 % 90.85 % 0.01 s 1 core @ 2.5 Ghz (Python)
196 SeSame-point code 93.50 % 95.22 % 90.44 % N/A s TITAN RTX @ 1.35 Ghz (Python)
197 Deep MANTA 93.50 % 98.89 % 83.21 % 0.7 s GPU @ 2.5 Ghz (Python + C/C++)
F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau: Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. CVPR 2017.
198 VoxelFSD-S 93.50 % 94.70 % 90.40 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
199 Point-GNN
This method makes use of Velodyne laser scans.
code 93.50 % 96.58 % 88.35 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
200 BtcDet
This method makes use of Velodyne laser scans.
code 93.47 % 96.23 % 88.55 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
201 MOPNet code 93.47 % 96.57 % 83.62 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
202 LVFSD 93.45 % 95.28 % 90.73 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
203 Struc info fusion II 93.45 % 96.72 % 88.31 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
204 EBM3DOD baseline code 93.45 % 96.72 % 88.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
205 IOUFusion 93.43 % 96.38 % 90.63 % 0.1 s GPU @ 2.5 Ghz (Python)
206 StereoDistill 93.43 % 97.61 % 87.71 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
207 MonoLSS 93.42 % 96.19 % 83.62 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
208 RRC code 93.40 % 95.68 % 87.37 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
209 pointpillar_baseline code 93.37 % 95.17 % 88.94 % 0.01 s 1 core @ 2.5 Ghz (Python)
210 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 93.36 % 96.78 % 86.11 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
211 IIOU_LDR code 93.33 % 96.33 % 88.22 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
212 RAFDet code 93.33 % 95.89 % 90.51 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
213 SNVC
This method uses stereo information.
code 93.32 % 96.33 % 85.81 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
214 DFAF3D 93.32 % 96.58 % 90.24 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
215 PVTr 93.32 % 94.71 % 90.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
216 Struc info fusion I 93.31 % 96.59 % 88.23 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
217 ROT_S3D 93.30 % 96.28 % 88.20 % 0.1 s GPU @ 2.5 Ghz (Python)
218 CityBrainLab-CT3D code 93.30 % 96.28 % 90.58 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
219 MonoInsight 93.29 % 96.21 % 83.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
220 MonoInsight 93.29 % 96.21 % 83.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
221 Test_dif code 93.24 % 95.78 % 90.40 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
222 STD code 93.22 % 96.14 % 90.53 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
223 DA-Net 93.22 % 96.59 % 90.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
224 SARPNET 93.21 % 96.07 % 88.09 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
225 H^23D R-CNN code 93.20 % 96.20 % 90.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
226 Fast Point R-CNN
This method makes use of Velodyne laser scans.
93.18 % 96.13 % 87.68 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
227 RAFDet 93.18 % 95.70 % 90.40 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
228 sensekitti code 93.17 % 94.79 % 84.38 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
229 P2P code 93.14 % 96.67 % 88.01 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
230 SJTU-HW 93.11 % 96.30 % 82.21 % 0.85s GPU @ 1.5 Ghz (Python + C/C++)
S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION EMBEDDED DETECTOR. IEEE International Conference on Image Processing 2018.
L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications 2018.
231 FromVoxelToPoint code 93.06 % 96.08 % 90.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
232 GA-RCNN 93.03 % 96.10 % 90.41 % 47ms 1 core @ 2.5 Ghz (C/C++)
233 MG 93.01 % 96.27 % 90.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
234 CLOCs_SecCas 92.95 % 95.43 % 89.21 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
235 centerpoint_pcdet 92.94 % 94.73 % 89.50 % 0.06 s 1 core @ 2.5 Ghz (Python)
236 WA 92.93 % 96.02 % 87.41 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
237 MonoCD code 92.91 % 96.43 % 85.55 % n/a s 1 core @ 2.5 Ghz (Python)
L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan: MonoCD: Monocular 3D Object Detection with Complementary Depths. CVPR 2024.
238 SFEBEV 92.84 % 97.88 % 89.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
239 ACDet code 92.84 % 96.18 % 89.83 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
240 HotSpotNet 92.81 % 96.21 % 89.80 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
241 PUDet 92.77 % 96.32 % 90.02 % 0.3 s GPU @ 2.5 Ghz (Python)
242 SegVoxelNet 92.73 % 96.00 % 87.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
243 Patches
This method makes use of Velodyne laser scans.
92.72 % 96.34 % 87.63 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
244 Cube R-CNN code 92.72 % 95.78 % 84.81 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
245 CenterNet3D 92.69 % 95.76 % 89.81 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
246 R-GCN 92.67 % 96.19 % 87.66 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
247 PI-RCNN 92.66 % 96.17 % 87.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
248 PointPainting
This method makes use of Velodyne laser scans.
92.58 % 98.39 % 89.71 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
249 MMpointpillars 92.57 % 95.47 % 87.45 % 0.05 s 1 core @ 2.5 Ghz (Python)
250 BAPartA2S-4h 92.53 % 95.82 % 89.80 % 0.1 s 1 core @ 2.5 Ghz (Python)
251 DASS 92.53 % 96.23 % 87.75 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
252 3D IoU-Net 92.47 % 96.31 % 87.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
253 Associate-3Ddet code 92.45 % 95.61 % 87.32 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
254 S-AT GCN 92.44 % 95.06 % 90.78 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
255 voxelnext_pcdet 92.38 % 94.01 % 89.60 % 0.05 s 1 core @ 2.5 Ghz (Python)
256 CAT2 92.37 % 95.77 % 87.27 % 1 s 1 core @ 2.5 Ghz (C/C++)
257 HA PillarNet 92.37 % 95.38 % 87.40 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
258 PointRGCN 92.33 % 97.51 % 87.07 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
259 Sem-Aug-PointRCNN++ 92.32 % 95.65 % 87.62 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
260 TF-PartA2 92.31 % 95.57 % 89.50 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
261 Harmonic PointPillar code 92.25 % 95.16 % 89.11 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
262 F-ConvNet
This method makes use of Velodyne laser scans.
code 92.19 % 95.85 % 80.09 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
263 PFF3D
This method makes use of Velodyne laser scans.
code 92.15 % 95.37 % 87.54 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
264 PASS-PointPillar 92.09 % 95.20 % 88.73 % 1 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
265 PartA2_basline code 92.07 % 95.65 % 89.54 % 0.09 s 1 core @ 2.5 Ghz (Python)
266 SDP+RPN 92.03 % 95.16 % 79.16 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
267 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 92.00 % 95.88 % 86.98 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
268 MMpp 91.97 % 95.21 % 87.04 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
269 XT-PartA2 91.92 % 95.38 % 89.23 % 0.1 s GPU @ >3.5 Ghz (Python)
270 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 91.90 % 95.92 % 87.11 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
271 mm3d_PartA2 91.88 % 95.27 % 89.21 % 0.1 s GPU @ >3.5 Ghz (Python)
272 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 91.86 % 95.03 % 89.06 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
273 mmFUSION code 91.84 % 95.69 % 87.05 % 1s 1 core @ 2.5 Ghz (Python)
J. Ahmad and A. Del Bue: mmFUSION: Multimodal Fusion for 3D Objects Detection. arXiv preprint arXiv:2311.04058 2023.
274 WeakM3D code 91.81 % 94.51 % 85.35 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
275 epBRM
This method makes use of Velodyne laser scans.
code 91.77 % 94.59 % 88.45 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
276 C-GCN 91.73 % 95.64 % 86.37 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
277 ITVD code 91.73 % 95.85 % 79.31 % 0.3 s GPU @ 2.5 Ghz (C/C++)
Y. Wei Liu: Improving Tiny Vehicle Detection in Complex Scenes. IEEE International Conference on Multimedia and Expo (ICME) 2018.
278 MM_SECOND code 91.71 % 95.14 % 86.75 % 0.05 s GPU @ >3.5 Ghz (Python)
279 SINet+ code 91.67 % 94.17 % 78.60 % 0.3 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
280 Cascade MS-CNN code 91.60 % 94.26 % 78.84 % 0.25 s GPU @ 2.5 Ghz (C/C++)
Z. Cai and N. Vasconcelos: Cascade R-CNN: High Quality Object Detection and Instance Segmentation. arXiv preprint arXiv:1906.09756 2019.
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A unified multi-scale deep convolutional neural network for fast object detection. European conference on computer vision 2016.
281 SeSame-pillar code 91.57 % 95.13 % 88.41 % N/A s TITAN RTX @ 1.35 Ghz (Python)
282 PointRGBNet 91.48 % 95.40 % 86.50 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
283 MAFF-Net(DAF-Pillar) 91.46 % 94.38 % 83.89 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
284 HRI-VoxelFPN 91.44 % 96.65 % 86.18 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
285 MonoAux-v2 code 91.43 % 94.42 % 79.20 % 0.04 s GPU @ 2.5 Ghz (Python)
286 TBD 91.39 % 96.76 % 81.51 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
287 EgoNet code 91.39 % 96.18 % 81.33 % 0.1 s GPU @ 1.5 Ghz (Python)
S. Li, Z. Yan, H. Li and K. Cheng: Exploring intermediate representation for monocular vehicle pose estimation. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
288 SeSame-pillar w/scor code 91.34 % 94.89 % 88.13 % N/A s 1 core @ 2.5 Ghz (C/C++)
289 FDGNet code 91.31 % 96.44 % 83.51 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
290 SHUD 91.28 % 96.57 % 81.36 % 0.04 s 1 core @ 2.5 Ghz (Python)
291 Stereo CenterNet
This method uses stereo information.
91.27 % 96.61 % 83.50 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
292 PointPillars
This method makes use of Velodyne laser scans.
code 91.19 % 94.00 % 88.17 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
293 MEDL-U 91.19 % 96.70 % 86.06 % 1 s GPU @ >3.5 Ghz (Python)
294 LTN 91.18 % 94.68 % 81.51 % 0.4 s GPU @ >3.5 Ghz (Python)
T. Wang, X. He, Y. Cai and G. Xiao: Learning a Layout Transfer Network for Context Aware Object Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
295 EOTL code 91.17 % 96.31 % 81.20 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
296 MonoAux 91.17 % 94.14 % 81.35 % 0.04 s GPU @ 2.5 Ghz (Python)
297 WS3D
This method makes use of Velodyne laser scans.
91.15 % 95.13 % 86.52 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
298 BA2-Det+MonoFlex 91.12 % 96.45 % 81.30 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
299 LWLANet code 91.12 % 94.22 % 81.22 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
300 MonoSGC 91.10 % 94.21 % 83.45 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
301 NeurOCS 91.08 % 96.39 % 81.20 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
302 MSFENet code 91.08 % 96.47 % 83.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
303 KM3D code 91.07 % 96.44 % 81.19 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
304 DID-M3D code 91.04 % 94.29 % 81.31 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
305 FII-CenterNet code 91.03 % 94.48 % 83.00 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
306 Aston-EAS 91.02 % 93.91 % 77.93 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.
307 MonoFlex 91.02 % 96.01 % 83.38 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
308 Mix-Teaching code 91.02 % 96.35 % 83.41 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
309 ARPNET 90.99 % 94.00 % 83.49 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
310 CIE 90.98 % 96.31 % 83.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
311 HINTED 90.97 % 95.16 % 85.55 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
312 DCD code 90.93 % 96.44 % 83.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
313 prcnn_v18_80_100 90.88 % 96.21 % 85.85 % 0.1 s 1 core @ 2.5 Ghz (Python)
314 MonoEF 90.88 % 96.32 % 83.27 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
315 PatchNet code 90.87 % 93.82 % 79.62 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
316 MV3D
This method makes use of Velodyne laser scans.
90.83 % 96.47 % 78.63 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
317 monodle code 90.81 % 93.83 % 80.93 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
318 3D IoU Loss
This method makes use of Velodyne laser scans.
90.79 % 95.92 % 85.65 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
319 SINet_VGG code 90.79 % 93.59 % 77.53 % 0.2 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
320 HomoLoss(monoflex) code 90.69 % 95.92 % 80.91 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
321 VSAC 90.68 % 96.18 % 87.93 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
322 TANet code 90.67 % 93.67 % 85.31 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
323 MonoCInIS 90.60 % 96.05 % 82.43 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
324 SeSame-voxel code 90.55 % 95.78 % 87.62 % N/A s TITAN RTX @ 1.35 Ghz (Python)
325 MonoCDiT 90.53 % 96.01 % 80.69 % 0.05 s GPU @ >3.5 Ghz (Python)
326 DFSemONet(Baseline) 90.51 % 95.58 % 87.58 % 0.04 s GPU @ 2.5 Ghz (Python)
327 CG-Stereo
This method uses stereo information.
90.38 % 96.31 % 82.80 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
328 SCNet
This method makes use of Velodyne laser scans.
90.30 % 95.59 % 85.09 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
329 CMKD code 90.28 % 95.14 % 83.91 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
330 PS-fld code 90.27 % 95.75 % 82.32 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
331 ODGS 90.20 % 95.79 % 85.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
332 MonoSTL 90.19 % 95.32 % 80.53 % na s 1 core @ 2.5 Ghz (Python)
333 Deep3DBox 90.19 % 94.71 % 76.82 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
334 FQNet 90.17 % 94.72 % 76.78 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
335 MonoSIM_v2 90.12 % 95.91 % 80.67 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
336 DeepStereoOP 90.06 % 95.15 % 79.91 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
337 PI-SECOND code 89.99 % 95.31 % 86.86 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
338 SubCNN 89.98 % 94.26 % 79.78 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
339 MLOD
This method makes use of Velodyne laser scans.
code 89.97 % 94.88 % 84.98 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
340 GPP code 89.96 % 94.02 % 81.13 % 0.23 s GPU @ 1.5 Ghz (Python + C/C++)
A. Rangesh and M. Trivedi: Ground plane polling for 6dof pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles 2020.
341 AVOD
This method makes use of Velodyne laser scans.
code 89.88 % 95.17 % 82.83 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
342 SINet_PVA code 89.86 % 92.72 % 76.47 % 0.11 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
343 MVAF-Net(3-classes) 89.67 % 95.69 % 86.79 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
344 MVAF-Net(3-classes) 89.62 % 95.62 % 86.76 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
345 3DOP
This method uses stereo information.
code 89.55 % 92.96 % 79.38 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
346 ADD code 89.53 % 94.82 % 81.60 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
347 IAFA 89.46 % 93.08 % 79.83 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
348 Mono3D code 89.37 % 94.52 % 79.15 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
349 4d-MSCNN
This method uses stereo information.
code 89.37 % 92.40 % 77.00 % 0.3 min GPU @ 3.0 Ghz (Matlab + C/C++)
P. Ferraz, B. Oliveira, F. Ferreira, C. Silva Martins and others: Three-stage RGBD architecture for vehicle and pedestrian detection using convolutional neural networks and stereo vision. IET Intelligent Transport Systems 2020.
350 MonoDDE 89.19 % 96.76 % 81.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
351 MonoUNI code 88.96 % 94.30 % 78.95 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
352 AVOD-FPN
This method makes use of Velodyne laser scans.
code 88.92 % 94.70 % 84.13 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
353 PCT code 88.78 % 96.45 % 78.85 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
354 OPA-3D code 88.77 % 96.50 % 76.55 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
355 AM3D 88.71 % 92.55 % 77.78 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
356 MS-CNN code 88.68 % 93.87 % 76.11 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
357 MonoPSR code 88.50 % 93.63 % 73.36 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
358 Shift R-CNN (mono) code 88.48 % 94.07 % 78.34 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
359 RCD 88.46 % 92.52 % 83.73 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
360 MM-MRFC
This method uses optical flow information.
This method makes use of Velodyne laser scans.
88.46 % 95.54 % 78.14 % 0.05 s GPU @ 2.5 Ghz (C/C++)
A. Costea, R. Varga and S. Nedevschi: Fast Boosting based Detection using Scale Invariant Multimodal Multiresolution Filtered Features. CVPR 2017.
361 MonoRoIDepth 88.45 % 93.99 % 78.50 % 1 s 1 core @ 2.5 Ghz (C/C++)
362 MonoDTR 88.41 % 93.90 % 76.20 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
363 3DBN
This method makes use of Velodyne laser scans.
88.29 % 93.74 % 80.74 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
364 MonoCInIS 88.16 % 96.22 % 75.72 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
365 SVDM-VIEW 88.15 % 94.60 % 79.97 % 1 s 1 core @ 2.5 Ghz (Python)
366 MonoRUn code 87.91 % 95.48 % 78.10 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
367 SMOKE code 87.51 % 93.21 % 77.66 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
368 SH3D 87.33 % 95.79 % 77.76 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
369 MonoFRD 87.31 % 95.25 % 77.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
370 CDN
This method uses stereo information.
code 87.19 % 95.85 % 79.43 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
371 RTM3D code 86.93 % 91.82 % 77.41 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
372 MonoNeRD code 86.89 % 94.60 % 77.23 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
373 MonoRCNN code 86.78 % 91.98 % 66.97 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
374 BirdNet+
This method makes use of Velodyne laser scans.
code 86.73 % 92.61 % 81.80 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
375 MonoRCNN++ code 86.69 % 94.31 % 71.87 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
376 DEVIANT code 86.64 % 94.42 % 76.69 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
377 MonoAuxNorm 86.62 % 92.56 % 78.73 % 0.02 s GPU @ 2.5 Ghz (Python)
378 GUPNet code 86.45 % 94.15 % 74.18 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
379 DSGN
This method uses stereo information.
code 86.43 % 95.53 % 78.75 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
380 MonoAIU 86.30 % 94.06 % 71.53 % 0.03 s GPU @ 2.5 Ghz (Python)
381 MonoDETR code 86.17 % 93.99 % 76.19 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
382 Stereo R-CNN
This method uses stereo information.
code 85.98 % 93.98 % 71.25 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
383 Anonymous 85.82 % 94.15 % 71.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
384 StereoFENet
This method uses stereo information.
85.70 % 91.48 % 77.62 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
385 DE_Fusion 85.69 % 93.85 % 75.81 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
386 MonoSIM 85.65 % 93.99 % 78.58 % 0.16 s 1 core @ 2.5 Ghz (Python)
387 DMF
This method uses stereo information.
85.49 % 89.50 % 82.52 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
388 ResNet-RRC_Car 85.33 % 91.45 % 74.27 % 0.06 s GPU @ 1.5 Ghz (Python + C/C++)
H. Jeon and others: High-Speed Car Detection Using ResNet- Based Recurrent Rolling Convolution. Proceedings of the IEEE conference on systems, man, and cybernetics 2018.
389 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 85.15 % 94.95 % 77.78 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
390 M3D-RPN code 85.08 % 89.04 % 69.26 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
391 CDN-PL++
This method uses stereo information.
85.01 % 94.66 % 77.60 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
392 SDP+CRC (ft) 85.00 % 92.06 % 71.71 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
393 SS3D 84.92 % 92.72 % 70.35 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
394 MonoFENet 84.63 % 91.68 % 76.71 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
395 DLE code 84.45 % 94.66 % 62.10 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
396 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
84.39 % 93.08 % 79.27 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
397 Complexer-YOLO
This method makes use of Velodyne laser scans.
84.16 % 91.92 % 79.62 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
398 MonOAPC 84.13 % 92.39 % 74.62 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
399 BKDStereo3D code 84.10 % 94.61 % 61.85 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
400 ZoomNet
This method uses stereo information.
code 83.92 % 94.22 % 69.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
401 CMAN 83.74 % 89.74 % 65.35 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
402 D4LCN code 83.67 % 90.34 % 65.33 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
403 MonoTAKD V2 83.31 % 93.84 % 77.95 % 0.1 s 1 core @ 2.5 Ghz (Python)
404 MonoLTKD 83.31 % 93.84 % 77.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
405 MonoTAKD 83.31 % 93.84 % 77.95 % 0.1 s 1 core @ 2.5 Ghz (Python)
406 MonoLTKD_V3 83.31 % 93.84 % 77.95 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
407 Faster R-CNN code 83.16 % 88.97 % 72.62 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
408 SGM3D code 83.05 % 93.66 % 73.35 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
409 Pseudo-LiDAR++
This method uses stereo information.
code 82.90 % 94.46 % 75.45 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
410 Disp R-CNN
This method uses stereo information.
code 82.86 % 93.64 % 68.33 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
411 BS3D 82.72 % 95.35 % 70.01 % 22 ms Titan Xp
N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler: Beyond Bounding Boxes: Using Bounding Shapes for Real-Time 3D Vehicle Detection from Monocular RGB Images. 2019 IEEE Intelligent Vehicles Symposium (IV) 2019.
412 Disp R-CNN (velo)
This method uses stereo information.
code 82.64 % 93.45 % 70.45 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
413 HomoLoss(imvoxelnet) code 82.54 % 92.81 % 72.80 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
414 YOLOStereo3D
This method uses stereo information.
code 82.15 % 94.81 % 62.17 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
415 Ground-Aware code 82.05 % 92.33 % 62.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
416 FRCNN+Or code 82.00 % 92.91 % 68.79 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
417 DDMP-3D 81.70 % 91.15 % 63.12 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
418 BKDStereo3D w/o KD code 81.50 % 94.56 % 61.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
419 A3DODWTDA (image) code 81.25 % 78.96 % 70.56 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
420 RefineNet 81.01 % 91.91 % 65.67 % 0.20 s GPU @ 2.5 Ghz (Matlab + C++)
R. Rajaram, E. Bar and M. Trivedi: RefineNet: Refining Object Detectors for Autonomous Driving. IEEE Transactions on Intelligent Vehicles 2016.
R. Rajaram, E. Bar and M. Trivedi: RefineNet: Iterative Refinement for Accurate Object Localization. Intelligent Transportation Systems Conference 2016.
421 MonoTRKDv2 80.76 % 93.78 % 75.36 % 40 s 1 core @ 2.5 Ghz (Python)
422 CaDDN code 80.73 % 93.61 % 71.09 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
423 ESGN
This method uses stereo information.
80.58 % 93.07 % 70.68 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
424 PGD-FCOS3D code 80.58 % 92.04 % 69.67 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
425 GrooMeD-NMS code 80.28 % 90.14 % 63.78 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
426 3D-GCK 80.19 % 89.55 % 68.08 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
427 YoloMono3D code 79.63 % 92.37 % 59.69 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
428 A3DODWTDA
This method makes use of Velodyne laser scans.
code 79.15 % 82.98 % 68.30 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
429 ImVoxelNet code 79.09 % 89.80 % 69.45 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
430 DFR-Net 78.81 % 90.13 % 60.40 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
431 spLBP 78.66 % 81.66 % 61.69 % 1.5 s 8 cores @ 2.5 Ghz (Matlab + C/C++)
Q. Hu, S. Paisitkriangkrai, C. Shen, A. Hengel and F. Porikli: Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework. IEEE Trans. Intelligent Transportation Systems 2016.
432 FMF-occlusion-net 78.21 % 92.33 % 61.58 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
433 3D-SSMFCNN code 78.19 % 77.92 % 69.19 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
434 SST [st]
This method uses stereo information.
78.01 % 90.78 % 70.97 % 1 s 1 core @ 2.5 Ghz (Python)
435 MonoGRNet code 77.94 % 88.65 % 63.31 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
436 Aug3D-RPN 77.88 % 85.57 % 61.16 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
437 AutoShape code 77.66 % 86.51 % 64.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
438 Reinspect code 77.48 % 90.27 % 66.73 % 2s 1 core @ 2.5 Ghz (C/C++)
R. Stewart, M. Andriluka and A. Ng: End-to-End People Detection in Crowded Scenes. CVPR 2016.
439 TS3D
This method uses stereo information.
77.23 % 92.39 % 57.28 % 0.09 s GPU @ 1.5 Ghz (Python + C/C++)
440 multi-task CNN 77.18 % 86.12 % 68.09 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
441 Regionlets 76.99 % 88.75 % 60.49 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
442 3DVP code 76.98 % 84.95 % 65.78 % 40 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Data-Driven 3D Voxel Patterns for Object Category Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2015.
443 Mobile Stereo R-CNN
This method uses stereo information.
76.73 % 90.08 % 62.23 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
444 SubCat code 76.36 % 84.10 % 60.56 % 0.7 s 6 cores @ 3.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
445 GS3D 76.35 % 86.23 % 62.67 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
446 AOG code 76.24 % 86.08 % 61.51 % 3 s 4 cores @ 2.5 Ghz (Matlab)
T. Wu, B. Li and S. Zhu: Learning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation. TPAMI 2016.
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
447 Pose-RCNN 75.83 % 89.59 % 64.06 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
448 Plane-Constraints code 75.43 % 82.54 % 66.82 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
449 3D FCN
This method makes use of Velodyne laser scans.
74.65 % 86.74 % 67.85 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
450 OC Stereo
This method uses stereo information.
code 74.60 % 87.39 % 62.56 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
451 mdab 73.55 % 91.06 % 63.82 % 0.02 s 1 core @ 2.5 Ghz (Python)
452 Kinematic3D code 71.73 % 89.67 % 54.97 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
453 SeSame-point w/score code 71.56 % 88.90 % 61.60 % N/A s GPU @ 1.5 Ghz (Python)
454 AOG-View 71.26 % 85.01 % 55.73 % 3 s 1 core @ 2.5 Ghz (Matlab, C/C++)
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
455 GAC3D 70.73 % 83.30 % 52.23 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
456 MV-RGBD-RF
This method makes use of Velodyne laser scans.
70.70 % 77.89 % 57.41 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
457 Vote3Deep
This method makes use of Velodyne laser scans.
70.30 % 78.95 % 63.12 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
458 ROI-10D 70.16 % 76.56 % 61.15 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
459 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 68.05 % 92.10 % 65.61 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
460 Decoupled-3D 67.92 % 87.78 % 54.53 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
461 SparVox3D 67.88 % 83.76 % 52.56 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
462 Pseudo-Lidar
This method uses stereo information.
code 67.79 % 85.40 % 58.50 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
463 OC-DPM 67.06 % 79.07 % 52.61 % 10 s 8 cores @ 2.5 Ghz (Matlab)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
464 DPM-VOC+VP 66.72 % 82.15 % 49.01 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
465 BdCost48LDCF code 66.63 % 81.38 % 52.20 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
466 RefinedMPL 65.24 % 88.29 % 53.20 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
467 MDPM-un-BB 64.06 % 79.74 % 49.07 % 60 s 4 core @ 2.5 Ghz (MATLAB)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
468 SeSame-voxel w/score code 63.79 % 73.57 % 58.02 % N/A s GPU @ 1.5 Ghz (Python)
469 TLNet (Stereo)
This method uses stereo information.
code 63.53 % 76.92 % 54.58 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
470 PDV-Subcat 63.24 % 78.27 % 47.67 % 7 s 1 core @ 2.5 Ghz (C/C++)
J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential statistic feature for pedestrian and face detection . Pattern Recognition 2017.
471 MDSNet 62.74 % 85.94 % 50.27 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
472 MODet
This method makes use of Velodyne laser scans.
62.54 % 66.06 % 60.04 % 0.05 s GTX1080Ti
Y. Zhang, Z. Xiang, C. Qiao and S. Chen: Accurate and Real-Time Object Detection Based on Bird's Eye View on 3D Point Clouds. 2019 International Conference on 3D Vision (3DV) 2019.
473 CIE + DM3D 61.54 % 79.36 % 53.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
474 SubCat48LDCF code 61.16 % 78.86 % 44.69 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
475 DPM-C8B1
This method uses stereo information.
60.21 % 75.24 % 44.73 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
476 SAMME48LDCF code 58.38 % 77.47 % 44.43 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
477 LSVM-MDPM-sv 58.36 % 71.11 % 43.22 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
478 BirdNet
This method makes use of Velodyne laser scans.
57.12 % 79.30 % 55.16 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
479 ACF-SC 56.60 % 69.90 % 43.61 % <0.3 s 1 core @ >3.5 Ghz (Matlab + C/C++)
C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding System using Context-Aware Object Detection. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2015.
480 LSVM-MDPM-us code 55.95 % 68.94 % 41.45 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
481 ACF 54.09 % 63.05 % 41.81 % 0.2 s 1 core @ >3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
P. Doll\'ar: Piotr's Image and Video Matlab Toolbox (PMT). .
482 Mono3D_PLiDAR code 53.36 % 80.85 % 44.80 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
483 RT3D-GMP
This method uses stereo information.
51.95 % 62.41 % 39.14 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
484 VeloFCN
This method makes use of Velodyne laser scans.
51.82 % 70.53 % 45.70 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
485 Vote3D
This method makes use of Velodyne laser scans.
45.94 % 54.38 % 40.48 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
486 TopNet-HighRes
This method makes use of Velodyne laser scans.
45.85 % 58.04 % 41.11 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
487 RT3DStereo
This method uses stereo information.
45.81 % 56.53 % 37.63 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
488 Multimodal Detection
This method makes use of Velodyne laser scans.
code 45.46 % 63.91 % 37.25 % 0.06 s GPU @ 3.5 Ghz (Matlab + C/C++)
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes: Multimodal vehicle detection: fusing 3D- LIDAR and color camera data. Pattern Recognition Letters 2017.
489 RT3D
This method makes use of Velodyne laser scans.
39.69 % 50.33 % 40.04 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
490 VoxelJones code 36.31 % 43.89 % 34.16 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
491 CSoR
This method makes use of Velodyne laser scans.
code 21.66 % 31.52 % 17.99 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
492 mBoW
This method makes use of Velodyne laser scans.
21.59 % 35.22 % 16.89 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
493 DepthCN
This method makes use of Velodyne laser scans.
code 21.18 % 37.45 % 16.08 % 2.3 s GPU @ 3.5 Ghz (Matlab)
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes: DepthCN: vehicle detection using 3D- LIDAR and convnet. IEEE ITSC 2017.
494 YOLOv2 code 14.31 % 26.74 % 10.94 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
495 TopNet-UncEst
This method makes use of Velodyne laser scans.
6.24 % 7.24 % 5.42 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
496 TopNet-Retina
This method makes use of Velodyne laser scans.
5.00 % 6.82 % 4.52 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
497 init 0.01 % 0.01 % 0.01 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
498 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.01 % 0.00 % 0.01 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
499 LaserNet 0.00 % 0.00 % 0.00 % 12 ms GPU @ 2.5 Ghz (C/C++)
G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington: LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
500 DA3D+KM3D+v2-99 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
501 Neighbor-Vote 0.00 % 0.00 % 0.00 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
502 mdab 0.00 % 0.00 % 0.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
503 DA3D+KM3D 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
504 DA3D 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 LSFM 81.26 % 86.81 % 77.64 % 0.05 s 4 cores @ 2.5 Ghz (Python)
2 F-PointNet
This method makes use of Velodyne laser scans.
code 80.13 % 89.83 % 75.05 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
3 HHA-TFFEM
This method makes use of Velodyne laser scans.
78.53 % 87.01 % 74.70 % 0.14 s GPU @ 2.5 Ghz (Python + C/C++)
F. Tan, Z. Xia, Y. Ma and X. Feng: 3D Sensor Based Pedestrian Detection by Integrating Improved HHA Encoding and Two-Branch Feature Fusion. Remote Sensing 2022.
4 TuSimple code 78.40 % 88.87 % 73.66 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
5 RRC code 76.61 % 85.98 % 71.47 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
6 WSSN
This method makes use of Velodyne laser scans.
76.42 % 84.91 % 71.86 % 0.37 s GPU @ >3.5 Ghz (Python + C/C++)
Z. Guo, W. Liao, Y. Xiao, P. Veelaert and W. Philips: Weak Segmentation Supervised Deep Neural Networks for Pedestrian Detection. Pattern Recognition 2021.
7 ECP Faster R-CNN 76.25 % 85.96 % 70.55 % 0.25 s GPU @ 2.5 Ghz (Python)
M. Braun, S. Krebs, F. Flohr and D. Gavrila: The EuroCity Persons Dataset: A Novel Benchmark for Object Detection. CoRR 2018.
8 Aston-EAS 76.07 % 86.71 % 70.02 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.
9 MHN 75.99 % 87.21 % 69.50 % 0.39 s GPU @ 2.5 Ghz (Python)
J. Cao, Y. Pang, S. Zhao and X. Li: High-Level Semantic Networks for Multi- Scale Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2019.
10 FFNet code 75.81 % 87.17 % 69.86 % 1.07 s GPU @ 1.5 Ghz (Python)
C. Zhao, Y. Qian and M. Yang: Monocular Pedestrian Orientation Estimation Based on Deep 2D-3D Feedforward. Pattern Recognition 2019.
11 SJTU-HW 75.81 % 87.17 % 69.86 % 0.85s GPU @ 1.5 Ghz (Python + C/C++)
S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION EMBEDDED DETECTOR. IEEE International Conference on Image Processing 2018.
L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications 2018.
12 MS-CNN code 74.89 % 85.71 % 68.99 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
13 DD3D code 73.09 % 85.71 % 68.54 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
14 F-ConvNet
This method makes use of Velodyne laser scans.
code 72.91 % 83.63 % 67.18 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
15 GN 72.29 % 82.93 % 65.56 % 1 s GPU @ 2.5 Ghz (Matlab + C/C++)
S. Jung and K. Hong: Deep network aided by guiding network for pedestrian detection. Pattern Recognition Letters 2017.
16 SubCNN 72.27 % 84.88 % 66.82 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
17 VMVS
This method makes use of Velodyne laser scans.
71.82 % 82.80 % 66.85 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
18 EOTL code 71.45 % 84.74 % 64.58 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
19 IVA code 71.37 % 84.61 % 64.90 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection. ACCV 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015.
20 MM-MRFC
This method uses optical flow information.
This method makes use of Velodyne laser scans.
70.76 % 83.79 % 64.81 % 0.05 s GPU @ 2.5 Ghz (C/C++)
A. Costea, R. Varga and S. Nedevschi: Fast Boosting based Detection using Scale Invariant Multimodal Multiresolution Filtered Features. CVPR 2017.
21 SDP+RPN 70.42 % 82.07 % 65.09 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
22 3DOP
This method uses stereo information.
code 69.57 % 83.17 % 63.48 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
23 MonoPSR code 68.56 % 85.60 % 63.34 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
24 DeepStereoOP 68.46 % 83.00 % 63.35 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
25 sensekitti code 68.41 % 82.72 % 62.72 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
26 MonoLSS 67.78 % 82.88 % 60.87 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
27 Frustum-PointPillars code 67.51 % 76.80 % 63.81 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
28 FII-CenterNet code 67.31 % 81.32 % 61.29 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
29 Mono3D code 67.29 % 80.30 % 62.23 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
30 Faster R-CNN code 66.24 % 79.97 % 61.09 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
31 VPFNet code 65.68 % 75.03 % 61.95 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
32 UPIDet code 65.50 % 75.07 % 63.09 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
33 EQ-PVRCNN code 65.01 % 77.19 % 61.95 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
34 CasA++ code 64.94 % 74.41 % 62.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
35 TED code 64.74 % 74.26 % 62.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
36 LoGoNet code 64.55 % 72.47 % 62.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
37 SDGUFusion 64.39 % 73.43 % 61.97 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
38 SDP+CRC (ft) 64.36 % 79.22 % 59.16 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
39 Pose-RCNN 63.54 % 80.07 % 57.02 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
40 USVLab BSAODet code 63.21 % 72.86 % 59.48 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
41 MLF-DET 63.09 % 70.25 % 59.23 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
42 R^2 R-CNN 63.07 % 72.34 % 59.49 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
43 af 62.87 % 71.50 % 59.22 % 1 s GPU @ 2.5 Ghz (Python)
44 CFM 62.84 % 74.76 % 56.06 % <2 s GPU @ 2.5 Ghz (Matlab + C/C++)
Q. Hu, P. Wang, C. Shen, A. Hengel and F. Porikli: Pushing the Limits of Deep CNNs for Pedestrian Detection. IEEE Transactions on Circuits and Systems for Video Technology 2017.
45 CasA code 62.73 % 72.65 % 60.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
46 Fast-CLOCs 62.57 % 76.22 % 60.13 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
47 FIRM-Net 62.50 % 72.65 % 59.84 % 0.07 s 1 core @ 2.5 Ghz (Python)
48 PiFeNet code 62.35 % 72.74 % 59.29 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
49 RPF3D 62.35 % 72.52 % 59.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
50 HotSpotNet 62.31 % 71.43 % 59.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
51 IMLIDAR(base) 61.97 % 72.42 % 58.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
52 P2V-RCNN 61.83 % 71.76 % 59.29 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
53 MonoPair 61.57 % 78.81 % 56.51 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
54 monodle code 61.29 % 78.66 % 56.18 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
55 OGMMDet code 61.26 % 72.41 % 58.79 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
56 ANM code 61.26 % 72.41 % 58.79 % ANM ANM
57 RPN+BF code 61.22 % 77.06 % 55.22 % 0.6 s GPU @ 2.5 Ghz (Matlab + C/C++)
L. Zhang, L. Lin, X. Liang and K. He: Is Faster R-CNN Doing Well for Pedestrian Detection?. ECCV 2016.
58 PIPC-3Ddet code 61.15 % 68.23 % 57.53 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
59 focalnet 61.03 % 69.13 % 58.92 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
60 focalnet 60.99 % 69.06 % 58.89 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
61 3ONet 60.89 % 72.45 % 56.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
62 Regionlets 60.83 % 73.79 % 54.72 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
63 3DSSD code 60.51 % 72.33 % 56.28 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
64 BPG3D 60.24 % 69.19 % 56.74 % 0.05 s 1 core @ 2.5 Ghz (Python)
65 ACFNet 60.12 % 71.42 % 55.96 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
66 OFFNet 60.03 % 67.58 % 57.71 % 0.1 s GPU @ 2.5 Ghz (Python)
67 KPTr 59.79 % 69.70 % 56.03 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
68 LGSLNet 59.58 % 68.54 % 57.34 % 0.1 s GPU @ 2.5 Ghz (Python)
69 IOUFusion 59.52 % 69.10 % 55.41 % 0.1 s GPU @ 2.5 Ghz (Python)
70 DPPFA-Net 59.52 % 67.68 % 56.87 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.
71 ACDet code 59.51 % 71.27 % 57.03 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
72 PV-RCNN-Plus 59.26 % 67.99 % 56.41 % 1 s 1 core @ 2.5 Ghz (C/C++)
73 CZY_PPF_Net 59.26 % 67.81 % 57.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
74 QD-3DT
This is an online method (no batch processing).
code 59.26 % 78.41 % 54.37 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
75 LGNet-3classes code 59.19 % 68.92 % 56.75 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
76 TANet code 59.07 % 69.90 % 56.44 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
77 MonoUNI code 58.97 % 76.17 % 53.99 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
78 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 58.81 % 66.93 % 56.57 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
79 PSMS-Net
This method makes use of Velodyne laser scans.
58.81 % 70.59 % 56.27 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
80 SRDL 58.70 % 68.45 % 56.23 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
81 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 58.37 % 68.88 % 55.38 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
82 casxv1 58.34 % 71.44 % 55.96 % 0.01 s 1 core @ 2.5 Ghz (Python)
83 PASS-PV-RCNN-Plus 58.31 % 67.45 % 55.92 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
84 F3D 58.25 % 67.94 % 55.96 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
85 focal 58.23 % 66.27 % 56.06 % 100 s 1 core @ 2.5 Ghz (Python)
86 Point-GNN
This method makes use of Velodyne laser scans.
code 58.20 % 71.59 % 54.06 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
87 DeepParts 58.15 % 71.47 % 51.92 % ~1 s GPU @ 2.5 Ghz (Matlab)
Y. Tian, P. Luo, X. Wang and X. Tang: Deep Learning Strong Parts for Pedestrian Detection. ICCV 2015.
88 CompACT-Deep 58.14 % 70.93 % 52.29 % 1 s 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Cai, M. Saberian and N. Vasconcelos: Learning Complexity-Aware Cascades for Deep Pedestrian Detection. ICCV 2015.
89 EPNet++ 58.10 % 68.58 % 55.58 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
90 DSGN++
This method uses stereo information.
code 58.09 % 69.70 % 54.45 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
91 casx 58.01 % 71.00 % 53.95 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
92 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 57.96 % 68.78 % 54.01 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
93 SVGA-Net 57.92 % 67.81 % 55.25 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
94 RAFDet 57.89 % 67.85 % 55.67 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
95 AVOD-FPN
This method makes use of Velodyne laser scans.
code 57.87 % 67.95 % 55.23 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
96 DFAF3D 57.65 % 67.45 % 53.89 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
97 HA-PillarNet 57.59 % 66.29 % 55.14 % 0.05 s 1 core @ 2.5 Ghz (Python)
98 PA-Det3D 57.55 % 66.80 % 55.18 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
99 U_PV_V2_ep100_80 57.50 % 66.11 % 55.21 % 0... s 1 core @ 2.5 Ghz (Python)
100 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 57.35 % 67.88 % 54.42 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
101 PDV code 57.34 % 65.94 % 54.21 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
102 SIF 57.32 % 67.78 % 54.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
103 PG-RCNN code 57.31 % 67.77 % 54.83 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
104 VPA 57.27 % 70.06 % 54.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
105 FromVoxelToPoint code 57.26 % 68.26 % 54.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
106 u_second_v4_epoch_10 57.25 % 67.10 % 55.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
107 SemanticVoxels 57.22 % 67.62 % 54.90 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
108 LVFSD 57.20 % 67.44 % 54.67 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
109 centerpoint_pcdet 57.06 % 65.95 % 55.08 % 0.06 s 1 core @ 2.5 Ghz (Python)
110 IIOU code 57.05 % 66.36 % 53.06 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
111 Anonymous code 56.90 % 70.04 % 52.69 % 0.04 s 1 core @ 2.5 Ghz (Python)
112 DiffCandiDet 56.89 % 68.21 % 54.49 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
113 IA-SSD (single) code 56.87 % 66.69 % 54.68 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
114 SFA-GCL(80, k=4) code 56.83 % 69.60 % 54.42 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
115 CAT-Det 56.75 % 67.15 % 53.44 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
116 SFA-GCL_dataaug code 56.73 % 69.55 % 54.32 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
117 SFA-GCL(80) code 56.69 % 67.64 % 52.51 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
118 FRCNN+Or code 56.68 % 71.64 % 51.53 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
119 SFA-GCL code 56.62 % 69.30 % 54.20 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
120 FilteredICF 56.53 % 69.79 % 50.32 % ~ 2 s >8 cores @ 2.5 Ghz (Matlab + C/C++)
S. Zhang, R. Benenson and B. Schiele: Filtered Channel Features for Pedestrian Detection. CVPR 2015.
121 SFA-GCL(baseline) code 56.42 % 69.02 % 54.05 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
122 ARPNET 56.42 % 69.08 % 52.69 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
123 MonoRUn code 56.40 % 73.05 % 51.40 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
124 RAFDet code 56.25 % 66.03 % 52.79 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
125 MV-RGBD-RF
This method makes use of Velodyne laser scans.
56.18 % 72.99 % 49.72 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
126 U_PV_V2_ep_100_100 56.18 % 64.52 % 54.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
127 voxelnext_pcdet 56.13 % 65.44 % 53.73 % 0.05 s 1 core @ 2.5 Ghz (Python)
128 U_second_v4_ep_100_8 56.03 % 65.94 % 53.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
129 HAF-PVP_test 55.96 % 65.29 % 53.25 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
130 HMFI code 55.96 % 66.20 % 53.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
131 MGAF-3DSSD code 55.80 % 66.31 % 52.02 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
132 MG 55.70 % 64.24 % 52.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
133 GUPNet code 55.65 % 74.95 % 48.44 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
134 MLOD
This method makes use of Velodyne laser scans.
code 55.62 % 68.42 % 51.45 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
135 RAFDet 55.41 % 64.91 % 53.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
136 DEVIANT code 55.16 % 74.27 % 50.21 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
137 PointPillars
This method makes use of Velodyne laser scans.
code 55.10 % 65.29 % 52.39 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
138 StereoDistill 55.09 % 69.00 % 50.95 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
139 STD code 55.04 % 68.33 % 50.85 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
140 GeVo 55.04 % 63.95 % 52.93 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
141 DGEnhCL code 55.01 % 67.98 % 52.59 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
142 OPA-3D code 54.92 % 73.93 % 47.87 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
143 SC-SSD 54.83 % 64.15 % 52.65 % 1 s 1 core @ 2.5 Ghz (C/C++)
144 Vote3Deep
This method makes use of Velodyne laser scans.
54.80 % 67.99 % 51.17 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
145 M3DeTR code 54.78 % 63.15 % 52.49 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
146 DDF 54.64 % 67.48 % 50.41 % 0.1 s 1 core @ 2.5 Ghz (Python)
147 L-AUG 54.61 % 65.71 % 51.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
148 TF-PartA2 54.37 % 64.13 % 50.68 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
149 BAPartA2S-4h 54.34 % 64.22 % 51.53 % 0.1 s 1 core @ 2.5 Ghz (Python)
150 SFA-GCL code 54.27 % 66.81 % 50.13 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
151 epBRM
This method makes use of Velodyne laser scans.
code 54.13 % 62.90 % 51.95 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
152 DFSemONet(Baseline) 54.13 % 65.42 % 52.05 % 0.04 s GPU @ 2.5 Ghz (Python)
153 DVFENet 54.13 % 63.54 % 51.79 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
154 XView 53.83 % 62.27 % 51.61 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
155 PointPainting
This method makes use of Velodyne laser scans.
53.76 % 61.86 % 50.61 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
156 MonoInsight 53.72 % 67.31 % 47.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
157 MonoInsight 53.72 % 67.31 % 47.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
158 PDV2 53.54 % 65.59 % 47.65 % 3.7 s 1 core @ 3.0 Ghz Matlab (C/C++)
J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential statistic feature for pedestrian and face detection . Pattern Recognition 2017.
159 PR-SSD 53.52 % 62.55 % 50.04 % 0.02 s GPU @ 2.5 Ghz (Python)
160 Mix-Teaching code 53.52 % 67.34 % 47.45 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
161 DA-Net 53.36 % 68.50 % 48.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
162 AMVFNet code 53.28 % 62.79 % 49.69 % 0.04 s GPU @ 2.5 Ghz (Python)
163 Cube R-CNN code 53.27 % 64.96 % 47.84 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
164 GF-pointnet 53.26 % 62.91 % 50.71 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
165 PVTr 53.23 % 62.15 % 51.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
166 TAFT 53.15 % 67.62 % 47.08 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Shen, X. Zuo, W. Yang, D. Prokhorov, X. Mei and H. Ling: Differential Features for Pedestrian Detection: A Taylor Series Perspective. IEEE Transactions on Intelligent Transportation Systems 2018.
167 Disp R-CNN
This method uses stereo information.
code 52.98 % 71.79 % 48.20 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
168 PI-SECOND code 52.97 % 63.28 % 49.07 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
169 Disp R-CNN (velo)
This method uses stereo information.
code 52.90 % 71.63 % 48.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
170 pAUCEnsT 52.88 % 65.84 % 46.97 % 60 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.
171 SparVox3D 52.84 % 69.33 % 48.49 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
172 AAMVFNet code 52.73 % 63.13 % 50.44 % 0.04 s GPU @ 2.5 Ghz (Python)
173 MonoAIU 52.68 % 71.73 % 45.61 % 0.03 s GPU @ 2.5 Ghz (Python)
174 PFF3D
This method makes use of Velodyne laser scans.
code 52.53 % 62.12 % 50.27 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
175 IA-SSD (multi) code 52.45 % 65.07 % 50.20 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
176 MVAF-Net(3-classes) 52.37 % 64.19 % 49.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
177 S-AT GCN 52.30 % 62.01 % 50.10 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
178 MMLAB LIGA-Stereo
This method uses stereo information.
code 52.18 % 65.59 % 49.29 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
179 HINTED 51.95 % 66.52 % 47.83 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
180 XT-PartA2 51.93 % 61.04 % 49.32 % 0.1 s GPU @ >3.5 Ghz (Python)
181 bs 51.66 % 60.30 % 49.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
182 Plane-Constraints code 51.57 % 64.64 % 46.98 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
183 PUDet 51.41 % 62.39 % 49.08 % 0.3 s GPU @ 2.5 Ghz (Python)
184 mm3d_PartA2 51.40 % 60.60 % 48.39 % 0.1 s GPU @ >3.5 Ghz (Python)
185 Test_dif code 51.35 % 60.86 % 49.27 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
186 Shift R-CNN (mono) code 51.30 % 70.86 % 46.37 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
187 SeSame-point code 51.27 % 60.29 % 49.06 % N/A s TITAN RTX @ 1.35 Ghz (Python)
188 VoxelFSD-S 51.00 % 60.60 % 48.71 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
189 SeSame-voxel code 49.74 % 60.69 % 45.64 % N/A s TITAN RTX @ 1.35 Ghz (Python)
190 SCNet
This method makes use of Velodyne laser scans.
49.61 % 60.95 % 46.91 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
191 MM_SECOND code 49.60 % 60.59 % 46.70 % 0.05 s GPU @ >3.5 Ghz (Python)
192 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 49.41 % 58.93 % 46.44 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
193 MonoSIM_v2 49.01 % 63.65 % 42.86 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
194 HomoLoss(monoflex) code 48.97 % 63.77 % 44.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
195 MMpointpillars 48.95 % 60.01 % 46.12 % 0.05 s 1 core @ 2.5 Ghz (Python)
196 HA PillarNet 48.78 % 59.59 % 46.03 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
197 ACFD
This method makes use of Velodyne laser scans.
code 48.63 % 61.62 % 44.15 % 0.2 s 4 cores @ >3.5 Ghz (C/C++)
M. Dimitrievski, P. Veelaert and W. Philips: Semantically aware multilateral filter for depth upsampling in automotive LiDAR point clouds. IEEE Intelligent Vehicles Symposium, IV 2017, Los Angeles, CA, USA, June 11-14, 2017 2017.
198 R-CNN 48.57 % 62.88 % 43.05 % 4 s GPU @ 3.3 Ghz (C/C++)
J. Hosang, M. Omran, R. Benenson and B. Schiele: Taking a Deeper Look at Pedestrians. arXiv 2015.
199 prcnn_v18_80_100 48.53 % 60.07 % 45.72 % 0.1 s 1 core @ 2.5 Ghz (Python)
200 Anonymous 48.51 % 65.02 % 41.77 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
201 GraphAlign(ICCV2023) code 48.47 % 55.17 % 46.68 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
202 IIOU_LDR code 48.40 % 60.07 % 46.41 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
203 VSAC 48.22 % 60.72 % 45.55 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
204 ROT_S3D 48.11 % 59.38 % 46.18 % 0.1 s GPU @ 2.5 Ghz (Python)
205 MonoLiG code 47.69 % 62.87 % 43.27 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
206 MonoFlex 47.58 % 62.64 % 43.15 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
207 BirdNet+
This method makes use of Velodyne laser scans.
code 47.50 % 54.78 % 45.53 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
208 MVAF-Net(3-classes) 46.87 % 57.07 % 44.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
209 CMKD code 46.84 % 61.04 % 42.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
210 MonOAPC 46.31 % 60.93 % 42.05 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
211 MMpp 46.09 % 56.10 % 43.62 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
212 SS3D 45.79 % 61.58 % 41.14 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
213 MonoRCNN++ code 45.76 % 60.29 % 39.39 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
214 ACF 45.67 % 59.81 % 40.88 % 1 s 1 core @ 3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
215 SH3D 45.64 % 59.74 % 41.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
216 Fusion-DPM
This method makes use of Velodyne laser scans.
code 44.99 % 58.93 % 40.19 % ~ 30 s 1 core @ 3.5 Ghz (Matlab + C/C++)
C. Premebida, J. Carreira, J. Batista and U. Nunes: Pedestrian Detection Combining RGB and Dense LIDAR Data. IROS 2014.
217 ACF-MR 44.79 % 58.29 % 39.94 % 0.6 s 1 core @ 3.5 Ghz (C/C++)
R. Rajaram, E. Ohn-Bar and M. Trivedi: Looking at Pedestrians at Different Scales: A Multi-resolution Approach and Evaluations. T-ITS 2016.
218 MonoTRKDv2 44.54 % 59.66 % 40.12 % 40 s 1 core @ 2.5 Ghz (Python)
219 P2P code 44.30 % 55.25 % 42.40 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
220 SeSame-pillar code 44.21 % 52.67 % 41.95 % N/A s TITAN RTX @ 1.35 Ghz (Python)
221 LPCG-Monoflex code 44.13 % 62.44 % 39.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
222 HA-SSVM 43.87 % 58.76 % 38.81 % 21 s 1 core @ >3.5 Ghz (Matlab + C/C++)
J. Xu, S. Ramos, D. Vázquez and A. López: Hierarchical Adaptive Structural SVM for Domain Adaptation. IJCV 2016.
223 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 43.86 % 54.55 % 40.99 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
224 MonoEF 43.73 % 58.79 % 39.45 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
225 D4LCN code 43.50 % 59.55 % 37.12 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
226 DMF
This method uses stereo information.
43.43 % 52.99 % 41.29 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
227 MonoDDE 43.36 % 57.80 % 39.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
228 DPM-VOC+VP 43.26 % 59.21 % 38.12 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
229 ACF-SC 42.97 % 53.30 % 38.12 % <0.3 s 1 core @ >3.5 Ghz (Matlab + C/C++)
C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding System using Context-Aware Object Detection. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2015.
230 SeSame-voxel w/score code 42.88 % 50.84 % 40.76 % N/A s GPU @ 1.5 Ghz (Python)
231 MonoDTR 42.86 % 59.44 % 38.57 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
232 SquaresICF code 42.61 % 57.08 % 37.85 % 1 s GPU @ >3.5 Ghz (C/C++)
R. Benenson, M. Mathias, T. Tuytelaars and L. Gool: Seeking the strongest rigid detector. CVPR 2013.
233 CG-Stereo
This method uses stereo information.
42.54 % 54.64 % 38.45 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
234 MonoAuxNorm 42.32 % 56.80 % 37.86 % 0.02 s GPU @ 2.5 Ghz (Python)
235 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 41.97 % 51.38 % 40.15 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
236 DDMP-3D 41.54 % 56.73 % 35.52 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
237 CSW3D
This method makes use of Velodyne laser scans.
41.50 % 53.76 % 37.25 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
238 M3D-RPN code 41.46 % 56.64 % 37.31 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
239 YOLOStereo3D
This method uses stereo information.
code 41.46 % 56.20 % 37.07 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
240 fuf 41.42 % 53.95 % 37.48 % 10 s 1 core @ 2.5 Ghz (C/C++)
241 MonoFRD 41.20 % 54.06 % 37.53 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
242 BKDStereo3D code 41.17 % 55.94 % 34.99 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
243 CIE 41.04 % 53.27 % 37.73 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
244 SubCat 40.50 % 53.75 % 35.66 % 1.2 s 6 cores @ 2.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mobile Vision 2014.
245 PS-fld code 40.47 % 55.47 % 36.65 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
246 SeSame-pillar w/scor code 40.24 % 48.38 % 38.25 % N/A s 1 core @ 2.5 Ghz (C/C++)
247 DSGN
This method uses stereo information.
code 39.93 % 49.28 % 38.13 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
248 RT3D-GMP
This method uses stereo information.
39.83 % 55.56 % 35.18 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
249 SparsePool code 39.59 % 50.81 % 35.91 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
250 SparsePool code 39.43 % 50.94 % 35.78 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
251 AVOD
This method makes use of Velodyne laser scans.
code 39.43 % 50.90 % 35.75 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
252 ACF 39.12 % 48.42 % 35.03 % 0.2 s 1 core @ >3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
P. Doll\'ar: Piotr's Image and Video Matlab Toolbox (PMT). .
253 MonoTAKD V2 38.60 % 54.33 % 34.12 % 0.1 s 1 core @ 2.5 Ghz (Python)
254 MonoLTKD 38.60 % 54.33 % 34.12 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
255 MonoTAKD 38.60 % 54.33 % 34.12 % 0.1 s 1 core @ 2.5 Ghz (Python)
256 MonoLTKD_V3 38.60 % 54.33 % 34.12 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
257 LSVM-MDPM-sv 37.26 % 50.74 % 33.13 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
258 ODGS 37.12 % 46.01 % 34.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
259 BKDStereo3D w/o KD code 37.02 % 50.58 % 32.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
260 multi-task CNN 37.00 % 49.38 % 33.46 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
261 MonoSIM 36.71 % 49.49 % 33.24 % 0.16 s 1 core @ 2.5 Ghz (Python)
262 SFEBEV 36.60 % 45.47 % 34.70 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
263 Complexer-YOLO
This method makes use of Velodyne laser scans.
36.45 % 42.16 % 32.91 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
264 LSVM-MDPM-us code 35.92 % 48.73 % 31.70 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
265 SVDM-VIEW 35.90 % 48.27 % 32.44 % 1 s 1 core @ 2.5 Ghz (Python)
266 CMAN 34.96 % 49.73 % 30.92 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
267 Aug3D-RPN 34.95 % 47.22 % 30.64 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
268 FMF-occlusion-net 34.74 % 49.26 % 30.37 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
269 TS3D
This method uses stereo information.
34.44 % 48.70 % 30.26 % 0.09 s GPU @ 1.5 Ghz (Python + C/C++)
270 MonoNeRD code 34.43 % 46.50 % 31.06 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
271 mdab 34.04 % 47.88 % 31.26 % 0.02 s 1 core @ 2.5 Ghz (Python)
272 PointRGBNet 33.92 % 44.35 % 30.43 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
273 PGD-FCOS3D code 33.67 % 48.30 % 29.76 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
274 Vote3D
This method makes use of Velodyne laser scans.
33.04 % 42.66 % 30.59 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
275 ESGN
This method uses stereo information.
32.60 % 44.09 % 29.10 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
276 SGM3D code 32.48 % 45.03 % 28.58 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
277 CaDDN code 32.42 % 46.35 % 29.98 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
278 DFR-Net 31.84 % 45.20 % 27.94 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
279 OC Stereo
This method uses stereo information.
code 30.79 % 43.50 % 28.40 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
280 mBoW
This method makes use of Velodyne laser scans.
30.26 % 41.52 % 26.34 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
281 BirdNet
This method makes use of Velodyne laser scans.
30.07 % 36.82 % 28.40 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
282 SeSame-point w/score code 30.04 % 40.65 % 27.65 % N/A s GPU @ 1.5 Ghz (Python)
283 RT3DStereo
This method uses stereo information.
29.30 % 41.12 % 25.25 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
284 MDSNet 29.25 % 41.64 % 26.01 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
285 SST [st]
This method uses stereo information.
26.78 % 38.41 % 24.58 % 1 s 1 core @ 2.5 Ghz (Python)
286 DPM-C8B1
This method uses stereo information.
25.34 % 36.40 % 22.00 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
287 RefinedMPL 20.81 % 30.41 % 18.72 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
288 TopNet-Retina
This method makes use of Velodyne laser scans.
16.45 % 22.37 % 15.43 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
289 TopNet-HighRes
This method makes use of Velodyne laser scans.
15.28 % 21.22 % 13.89 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
290 YOLOv2 code 11.46 % 15.37 % 9.67 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
291 MonoGhost_Ped_Cycl 9.80 % 13.31 % 9.91 % 0.03 s 1 core @ 2.5 Ghz (Python)
292 TopNet-UncEst
This method makes use of Velodyne laser scans.
8.58 % 13.00 % 7.38 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
293 BIP-HETERO 7.05 % 8.51 % 6.30 % ~2 s 1 core @ 2.5 Ghz (C/C++)
A. Mekonnen, F. Lerasle, A. Herbulot and C. Briand: People Detection with Heterogeneous Features and Explicit Optimization on Computation Time. Pattern Recognition (ICPR), 2014 22nd International Conference on 2014.
294 init 0.03 % 0.03 % 0.03 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
295 mdab 0.02 % 0.02 % 0.02 % 0.02 s 1 core @ 2.5 Ghz (Python)
296 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.01 % 0.01 % 0.01 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
297 DA3D+KM3D+v2-99 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
298 DA3D+KM3D 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
299 DA3D 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 OFFNet 86.24 % 89.05 % 81.37 % 0.1 s GPU @ 2.5 Ghz (Python)
2 UPIDet code 84.44 % 90.16 % 77.71 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
3 TED code 84.36 % 92.60 % 78.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 CasA++ code 84.26 % 92.38 % 78.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
5 LoGoNet code 84.00 % 90.14 % 77.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
6 CasA code 83.21 % 92.86 % 77.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
7 MLF-DET 81.95 % 87.34 % 74.79 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
8 VPA 81.85 % 89.87 % 75.16 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
9 HMFI code 81.76 % 89.35 % 74.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
10 IMLIDAR(base) 81.72 % 90.91 % 75.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
11 RangeIoUDet
This method makes use of Velodyne laser scans.
81.67 % 90.43 % 74.90 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
12 USVLab BSAODet code 81.36 % 86.82 % 74.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
13 HA-PillarNet 81.03 % 89.88 % 75.05 % 0.05 s 1 core @ 2.5 Ghz (Python)
14 U_PV_V2_ep100_80 80.85 % 89.46 % 74.01 % 0... s 1 core @ 2.5 Ghz (Python)
15 BPG3D 80.77 % 88.77 % 73.75 % 0.05 s 1 core @ 2.5 Ghz (Python)
16 CAT-Det 80.70 % 87.94 % 73.86 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
17 SPG_mini
This method makes use of Velodyne laser scans.
code 80.58 % 87.77 % 74.86 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
18 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 80.57 % 88.65 % 74.81 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
19 PIPC-3Ddet code 80.49 % 89.69 % 73.73 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
20 BtcDet
This method makes use of Velodyne laser scans.
code 80.46 % 88.41 % 74.59 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
21 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 80.42 % 86.62 % 73.64 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
22 EQ-PVRCNN code 80.37 % 89.07 % 74.20 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
23 Anonymous code 80.21 % 89.61 % 73.14 % 0.04 s 1 core @ 2.5 Ghz (Python)
24 PSMS-Net
This method makes use of Velodyne laser scans.
80.10 % 88.76 % 73.27 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
25 HINTED 80.04 % 86.76 % 73.45 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
26 PDV code 79.84 % 88.76 % 73.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
27 CZY_PPF_Net 79.75 % 87.34 % 73.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
28 U_PV_V2_ep_100_100 79.60 % 86.87 % 73.32 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
29 KPTr 79.55 % 87.31 % 72.47 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
30 GeVo 79.54 % 89.03 % 73.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
31 M3DeTR code 79.29 % 87.38 % 72.46 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
32 DiffCandiDet 79.27 % 88.76 % 72.87 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
33 PASS-PV-RCNN-Plus 79.22 % 86.26 % 72.68 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
34 HAF-PVP_test 79.19 % 89.84 % 71.93 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
35 PV-RCNN-Plus 79.01 % 86.50 % 72.88 % 1 s 1 core @ 2.5 Ghz (C/C++)
36 HotSpotNet 78.81 % 86.06 % 71.74 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
37 IA-SSD (single) code 78.71 % 88.99 % 72.03 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
38 PG-RCNN code 78.69 % 88.17 % 72.16 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
39 DDF 78.41 % 89.27 % 71.46 % 0.1 s 1 core @ 2.5 Ghz (Python)
40 PA-Det3D 78.31 % 87.56 % 71.82 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
41 focalnet 78.30 % 85.05 % 73.30 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
42 focalnet 78.29 % 85.19 % 73.15 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
43 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 78.29 % 88.90 % 71.19 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
44 LGNet-3classes code 78.21 % 84.45 % 71.71 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
45 SDGUFusion 78.13 % 86.06 % 71.95 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
46 F-ConvNet
This method makes use of Velodyne laser scans.
code 78.05 % 86.75 % 68.12 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
47 PointPainting
This method makes use of Velodyne laser scans.
78.04 % 87.70 % 69.27 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
48 mm3d_PartA2 78.02 % 89.05 % 71.63 % 0.1 s GPU @ >3.5 Ghz (Python)
49 DFAF3D 77.74 % 87.20 % 70.77 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
50 OGMMDet code 77.59 % 86.71 % 72.35 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
51 ANM code 77.59 % 88.61 % 72.35 % ANM ANM
52 casx 77.58 % 88.94 % 70.80 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
53 FIRM-Net 77.51 % 89.49 % 70.60 % 0.07 s 1 core @ 2.5 Ghz (Python)
54 PVTr 77.49 % 89.71 % 70.58 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
55 3ONet 77.36 % 89.11 % 70.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
56 RPF3D 77.20 % 89.45 % 70.36 % 0.1 s 1 core @ 2.5 Ghz (Python)
57 GraphAlign(ICCV2023) code 77.15 % 84.72 % 72.34 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
58 BAPartA2S-4h 77.04 % 89.14 % 71.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
59 RAFDet 77.00 % 87.23 % 70.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
60 P2V-RCNN 76.93 % 88.40 % 70.35 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
61 EOTL code 76.88 % 85.62 % 66.04 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
62 RRC code 76.81 % 86.81 % 66.59 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
63 XT-PartA2 76.70 % 87.40 % 71.40 % 0.1 s GPU @ >3.5 Ghz (Python)
64 af 76.63 % 85.66 % 71.49 % 1 s GPU @ 2.5 Ghz (Python)
65 RAFDet 76.40 % 88.57 % 69.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
66 GF-pointnet 76.31 % 85.23 % 69.74 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
67 AAMVFNet code 76.28 % 85.63 % 69.91 % 0.04 s GPU @ 2.5 Ghz (Python)
68 ACFNet 76.15 % 86.92 % 71.33 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
69 AMVFNet code 75.81 % 84.77 % 69.81 % 0.04 s GPU @ 2.5 Ghz (Python)
70 F3D 75.75 % 88.38 % 69.02 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
71 DA-Net 75.64 % 86.64 % 71.06 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
72 PR-SSD 75.64 % 85.78 % 70.35 % 0.02 s GPU @ 2.5 Ghz (Python)
73 casxv1 75.52 % 88.33 % 68.68 % 0.01 s 1 core @ 2.5 Ghz (Python)
74 TF-PartA2 75.48 % 87.04 % 69.43 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
75 ACDet code 75.41 % 88.54 % 69.45 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
76 u_second_v4_epoch_10 75.38 % 87.96 % 69.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
77 bs 75.35 % 84.07 % 69.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
78 MS-CNN code 75.30 % 84.88 % 65.27 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
79 LGSLNet 75.29 % 84.01 % 70.60 % 0.1 s GPU @ 2.5 Ghz (Python)
80 TuSimple code 75.22 % 83.68 % 65.22 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
81 SVGA-Net 75.14 % 85.13 % 68.14 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
82 Point-GNN
This method makes use of Velodyne laser scans.
code 75.08 % 85.75 % 68.69 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
83 Fast-CLOCs 75.07 % 89.73 % 67.93 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
84 centerpoint_pcdet 75.03 % 86.02 % 68.18 % 0.06 s 1 core @ 2.5 Ghz (Python)
85 VoxelFSD-S 74.89 % 87.24 % 67.98 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
86 Deep3DBox 74.78 % 84.36 % 64.05 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
87 U_second_v4_ep_100_8 74.75 % 84.43 % 67.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
88 prcnn_v18_80_100 74.74 % 86.53 % 67.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
89 VPFNet code 74.52 % 82.60 % 66.04 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
90 SC-SSD 74.45 % 84.37 % 67.85 % 1 s 1 core @ 2.5 Ghz (C/C++)
91 voxelnext_pcdet 74.37 % 87.58 % 67.60 % 0.05 s 1 core @ 2.5 Ghz (Python)
92 3DSSD code 74.12 % 87.09 % 67.67 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
93 focal 74.03 % 84.16 % 69.35 % 100 s 1 core @ 2.5 Ghz (Python)
94 SDP+RPN 73.85 % 82.59 % 64.87 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
95 SRDL 73.68 % 85.44 % 66.94 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
96 DVFENet 73.66 % 85.45 % 67.10 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
97 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 73.63 % 85.43 % 66.64 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
98 MM_SECOND code 73.63 % 85.26 % 67.06 % 0.05 s GPU @ >3.5 Ghz (Python)
99 sensekitti code 73.48 % 82.90 % 64.03 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
100 PI-SECOND code 73.44 % 87.02 % 67.23 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
101 L-AUG 73.43 % 83.88 % 68.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
102 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 73.42 % 86.21 % 66.45 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
103 RAFDet code 73.40 % 84.98 % 67.27 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
104 IIOU code 73.20 % 86.92 % 66.11 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
105 SIF 73.19 % 85.18 % 65.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
106 F-PointNet
This method makes use of Velodyne laser scans.
code 73.16 % 86.86 % 65.21 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
107 FromVoxelToPoint code 73.16 % 87.07 % 65.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
108 XView 73.16 % 88.02 % 65.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
109 S-AT GCN 72.81 % 82.79 % 66.72 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
110 H^23D R-CNN code 72.73 % 85.50 % 65.81 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
111 MG 72.54 % 84.19 % 65.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
112 IOUFusion 72.49 % 86.41 % 65.60 % 0.1 s GPU @ 2.5 Ghz (Python)
113 Test_dif code 72.47 % 85.59 % 67.50 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
114 SFA-GCL(80) code 72.46 % 87.24 % 65.43 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
115 SFA-GCL(80, k=4) code 72.34 % 86.83 % 63.31 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
116 SFA-GCL code 72.34 % 87.19 % 65.26 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
117 SeSame-point code 72.25 % 84.16 % 65.39 % N/A s TITAN RTX @ 1.35 Ghz (Python)
118 P2P code 72.17 % 82.32 % 65.65 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
119 MonoPSR code 72.08 % 82.06 % 62.43 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
120 ARPNET 71.95 % 84.96 % 65.21 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
121 SubCNN 71.72 % 79.36 % 62.74 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
122 STD code 71.63 % 83.99 % 64.92 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
123 DGEnhCL code 71.39 % 85.86 % 62.42 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
124 LVFSD 71.09 % 85.81 % 64.75 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
125 IA-SSD (multi) code 70.46 % 84.98 % 65.55 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
126 MGAF-3DSSD code 70.41 % 86.42 % 63.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
127 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 70.18 % 82.86 % 63.55 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
128 SFA-GCL(baseline) code 69.91 % 86.64 % 60.86 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
129 fuf 69.67 % 84.99 % 62.91 % 10 s 1 core @ 2.5 Ghz (C/C++)
130 SFA-GCL_dataaug code 69.65 % 86.23 % 62.64 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
131 SeSame-voxel code 69.59 % 87.27 % 62.84 % N/A s TITAN RTX @ 1.35 Ghz (Python)
132 SFA-GCL code 69.58 % 86.24 % 62.53 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
133 IIOU_LDR code 69.49 % 83.10 % 64.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
134 VSAC 69.36 % 88.58 % 62.27 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
135 PointPillars
This method makes use of Velodyne laser scans.
code 68.98 % 83.97 % 62.17 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
136 Vote3Deep
This method makes use of Velodyne laser scans.
68.82 % 78.41 % 62.50 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
137 3DOP
This method uses stereo information.
code 68.71 % 80.52 % 61.07 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
138 ROT_S3D 68.53 % 84.35 % 63.76 % 0.1 s GPU @ 2.5 Ghz (Python)
139 Pose-RCNN 68.40 % 81.53 % 59.43 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
140 EPNet++ 68.30 % 80.27 % 63.00 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
141 TANet code 68.20 % 82.24 % 62.13 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
142 IVA code 67.57 % 78.48 % 58.83 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection. ACCV 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015.
143 DeepStereoOP 67.22 % 79.35 % 58.60 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
144 Cube R-CNN code 66.98 % 81.99 % 58.56 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
145 MMpp 66.87 % 80.54 % 60.69 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
146 SeSame-pillar code 66.76 % 77.99 % 60.45 % N/A s TITAN RTX @ 1.35 Ghz (Python)
147 MMpointpillars 66.66 % 77.03 % 61.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
148 HA PillarNet 66.63 % 78.41 % 60.09 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
149 FII-CenterNet code 66.54 % 79.04 % 57.76 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
150 epBRM
This method makes use of Velodyne laser scans.
code 66.51 % 79.65 % 60.31 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
151 PFF3D
This method makes use of Velodyne laser scans.
code 66.25 % 79.44 % 60.11 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
152 DD3D code 65.98 % 81.13 % 58.86 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
153 PointRGBNet 65.98 % 79.87 % 59.75 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
154 PUDet 65.72 % 79.83 % 59.32 % 0.3 s GPU @ 2.5 Ghz (Python)
155 BirdNet+
This method makes use of Velodyne laser scans.
code 65.40 % 72.96 % 60.23 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
156 Mono3D code 65.15 % 77.19 % 57.88 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
157 DMF
This method uses stereo information.
63.39 % 74.69 % 56.96 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
158 PiFeNet code 63.34 % 78.05 % 56.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
159 SFEBEV 62.93 % 75.79 % 57.31 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
160 Faster R-CNN code 62.86 % 72.40 % 54.97 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
161 SCNet
This method makes use of Velodyne laser scans.
62.50 % 78.48 % 56.34 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
162 DSGN++
This method uses stereo information.
code 62.10 % 77.71 % 55.78 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
163 StereoDistill 61.46 % 80.92 % 54.64 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
164 DFSemONet(Baseline) 61.46 % 77.65 % 55.87 % 0.04 s GPU @ 2.5 Ghz (Python)
165 AVOD-FPN
This method makes use of Velodyne laser scans.
code 60.79 % 70.38 % 55.37 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
166 SDP+CRC (ft) 60.72 % 75.63 % 53.00 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
167 MVAF-Net(3-classes) 60.04 % 74.01 % 55.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
168 MonoInsight 59.86 % 76.21 % 51.17 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
169 MonoInsight 59.86 % 76.21 % 51.17 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
170 Complexer-YOLO
This method makes use of Velodyne laser scans.
59.78 % 66.94 % 55.63 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
171 MVAF-Net(3-classes) 59.54 % 72.32 % 55.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
172 Mix-Teaching code 58.65 % 75.15 % 50.54 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
173 Regionlets 58.52 % 71.12 % 50.83 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
174 MonoLiG code 58.35 % 80.41 % 51.21 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
175 FRCNN+Or code 57.01 % 70.99 % 50.14 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
176 QD-3DT
This is an online method (no batch processing).
code 56.51 % 75.55 % 49.70 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
177 MonoPair 56.37 % 74.77 % 48.37 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
178 MLOD
This method makes use of Velodyne laser scans.
code 56.04 % 75.35 % 49.11 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
179 SeSame-voxel w/score code 55.27 % 67.26 % 50.21 % N/A s GPU @ 1.5 Ghz (Python)
180 MonoFlex 54.76 % 72.41 % 46.21 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
181 MonoLSS 54.63 % 74.54 % 47.98 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
182 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 54.61 % 74.97 % 50.29 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
183 MMLAB LIGA-Stereo
This method uses stereo information.
code 54.57 % 74.40 % 48.11 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
184 HomoLoss(monoflex) code 54.12 % 70.14 % 46.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
185 MonoUNI code 53.71 % 71.68 % 45.26 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
186 monodle code 53.29 % 70.78 % 45.01 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
187 LPCG-Monoflex code 53.04 % 72.36 % 46.11 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
188 AVOD
This method makes use of Velodyne laser scans.
code 52.60 % 66.45 % 46.39 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
189 CMKD code 51.76 % 73.18 % 45.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
190 MonOAPC 51.68 % 68.18 % 44.08 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
191 SH3D 51.59 % 73.71 % 44.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
192 MonoDDE 51.10 % 70.85 % 44.02 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
193 MonoDTR 49.48 % 64.93 % 42.76 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
194 MonoRUn code 49.13 % 67.47 % 43.41 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
195 MonoRCNN++ code 48.84 % 67.78 % 42.44 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
196 CG-Stereo
This method uses stereo information.
48.46 % 69.98 % 42.41 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
197 MonoSIM_v2 48.20 % 68.66 % 41.69 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
198 BirdNet
This method makes use of Velodyne laser scans.
47.64 % 64.91 % 44.59 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
199 MonoAIU 46.87 % 69.33 % 40.57 % 0.03 s GPU @ 2.5 Ghz (Python)
200 DEVIANT code 46.42 % 67.71 % 39.44 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
201 Disp R-CNN (velo)
This method uses stereo information.
code 46.37 % 63.22 % 40.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
202 Disp R-CNN
This method uses stereo information.
code 46.37 % 63.24 % 40.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
203 SparsePool code 44.57 % 60.53 % 40.37 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
204 Anonymous 43.40 % 67.49 % 38.66 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
205 Shift R-CNN (mono) code 42.96 % 63.24 % 38.22 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
206 D4LCN code 42.86 % 65.29 % 36.29 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
207 GUPNet code 42.78 % 67.11 % 37.94 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
208 MonoAuxNorm 42.37 % 62.78 % 36.88 % 0.02 s GPU @ 2.5 Ghz (Python)
209 M3D-RPN code 41.54 % 61.54 % 35.23 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
210 MonoEF 41.19 % 51.06 % 35.70 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
211 PS-fld code 41.13 % 58.13 % 35.90 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
212 Plane-Constraints code 41.01 % 58.71 % 35.35 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
213 MV-RGBD-RF
This method makes use of Velodyne laser scans.
40.94 % 51.10 % 34.83 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
214 MonoTRKDv2 39.61 % 56.76 % 34.50 % 40 s 1 core @ 2.5 Ghz (Python)
215 MonoFRD 38.98 % 55.86 % 34.32 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
216 MonoTAKD V2 38.84 % 58.63 % 33.99 % 0.1 s 1 core @ 2.5 Ghz (Python)
217 MonoLTKD 38.84 % 58.63 % 33.99 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
218 MonoTAKD 38.84 % 58.63 % 33.99 % 0.1 s 1 core @ 2.5 Ghz (Python)
219 MonoLTKD_V3 38.84 % 58.63 % 33.99 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
220 DDMP-3D 38.62 % 58.70 % 34.10 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
221 CMAN 38.36 % 58.12 % 31.79 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
222 OPA-3D code 38.35 % 55.98 % 33.83 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
223 Aug3D-RPN 36.69 % 51.49 % 30.04 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
224 SparsePool code 36.26 % 44.21 % 32.57 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
225 SS3D 35.48 % 52.97 % 31.07 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
226 DSGN
This method uses stereo information.
code 35.15 % 49.10 % 31.41 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
227 pAUCEnsT 34.90 % 50.51 % 30.35 % 60 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.
228 TopNet-Retina
This method makes use of Velodyne laser scans.
31.98 % 47.51 % 29.84 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
229 DFR-Net 31.93 % 48.34 % 27.95 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
230 SVDM-VIEW 31.75 % 47.79 % 27.83 % 1 s 1 core @ 2.5 Ghz (Python)
231 CIE 30.10 % 38.03 % 26.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
232 MonoNeRD code 29.89 % 45.35 % 26.49 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
233 OC Stereo
This method uses stereo information.
code 28.76 % 43.18 % 24.80 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
234 Vote3D
This method makes use of Velodyne laser scans.
27.99 % 39.81 % 25.19 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
235 SGM3D code 27.89 % 42.21 % 24.73 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
236 LSVM-MDPM-us code 27.81 % 37.66 % 24.83 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
237 DPM-VOC+VP 27.73 % 41.58 % 24.61 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
238 RefinedMPL 27.17 % 44.47 % 22.84 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
239 CaDDN code 27.13 % 40.03 % 23.23 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
240 PGD-FCOS3D code 26.48 % 44.28 % 23.03 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
241 SeSame-pillar w/scor code 26.32 % 23.56 % 24.54 % N/A s 1 core @ 2.5 Ghz (C/C++)
242 LSVM-MDPM-sv 26.05 % 35.70 % 23.56 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
243 SST [st]
This method uses stereo information.
25.96 % 41.39 % 22.78 % 1 s 1 core @ 2.5 Ghz (Python)
244 DPM-C8B1
This method uses stereo information.
25.57 % 41.47 % 21.93 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
245 FMF-occlusion-net 23.59 % 37.41 % 21.20 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
246 RT3D-GMP
This method uses stereo information.
22.90 % 33.64 % 19.87 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
247 MonoSIM 20.28 % 27.90 % 17.23 % 0.16 s 1 core @ 2.5 Ghz (Python)
248 mBoW
This method makes use of Velodyne laser scans.
17.63 % 26.66 % 16.02 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
249 MonoGhost_Ped_Cycl 17.42 % 24.56 % 15.40 % 0.03 s 1 core @ 2.5 Ghz (Python)
250 MDSNet 16.64 % 28.23 % 14.14 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
251 mdab 15.76 % 25.82 % 14.16 % 0.02 s 1 core @ 2.5 Ghz (Python)
252 TopNet-HighRes
This method makes use of Velodyne laser scans.
13.98 % 22.86 % 14.52 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
253 ESGN
This method uses stereo information.
13.45 % 21.13 % 11.72 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
254 RT3DStereo
This method uses stereo information.
12.96 % 19.58 % 11.47 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
255 TopNet-UncEst
This method makes use of Velodyne laser scans.
12.00 % 18.14 % 11.85 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
256 SeSame-point w/score code 10.20 % 12.43 % 9.34 % N/A s GPU @ 1.5 Ghz (Python)
257 init 0.13 % 0.08 % 0.07 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
258 YOLOv2 code 0.06 % 0.15 % 0.07 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
259 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.04 % 0.00 % 0.04 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
260 DA3D+KM3D+v2-99 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
261 mdab 0.00 % 0.00 % 0.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
262 DA3D+KM3D 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
263 DA3D 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods

Object Detection and Orientation Estimation Evaluation

Cars


Method Setting Code Moderate Easy Hard Runtime Environment
1 MB3D 97.72 % 98.75 % 92.81 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
2 LVP(84.92) 97.66 % 98.68 % 92.81 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
3 MuTOD 97.44 % 98.63 % 94.30 % 0.04 s 1 core @ 2.5 Ghz (Python)
4 OGMMDet code 97.43 % 98.44 % 92.72 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
5 UDeerPEP code 97.39 % 98.40 % 94.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen: PeP: a Point enhanced Painting method for unified point cloud tasks. 2023.
6 ANM code 97.12 % 97.65 % 94.40 % ANM ANM
7 VirConv-S code 96.46 % 96.99 % 93.74 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
8 GraR-VoI code 96.29 % 96.81 % 91.06 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
9 MLF-DET 96.09 % 96.87 % 88.78 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
10 GraR-Po code 96.09 % 96.83 % 90.99 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
11 SFD code 96.05 % 98.95 % 90.96 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
12 VPFNet code 96.04 % 96.63 % 90.99 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
13 VirConv-T code 96.01 % 98.64 % 93.12 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
14 HDet3D 96.00 % 96.69 % 90.84 % 0.07 s >8 cores @ 2.5 Ghz (Python)
15 TED code 95.96 % 96.63 % 93.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
16 RDIoU code 95.95 % 98.77 % 90.90 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
17 ACFNet 95.95 % 96.64 % 93.17 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
18 PVFusion code 95.94 % 96.76 % 90.90 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
19 CLOCs code 95.93 % 96.77 % 90.93 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
20 GraR-Vo code 95.92 % 96.66 % 92.78 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
21 LFT 95.87 % 99.15 % 88.47 % 0.1s 1 core @ 2.5 Ghz (C/C++)
22 UPIDet code 95.85 % 96.25 % 93.17 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
23 PVT-SSD 95.83 % 96.74 % 90.58 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
24 CLOCs_PVCas code 95.79 % 96.74 % 90.81 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
25 3D Dual-Fusion code 95.76 % 96.53 % 93.01 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
26 PIPC-3Ddet code 95.75 % 96.79 % 90.79 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
27 GLENet-VR code 95.73 % 96.84 % 90.80 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
Y. Zhang, J. Hou and Y. Yuan: A Comprehensive Study of the Robustness for LiDAR-based 3D Object Detectors against Adversarial Attacks. International Journal of Computer Vision 2023.
28 GraR-Pi code 95.72 % 98.57 % 92.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
29 VPA 95.71 % 96.70 % 90.81 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
30 NIV-SSD 95.71 % 98.66 % 90.64 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
31 DiffCandiDet 95.70 % 96.57 % 92.75 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
32 OcTr 95.69 % 96.44 % 90.78 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
33 CDF 95.66 % 96.21 % 90.48 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
34 DVF-V 95.63 % 96.59 % 90.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
35 test 95.61 % 98.37 % 92.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
36 MAK code 95.60 % 96.67 % 90.72 % 0.03 s GPU @ 2.5 Ghz (Python)
37 URFormer 95.59 % 98.45 % 92.69 % 0.1 s 1 core @ 2.5 Ghz (Python)
38 DSGN++
This method uses stereo information.
code 95.58 % 98.04 % 88.09 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
39 HAF-PVP_test 95.57 % 98.85 % 92.64 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
40 Fast-CLOCs 95.57 % 96.66 % 90.70 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
41 MAK_VOXEL_RCNN 95.56 % 98.62 % 92.82 % 0.03 s 1 core @ 2.5 Ghz (Python)
42 TSSTDet 95.56 % 96.54 % 92.71 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang, D. Bui and M. Yoo: TSSTDet: Transformation-Based 3-D Object Detection via a Spatial Shape Transformer. IEEE Sensors Journal 2024.
43 3D HANet code 95.54 % 98.59 % 92.66 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
44 PA-Det3D 95.53 % 96.36 % 90.87 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
45 FARP-Net code 95.53 % 96.10 % 92.98 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
46 CasA code 95.53 % 96.51 % 92.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
47 FEIF3D
This method makes use of Velodyne laser scans.
95.49 % 96.42 % 92.78 % 0.1 s GPU @ 2.5 Ghz (Python)
48 LVP 95.47 % 98.45 % 92.56 % 0.04 s 1 core @ 2.5 Ghz (Python)
49 spark2 95.45 % 96.38 % 92.70 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
50 LoGoNet code 95.44 % 96.59 % 92.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
51 spark_voxel_rcnn code 95.44 % 96.40 % 92.68 % 0.04 s 1 core @ 2.5 Ghz (Python)
52 SGFNet 95.43 % 98.42 % 92.46 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
53 CAFI-Pillars 95.43 % 96.46 % 90.56 % 30ms NVIDIA Tesla P40 GPU
54 spark 95.42 % 96.33 % 92.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
55 voxel_spark code 95.42 % 96.36 % 92.68 % 0.04 s GPU @ 2.5 Ghz (C/C++)
56 PSMS-Net
This method makes use of Velodyne laser scans.
95.42 % 96.67 % 90.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
57 SS-3DSSD code 95.39 % 96.30 % 90.43 % 0.014s 1 core @ 2.5 Ghz (C/C++)
58 SDGUFusion 95.39 % 98.54 % 92.77 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
59 VDF 95.37 % 98.55 % 92.41 % 0.03 s GPU @ 2.5 Ghz (Python)
60 GD-MAE 95.36 % 98.31 % 90.19 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
61 Voxel_Spark_focal_we code 95.35 % 96.37 % 92.63 % 0.08 s 1 core @ 2.5 Ghz (Python)
62 DVF-PV 95.35 % 96.40 % 92.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
63 SFD++ 95.35 % 98.38 % 92.39 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
64 BADet code 95.34 % 98.65 % 90.28 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
65 Anonymous 95.33 % 96.39 % 92.65 % 0.1 s 1 core @ 2.5 Ghz (Python)
66 LGNet-Car code 95.31 % 96.51 % 92.55 % 0.11 s 1 core @ 2.5 Ghz (Python + C/C++)
67 SASA
This method makes use of Velodyne laser scans.
code 95.29 % 96.00 % 92.42 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
68 3D-BCM 95.27 % 98.47 % 92.39 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
69 PG-RCNN code 95.27 % 96.64 % 90.37 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
70 Focals Conv code 95.23 % 96.29 % 92.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
71 FIRM-Net 95.20 % 96.27 % 92.41 % 0.07 s 1 core @ 2.5 Ghz (Python)
72 EQ-PVRCNN code 95.20 % 98.22 % 92.47 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
73 TED-S Reproduced 95.19 % 98.43 % 92.55 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
74 CasA++ code 95.17 % 95.81 % 94.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
75 SE-SSD
This method makes use of Velodyne laser scans.
code 95.17 % 96.55 % 90.00 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
76 LGSLNet 95.14 % 97.98 % 92.61 % 0.1 s GPU @ 2.5 Ghz (Python)
77 TED_S_baseline code 95.13 % 96.24 % 92.41 % 0.09 s 1 core @ 2.5 Ghz (Python)
78 VoxSeT code 95.13 % 96.15 % 90.38 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
79 PR-SSD 95.10 % 97.62 % 92.33 % 0.02 s GPU @ 2.5 Ghz (Python)
80 RPF3D 95.08 % 96.26 % 90.28 % 0.1 s 1 core @ 2.5 Ghz (Python)
81 HMFI code 95.05 % 96.28 % 92.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
82 SPANet 95.03 % 96.31 % 89.99 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
83 Pyramid R-CNN 95.03 % 95.87 % 92.46 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
84 VPFNet code 95.01 % 96.03 % 92.41 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
85 EPNet++ 95.00 % 96.70 % 91.82 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
86 GF-pointnet 94.99 % 95.92 % 92.22 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
87 USVLab BSAODet code 94.99 % 96.23 % 92.36 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
88 RBEV-Voxel code 94.99 % 96.41 % 90.10 % 0.08 s GPU @ 2.5 Ghz (Python)
89 Voxel R-CNN code 94.96 % 96.47 % 92.24 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
90 TEDx 94.94 % 96.11 % 92.15 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
91 BPG3D 94.93 % 97.97 % 92.24 % 0.05 s 1 core @ 2.5 Ghz (Python)
92 PDV code 94.91 % 96.06 % 92.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
93 RAFDet 94.91 % 95.93 % 92.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
94 DEF-Model 94.86 % 96.16 % 91.88 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
95 SIENet code 94.85 % 96.01 % 92.23 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
96 SQD 94.85 % 98.20 % 92.26 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
97 VoTr-TSD code 94.81 % 95.95 % 92.24 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
98 GraphAlign(ICCV2023) code 94.79 % 98.04 % 92.35 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
99 L-AUG 94.76 % 95.80 % 91.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
100 CZY_PPF_Net 94.74 % 98.03 % 92.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
101 AMVFNet code 94.71 % 96.09 % 92.10 % 0.04 s GPU @ 2.5 Ghz (Python)
102 Under Blind Review#1 94.70 % 95.62 % 92.21 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
103 M3DeTR code 94.70 % 97.37 % 91.89 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
104 MonoSample (DID-M3D) 94.69 % 96.30 % 85.10 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
105 Spark_partA22 94.67 % 95.99 % 91.95 % 10 s 1 core @ 2.5 Ghz (Python)
106 spark_second_focal_w 94.67 % 95.43 % 91.82 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
107 U_PV_V2_ep100_80 94.67 % 95.80 % 92.09 % 0... s 1 core @ 2.5 Ghz (Python)
108 XView 94.66 % 95.88 % 92.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
109 Spark_PartA2_Soft_fo code 94.65 % 95.79 % 91.99 % 0.1 s 1 core @ 2.5 Ghz (Python)
110 LGNet-3classes code 94.65 % 98.12 % 91.97 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
111 StructuralIF 94.64 % 96.12 % 91.85 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
112 F3D 94.64 % 95.98 % 92.09 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
113 HA-PillarNet 94.63 % 95.89 % 92.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
114 focalnet 94.62 % 98.05 % 92.13 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
115 U_PV_V2_ep_100_100 94.62 % 95.73 % 91.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
116 spark-part2 94.61 % 95.70 % 91.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
117 focalnet 94.60 % 98.08 % 92.12 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
118 P2V-RCNN 94.59 % 96.01 % 92.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
119 spark_second code 94.59 % 95.39 % 91.73 % . s 1 core @ 2.5 Ghz (Python)
120 OFFNet 94.58 % 96.17 % 91.91 % 0.1 s GPU @ 2.5 Ghz (Python)
121 CAT-Det 94.57 % 95.95 % 91.88 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
122 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 94.57 % 98.15 % 91.85 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
123 spark_second2 94.57 % 95.32 % 91.77 % 10 s 1 core @ 2.5 Ghz (Python)
124 sec_spark code 94.57 % 95.36 % 91.73 % 0.03 s GPU @ 2.5 Ghz (Python)
125 bs 94.53 % 96.05 % 91.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
126 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 94.52 % 95.84 % 91.93 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
127 RangeDet (Official) code 94.51 % 95.48 % 91.57 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
128 SDGUFusion 94.49 % 98.14 % 92.02 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
129 PV-RCNN-Plus 94.49 % 95.71 % 91.98 % 1 s 1 core @ 2.5 Ghz (C/C++)
130 MVRA + I-FRCNN+ 94.46 % 95.66 % 81.74 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
131 SVGA-Net 94.45 % 96.02 % 91.54 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
132 PASS-PV-RCNN-Plus 94.45 % 95.77 % 91.89 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
133 GeVo 94.44 % 95.87 % 91.86 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
134 DVFENet 94.44 % 95.33 % 91.55 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
135 af 94.43 % 95.77 % 91.93 % 1 s GPU @ 2.5 Ghz (Python)
136 RangeIoUDet
This method makes use of Velodyne laser scans.
94.42 % 95.69 % 91.70 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
137 VoxelFSD 94.42 % 95.72 % 91.78 % 0.08 s 1 core @ 2.5 Ghz (Python)
138 AAMVFNet code 94.34 % 95.85 % 91.73 % 0.04 s GPU @ 2.5 Ghz (Python)
139 focal 94.31 % 98.27 % 91.91 % 100 s 1 core @ 2.5 Ghz (Python)
140 Second_baseline code 94.27 % 95.18 % 91.27 % 0.03 s 1 core @ 2.5 Ghz (Python)
141 MSIT-Det 94.27 % 97.20 % 86.71 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
142 SERCNN
This method makes use of Velodyne laser scans.
94.24 % 96.31 % 89.71 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
143 EPNet code 94.22 % 96.13 % 89.68 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
144 SRDL 94.08 % 95.83 % 91.55 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
145 pointpillar_spark_fo 94.07 % 96.40 % 91.06 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
146 SC-SSD 94.06 % 95.03 % 90.97 % 1 s 1 core @ 2.5 Ghz (C/C++)
147 u_second_v4_epoch_10 94.01 % 95.32 % 91.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
148 RangeRCNN
This method makes use of Velodyne laser scans.
93.90 % 95.47 % 91.53 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
149 U_second_v4_ep_100_8 93.82 % 94.84 % 90.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
150 Anonymous code 93.80 % 96.80 % 88.70 % 0.04 s 1 core @ 2.5 Ghz (Python)
151 pointpillars_spark code 93.79 % 96.81 % 90.83 % 0.02 s GPU @ 2.5 Ghz (C/C++)
152 SIF 93.79 % 95.48 % 91.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
153 spark_pointpillar2 93.79 % 96.63 % 90.75 % 10 s 1 core @ 2.5 Ghz (Python)
154 DDF 93.79 % 96.86 % 88.72 % 0.1 s 1 core @ 2.5 Ghz (Python)
155 SFA-GCL(80) code 93.78 % 96.89 % 90.74 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
156 DD3D code 93.78 % 94.67 % 88.99 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
157 MGAF-3DSSD code 93.77 % 94.45 % 86.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
158 spark_pointpillar code 93.76 % 96.84 % 90.80 % 0.02 s GPU @ 2.5 Ghz (Python)
159 SFA-GCL code 93.75 % 96.86 % 90.71 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
160 SFA-GCL(80, k=4) code 93.72 % 96.84 % 90.67 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
161 MMLAB LIGA-Stereo
This method uses stereo information.
code 93.71 % 96.40 % 86.00 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
162 Sem-Aug
This method makes use of Velodyne laser scans.
93.69 % 96.78 % 88.69 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
163 IIOU code 93.68 % 96.44 % 90.82 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
164 IMLIDAR(base) 93.63 % 96.73 % 88.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
165 KPTr 93.59 % 96.52 % 90.58 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
166 3ONet 93.58 % 96.86 % 88.45 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
167 Patches - EMP
This method makes use of Velodyne laser scans.
93.58 % 97.88 % 90.31 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
168 SFA-GCL(baseline) code 93.58 % 96.81 % 90.54 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
169 SFA-GCL_dataaug code 93.57 % 96.72 % 90.49 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
170 SFA-GCL code 93.57 % 96.84 % 90.47 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
171 PA3DNet 93.55 % 96.56 % 88.56 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
172 DGEnhCL code 93.54 % 96.74 % 90.46 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
173 MVAF-Net code 93.54 % 95.35 % 90.70 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
174 IA-SSD (multi) code 93.47 % 96.07 % 90.51 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
175 casxv1 93.42 % 96.66 % 90.67 % 0.01 s 1 core @ 2.5 Ghz (Python)
176 casx 93.42 % 96.66 % 90.67 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
177 IA-SSD (single) code 93.41 % 96.23 % 88.34 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
178 IOUFusion 93.39 % 96.37 % 90.52 % 0.1 s GPU @ 2.5 Ghz (Python)
179 VoxelFSD-S 93.36 % 94.67 % 90.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
180 CIA-SSD
This method makes use of Velodyne laser scans.
code 93.34 % 96.65 % 85.76 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
181 SeSame-point code 93.32 % 95.20 % 90.14 % N/A s TITAN RTX @ 1.35 Ghz (Python)
182 Deep MANTA 93.31 % 98.83 % 82.95 % 0.7 s GPU @ 2.5 Ghz (Python + C/C++)
F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau: Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. CVPR 2017.
183 LVFSD 93.31 % 95.24 % 90.46 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
184 MMAE
This method makes use of Velodyne laser scans.
93.30 % 96.49 % 90.10 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
185 StereoDistill 93.29 % 97.57 % 87.48 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
186 LPCG-Monoflex code 93.26 % 96.68 % 83.34 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
187 fuf 93.24 % 96.66 % 88.08 % 10 s 1 core @ 2.5 Ghz (C/C++)
188 MonoLiG code 93.23 % 96.56 % 83.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
189 RAFDet code 93.23 % 95.86 % 90.36 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
190 CityBrainLab-CT3D code 93.20 % 96.26 % 90.44 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
191 DFAF3D 93.20 % 96.54 % 90.03 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
192 IIOU_LDR code 93.19 % 96.29 % 88.04 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
193 pointpillar_baseline code 93.17 % 95.12 % 88.61 % 0.01 s 1 core @ 2.5 Ghz (Python)
194 PVTr 93.16 % 94.68 % 90.59 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
195 Test_dif code 93.16 % 95.77 % 90.26 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
196 ROT_S3D 93.15 % 96.23 % 88.01 % 0.1 s GPU @ 2.5 Ghz (Python)
197 DA-Net 93.14 % 96.58 % 90.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
198 MonoInsight 93.14 % 96.17 % 83.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
199 MonoInsight 93.14 % 96.17 % 83.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
200 MonoLSS 93.11 % 95.99 % 83.14 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
201 RAFDet 93.10 % 95.68 % 90.26 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
202 MOPNet code 93.09 % 96.53 % 83.04 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
203 SNVC
This method uses stereo information.
code 93.09 % 96.27 % 85.51 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
204 H^23D R-CNN code 93.03 % 96.13 % 90.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
205 FromVoxelToPoint code 92.98 % 96.07 % 90.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
206 P2P code 92.95 % 96.61 % 87.77 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
207 GA-RCNN 92.92 % 96.06 % 90.25 % 47ms 1 core @ 2.5 Ghz (C/C++)
208 EBM3DOD code 92.88 % 96.39 % 87.58 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
209 Struc info fusion II 92.88 % 96.44 % 87.67 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
210 MG 92.87 % 96.25 % 89.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
211 centerpoint_pcdet 92.82 % 94.72 % 89.33 % 0.06 s 1 core @ 2.5 Ghz (Python)
212 HotSpotNet 92.74 % 96.20 % 89.68 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
213 Struc info fusion I 92.71 % 96.24 % 87.55 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
214 EBM3DOD baseline code 92.70 % 96.31 % 87.44 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
215 MonoCD code 92.65 % 96.36 % 85.17 % n/a s 1 core @ 2.5 Ghz (Python)
L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan: MonoCD: Monocular 3D Object Detection with Complementary Depths. CVPR 2024.
216 PUDet 92.62 % 96.31 % 89.81 % 0.3 s GPU @ 2.5 Ghz (Python)
217 SFEBEV 92.62 % 97.85 % 89.30 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
218 SARPNET 92.58 % 95.82 % 87.33 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
219 Patches
This method makes use of Velodyne laser scans.
92.57 % 96.31 % 87.41 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
220 R-GCN 92.53 % 96.16 % 87.45 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
221 PI-RCNN 92.52 % 96.15 % 87.47 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
222 CenterNet3D 92.48 % 95.71 % 89.54 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
223 PointPainting
This method makes use of Velodyne laser scans.
92.43 % 98.36 % 89.49 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
224 3D IoU-Net 92.42 % 96.31 % 87.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
225 CLOCs_SecCas 92.37 % 95.16 % 88.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
226 ACDet code 92.36 % 96.07 % 89.18 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
227 voxelnext_pcdet 92.25 % 93.99 % 89.41 % 0.05 s 1 core @ 2.5 Ghz (Python)
228 DASS 92.25 % 96.20 % 87.26 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
229 S-AT GCN 92.24 % 95.02 % 90.46 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
230 Sem-Aug-PointRCNN++ 92.20 % 95.64 % 87.48 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
231 SegVoxelNet 92.16 % 95.86 % 86.90 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
232 PointRGCN 92.15 % 97.48 % 86.83 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
233 BAPartA2S-4h 92.04 % 95.63 % 89.14 % 0.1 s 1 core @ 2.5 Ghz (Python)
234 F-ConvNet
This method makes use of Velodyne laser scans.
code 91.98 % 95.81 % 79.83 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
235 PartA2_basline code 91.98 % 95.64 % 89.40 % 0.09 s 1 core @ 2.5 Ghz (Python)
236 CAT2 91.97 % 95.68 % 86.71 % 1 s 1 core @ 2.5 Ghz (C/C++)
237 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 91.87 % 95.86 % 86.78 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
238 PASS-PointPillar 91.82 % 95.15 % 88.31 % 1 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
239 MMpointpillars 91.79 % 95.13 % 86.51 % 0.05 s 1 core @ 2.5 Ghz (Python)
240 TF-PartA2 91.78 % 95.34 % 88.82 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
241 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 91.77 % 95.90 % 86.92 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
242 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 91.73 % 95.00 % 88.86 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
243 HA PillarNet 91.70 % 95.17 % 86.62 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
244 C-GCN 91.57 % 95.63 % 86.13 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
245 XT-PartA2 91.56 % 95.21 % 88.74 % 0.1 s GPU @ >3.5 Ghz (Python)
246 PointRGBNet 91.33 % 95.39 % 86.29 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
247 mmFUSION code 91.30 % 95.47 % 86.33 % 1s 1 core @ 2.5 Ghz (Python)
J. Ahmad and A. Del Bue: mmFUSION: Multimodal Fusion for 3D Objects Detection. arXiv preprint arXiv:2311.04058 2023.
248 mm3d_PartA2 91.28 % 95.05 % 88.48 % 0.1 s GPU @ >3.5 Ghz (Python)
249 SeSame-pillar code 91.26 % 95.07 % 87.94 % N/A s TITAN RTX @ 1.35 Ghz (Python)
250 EgoNet code 91.23 % 96.11 % 80.96 % 0.1 s GPU @ 1.5 Ghz (Python)
S. Li, Z. Yan, H. Li and K. Cheng: Exploring intermediate representation for monocular vehicle pose estimation. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
251 MMpp 91.21 % 94.79 % 86.17 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
252 TBD 91.12 % 96.68 % 81.05 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
253 MonoAux-v2 code 91.07 % 94.27 % 78.73 % 0.04 s GPU @ 2.5 Ghz (Python)
254 PFF3D
This method makes use of Velodyne laser scans.
code 91.06 % 94.86 % 86.28 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
255 SeSame-pillar w/scor code 91.03 % 94.83 % 87.65 % N/A s 1 core @ 2.5 Ghz (C/C++)
256 Stereo CenterNet
This method uses stereo information.
91.02 % 96.54 % 83.15 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
257 FDGNet code 90.92 % 96.35 % 82.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
258 SHUD 90.86 % 96.45 % 80.74 % 0.04 s 1 core @ 2.5 Ghz (Python)
259 Mix-Teaching code 90.84 % 96.31 % 83.11 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
260 MonoFlex 90.82 % 95.95 % 83.11 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
261 LWLANet code 90.79 % 94.16 % 80.74 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
262 Harmonic PointPillar code 90.78 % 94.23 % 87.42 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
263 MAFF-Net(DAF-Pillar) 90.78 % 94.17 % 83.17 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
264 HRI-VoxelFPN 90.76 % 96.35 % 85.37 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
265 MM_SECOND code 90.75 % 94.85 % 85.58 % 0.05 s GPU @ >3.5 Ghz (Python)
266 prcnn_v18_80_100 90.75 % 96.17 % 85.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
267 MonoAux 90.74 % 93.86 % 80.71 % 0.04 s GPU @ 2.5 Ghz (Python)
268 KM3D code 90.70 % 96.34 % 80.72 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
269 PointPillars
This method makes use of Velodyne laser scans.
code 90.70 % 93.84 % 87.47 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
270 WS3D
This method makes use of Velodyne laser scans.
90.69 % 94.85 % 85.94 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
271 MSFENet code 90.68 % 96.32 % 82.81 % 0.1 s 1 core @ 2.5 Ghz (Python)
272 EOTL code 90.67 % 96.14 % 80.59 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
273 DCD code 90.66 % 96.31 % 83.01 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
274 NeurOCS 90.66 % 96.15 % 80.64 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
275 MonoEF 90.65 % 96.19 % 82.95 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
276 CIE 90.64 % 96.19 % 82.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
277 MonoSGC 90.62 % 94.14 % 82.58 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
278 VSAC 90.57 % 96.16 % 87.72 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
279 DID-M3D code 90.55 % 94.20 % 80.61 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
280 BA2-Det+MonoFlex 90.51 % 96.20 % 80.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
281 QD-3DT
This is an online method (no batch processing).
code 90.49 % 92.61 % 80.32 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
282 HomoLoss(monoflex) code 90.49 % 95.86 % 80.66 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
283 SeSame-voxel code 90.42 % 95.76 % 87.40 % N/A s TITAN RTX @ 1.35 Ghz (Python)
284 monodle code 90.23 % 93.46 % 80.11 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
285 3D IoU Loss
This method makes use of Velodyne laser scans.
90.21 % 95.60 % 84.96 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
286 MonoCInIS 90.20 % 95.80 % 82.00 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
287 ARPNET 90.11 % 93.42 % 82.56 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
288 TANet code 90.11 % 93.52 % 84.61 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
289 CG-Stereo
This method uses stereo information.
89.98 % 96.28 % 82.21 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
290 Deep3DBox 89.88 % 94.62 % 76.40 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
291 CMKD code 89.81 % 95.07 % 83.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
292 PS-fld code 89.78 % 95.60 % 81.68 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
293 GPP code 89.68 % 93.94 % 80.60 % 0.23 s GPU @ 1.5 Ghz (Python + C/C++)
A. Rangesh and M. Trivedi: Ground plane polling for 6dof pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles 2020.
294 MonoCDiT 89.58 % 95.44 % 79.68 % 0.05 s GPU @ >3.5 Ghz (Python)
295 MonoSTL 89.58 % 95.09 % 79.68 % na s 1 core @ 2.5 Ghz (Python)
296 SubCNN 89.53 % 94.11 % 79.14 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
297 HINTED 89.41 % 93.97 % 83.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
298 SCNet
This method makes use of Velodyne laser scans.
89.36 % 95.23 % 84.03 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
299 DFSemONet(Baseline) 89.32 % 94.77 % 85.91 % 0.04 s GPU @ 2.5 Ghz (Python)
300 PI-SECOND code 89.29 % 95.06 % 85.82 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
301 AVOD
This method makes use of Velodyne laser scans.
code 89.22 % 94.98 % 82.14 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
302 IAFA 89.14 % 92.96 % 79.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
303 MonoSIM_v2 89.09 % 95.40 % 79.40 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
304 MonoDDE 89.07 % 96.72 % 81.42 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
305 ADD code 88.96 % 94.58 % 80.78 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
306 AVOD-FPN
This method makes use of Velodyne laser scans.
code 88.61 % 94.65 % 83.71 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
307 MonoUNI code 88.50 % 94.10 % 78.35 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
308 OPA-3D code 88.44 % 96.41 % 76.17 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
309 MVAF-Net(3-classes) 88.37 % 95.29 % 85.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
310 MVAF-Net(3-classes) 88.04 % 94.93 % 84.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
311 DeepStereoOP 87.81 % 93.68 % 77.60 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
312 MonoRUn code 87.64 % 95.44 % 77.75 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
313 3DBN
This method makes use of Velodyne laser scans.
87.59 % 93.34 % 79.91 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
314 SVDM-VIEW 87.51 % 94.32 % 79.09 % 1 s 1 core @ 2.5 Ghz (Python)
315 FQNet 87.49 % 93.66 % 73.61 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
316 Shift R-CNN (mono) code 87.47 % 93.75 % 77.19 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
317 MonoPSR code 87.45 % 93.29 % 72.26 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
318 MonoRoIDepth 87.40 % 93.48 % 77.32 % 1 s 1 core @ 2.5 Ghz (C/C++)
319 Mono3D code 87.28 % 93.13 % 77.00 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
320 SMOKE code 87.02 % 92.94 % 77.12 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
321 3DOP
This method uses stereo information.
code 86.93 % 91.31 % 76.72 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
322 CDN
This method uses stereo information.
code 86.90 % 95.79 % 79.05 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
323 RTM3D code 86.73 % 91.75 % 77.18 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
324 MonoDTR 86.70 % 93.12 % 74.53 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
325 SH3D 86.67 % 95.49 % 77.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
326 MonoFRD 86.58 % 95.01 % 76.82 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
327 MonoRCNN code 86.48 % 91.90 % 66.71 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
328 MonoRCNN++ code 86.37 % 94.22 % 71.52 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
329 BirdNet+
This method makes use of Velodyne laser scans.
code 86.13 % 92.39 % 81.11 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
330 MonoNeRD code 86.13 % 94.24 % 76.38 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
331 MEDL-U 86.11 % 94.27 % 79.84 % 1 s GPU @ >3.5 Ghz (Python)
332 MonoPair 86.11 % 91.65 % 76.45 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
333 DSGN
This method uses stereo information.
code 86.03 % 95.42 % 78.27 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
334 DEVIANT code 85.97 % 94.01 % 75.84 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
335 MonoAuxNorm 85.93 % 92.29 % 77.78 % 0.02 s GPU @ 2.5 Ghz (Python)
336 GUPNet code 85.90 % 93.92 % 73.55 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
337 MonoAIU 85.58 % 93.79 % 70.77 % 0.03 s GPU @ 2.5 Ghz (Python)
338 MonoDETR code 85.44 % 93.78 % 75.29 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
339 DMF
This method uses stereo information.
85.20 % 89.42 % 82.07 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
340 StereoFENet
This method uses stereo information.
85.14 % 91.28 % 76.80 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
341 MonoSIM 85.06 % 93.74 % 77.83 % 0.16 s 1 core @ 2.5 Ghz (Python)
342 Anonymous 84.89 % 93.86 % 70.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
343 DE_Fusion 84.81 % 93.39 % 74.87 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
344 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 84.42 % 94.83 % 76.95 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
345 SS3D 84.38 % 92.57 % 69.82 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
346 CDN-PL++
This method uses stereo information.
84.21 % 94.45 % 76.69 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
347 MonoFENet 84.09 % 91.42 % 75.93 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
348 MonOAPC 83.97 % 92.34 % 74.42 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
349 Complexer-YOLO
This method makes use of Velodyne laser scans.
83.89 % 91.77 % 79.24 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
350 ZoomNet
This method uses stereo information.
code 83.79 % 94.14 % 68.78 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
351 DLE code 83.19 % 94.06 % 61.13 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
352 M3D-RPN code 82.81 % 88.38 % 67.08 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
353 MonoTAKD V2 82.72 % 93.72 % 77.10 % 0.1 s 1 core @ 2.5 Ghz (Python)
354 MonoLTKD 82.72 % 93.72 % 77.10 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
355 MonoTAKD 82.72 % 93.72 % 77.10 % 0.1 s 1 core @ 2.5 Ghz (Python)
356 MonoLTKD_V3 82.72 % 93.72 % 77.10 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
357 SGM3D code 82.51 % 93.46 % 72.67 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
358 BKDStereo3D code 82.12 % 93.50 % 60.34 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
359 Disp R-CNN (velo)
This method uses stereo information.
code 82.09 % 93.31 % 69.78 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
360 D4LCN code 82.08 % 90.01 % 63.98 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
361 CMAN 81.96 % 89.43 % 63.74 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
362 Disp R-CNN
This method uses stereo information.
code 81.96 % 93.49 % 67.35 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
363 Pseudo-LiDAR++
This method uses stereo information.
code 81.87 % 94.14 % 74.29 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
364 BS3D 81.22 % 94.66 % 68.39 % 22 ms Titan Xp
N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler: Beyond Bounding Boxes: Using Bounding Shapes for Real-Time 3D Vehicle Detection from Monocular RGB Images. 2019 IEEE Intelligent Vehicles Symposium (IV) 2019.
365 YOLOStereo3D
This method uses stereo information.
code 80.88 % 93.65 % 61.17 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
366 HomoLoss(imvoxelnet) code 80.67 % 91.94 % 70.64 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
367 FRCNN+Or code 80.57 % 91.50 % 67.49 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
368 DDMP-3D 80.20 % 90.73 % 61.82 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
369 MonoTRKDv2 80.12 % 93.57 % 74.40 % 40 s 1 core @ 2.5 Ghz (Python)
370 Ground-Aware code 80.05 % 90.98 % 60.51 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
371 GrooMeD-NMS code 79.93 % 90.05 % 63.43 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
372 ESGN
This method uses stereo information.
79.84 % 92.74 % 69.76 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
373 PGD-FCOS3D code 79.46 % 91.51 % 68.48 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
374 YoloMono3D code 78.50 % 91.43 % 58.80 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
375 3D-GCK 78.44 % 88.59 % 66.28 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
376 3D-SSMFCNN code 77.82 % 77.84 % 68.67 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
377 BKDStereo3D w/o KD code 77.76 % 91.96 % 58.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
378 DFR-Net 77.41 % 89.79 % 59.20 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
379 AutoShape code 77.31 % 86.41 % 64.06 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
380 ImVoxelNet code 77.18 % 89.07 % 67.35 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
381 Aug3D-RPN 76.89 % 84.89 % 60.21 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
382 ODGS 76.22 % 80.49 % 71.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
383 FMF-occlusion-net 75.95 % 91.51 % 59.55 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
384 SST [st]
This method uses stereo information.
75.93 % 90.04 % 68.66 % 1 s 1 core @ 2.5 Ghz (Python)
385 TS3D
This method uses stereo information.
75.81 % 91.63 % 56.18 % 0.09 s GPU @ 1.5 Ghz (Python + C/C++)
386 3DVP code 75.71 % 84.44 % 64.41 % 40 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Data-Driven 3D Voxel Patterns for Object Category Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2015.
387 GS3D 75.63 % 85.79 % 61.85 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
388 Pose-RCNN 75.41 % 89.49 % 63.57 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
389 SubCat code 75.26 % 83.31 % 59.55 % 0.7 s 6 cores @ 3.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
390 Plane-Constraints code 75.18 % 82.46 % 66.51 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
391 3D FCN
This method makes use of Velodyne laser scans.
74.54 % 86.65 % 67.73 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
392 Mobile Stereo R-CNN
This method uses stereo information.
74.13 % 88.80 % 59.84 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
393 OC Stereo
This method uses stereo information.
code 73.34 % 86.86 % 61.37 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
394 SeSame-point w/score code 71.49 % 88.88 % 61.49 % N/A s GPU @ 1.5 Ghz (Python)
395 GAC3D 70.49 % 83.27 % 52.04 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
396 mdab 70.10 % 88.48 % 60.35 % 0.02 s 1 core @ 2.5 Ghz (Python)
397 ROI-10D 68.14 % 75.32 % 58.98 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
398 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 67.65 % 91.82 % 65.11 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
399 multi-task CNN 67.51 % 79.00 % 58.80 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
400 CaDDN code 67.31 % 78.28 % 59.52 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
401 Decoupled-3D 67.23 % 87.34 % 53.84 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
402 BdCost48LDCF code 65.50 % 80.44 % 51.24 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
403 OC-DPM 65.32 % 77.35 % 51.00 % 10 s 8 cores @ 2.5 Ghz (Matlab)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
404 RefinedMPL 64.02 % 87.95 % 52.06 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
405 DPM-VOC+VP 63.58 % 79.09 % 46.59 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
406 SeSame-voxel w/score code 63.45 % 73.43 % 57.52 % N/A s GPU @ 1.5 Ghz (Python)
407 AOG-View 62.62 % 77.62 % 48.27 % 3 s 1 core @ 2.5 Ghz (Matlab, C/C++)
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
408 CIE + DM3D 61.42 % 79.31 % 53.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
409 LSVM-MDPM-sv 57.48 % 70.23 % 42.54 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
410 SAMME48LDCF code 57.26 % 76.28 % 43.55 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
411 BirdNet
This method makes use of Velodyne laser scans.
56.94 % 79.20 % 54.88 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
412 VeloFCN
This method makes use of Velodyne laser scans.
51.05 % 70.03 % 44.82 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
413 Mono3D_PLiDAR code 49.39 % 76.90 % 41.13 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
414 DPM-C8B1
This method uses stereo information.
48.00 % 57.76 % 35.52 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
415 LTN 46.54 % 48.96 % 41.58 % 0.4 s GPU @ >3.5 Ghz (Python)
T. Wang, X. He, Y. Cai and G. Xiao: Learning a Layout Transfer Network for Context Aware Object Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
416 sensekitti code 46.12 % 49.16 % 42.79 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
417 Kinematic3D code 45.50 % 58.33 % 34.81 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
418 WeakM3D code 41.50 % 41.21 % 38.11 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
419 MonoCInIS 40.75 % 45.00 % 34.48 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
420 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 39.79 % 40.44 % 36.10 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
421 Cube R-CNN code 39.78 % 38.09 % 35.40 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
422 SPG_mini
This method makes use of Velodyne laser scans.
code 38.75 % 39.26 % 38.57 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
423 SPG
This method makes use of Velodyne laser scans.
code 38.73 % 40.02 % 38.52 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
424 SA-SSD code 38.30 % 39.40 % 37.07 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
425 BtcDet
This method makes use of Velodyne laser scans.
code 38.00 % 39.26 % 36.82 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
426 SSL-PointGNN code 37.21 % 38.55 % 36.53 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
427 Point-GNN
This method makes use of Velodyne laser scans.
code 37.20 % 38.66 % 36.29 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
428 RT3D-GMP
This method uses stereo information.
36.31 % 44.06 % 27.32 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
429 AOG code 29.81 % 33.28 % 23.91 % 3 s 4 cores @ 2.5 Ghz (Matlab)
T. Wu, B. Li and S. Zhu: Learning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation. TPAMI 2016.
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
430 SubCat48LDCF code 26.68 % 34.33 % 19.44 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
431 RT3DStereo
This method uses stereo information.
21.41 % 25.58 % 17.52 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
432 CSoR
This method makes use of Velodyne laser scans.
code 20.82 % 30.65 % 17.14 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
433 RT3D
This method makes use of Velodyne laser scans.
18.96 % 24.41 % 19.85 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
434 VoxelJones code 15.41 % 17.83 % 14.13 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
435 Associate-3Ddet code 1.20 % 0.52 % 1.38 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
436 init 0.01 % 0.01 % 0.01 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
437 DA3D+KM3D+v2-99 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
438 mdab 0.00 % 0.00 % 0.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
439 DA3D+KM3D 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
440 DA3D 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods


Pedestrians


Method Setting Code Moderate Easy Hard Runtime Environment
1 VMVS
This method makes use of Velodyne laser scans.
68.19 % 79.98 % 63.18 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
2 SubCNN 66.70 % 79.65 % 61.35 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
3 DD3D code 63.92 % 77.09 % 59.41 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
4 F-ConvNet
This method makes use of Velodyne laser scans.
code 63.87 % 75.19 % 58.57 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
5 UPIDet code 61.92 % 72.38 % 59.31 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
6 CasA++ code 61.59 % 71.78 % 58.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
7 3DOP
This method uses stereo information.
code 61.48 % 74.22 % 55.89 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
8 TED code 61.44 % 71.72 % 58.59 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
9 LoGoNet code 60.70 % 69.16 % 58.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
10 HotSpotNet 60.65 % 70.36 % 57.42 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
11 MonoLSS 60.28 % 75.13 % 53.85 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
12 DeepStereoOP 60.15 % 73.76 % 55.30 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
13 Pose-RCNN 59.84 % 76.24 % 53.59 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
14 USVLab BSAODet code 59.73 % 69.95 % 55.85 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
15 CasA code 59.69 % 70.33 % 56.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
16 SDGUFusion 58.93 % 68.49 % 56.15 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
17 FFNet code 58.87 % 69.24 % 53.75 % 1.07 s GPU @ 1.5 Ghz (Python)
C. Zhao, Y. Qian and M. Yang: Monocular Pedestrian Orientation Estimation Based on Deep 2D-3D Feedforward. Pattern Recognition 2019.
18 Mono3D code 58.66 % 71.19 % 53.94 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
19 VPFNet code 58.63 % 67.96 % 54.77 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
20 P2V-RCNN 57.94 % 68.67 % 55.07 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
21 OGMMDet code 57.91 % 69.64 % 55.24 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
22 ANM code 57.91 % 69.64 % 55.24 % ANM ANM
23 Fast-CLOCs 57.35 % 70.93 % 54.48 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
24 EOTL code 57.17 % 68.99 % 51.48 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
25 MLF-DET 56.89 % 64.49 % 53.17 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
26 R^2 R-CNN 56.78 % 66.45 % 53.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
27 KPTr 56.50 % 66.74 % 52.72 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
28 af 56.43 % 65.85 % 52.71 % 1 s GPU @ 2.5 Ghz (Python)
29 BPG3D 56.42 % 66.21 % 52.80 % 0.05 s 1 core @ 2.5 Ghz (Python)
30 FIRM-Net 56.33 % 66.69 % 53.53 % 0.07 s 1 core @ 2.5 Ghz (Python)
31 RPF3D 56.19 % 66.61 % 53.42 % 0.1 s 1 core @ 2.5 Ghz (Python)
32 OFFNet 55.58 % 63.92 % 53.01 % 0.1 s GPU @ 2.5 Ghz (Python)
33 PIPC-3Ddet code 55.54 % 63.09 % 51.84 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
34 focalnet 55.17 % 63.53 % 52.79 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
35 focalnet 55.11 % 63.52 % 52.81 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
36 DFAF3D 54.99 % 65.42 % 51.21 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
37 PV-RCNN-Plus 54.97 % 64.32 % 51.85 % 1 s 1 core @ 2.5 Ghz (C/C++)
38 LGNet-3classes code 54.90 % 65.18 % 52.21 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
39 3ONet 54.88 % 66.35 % 50.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
40 CZY_PPF_Net 54.84 % 63.95 % 52.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
41 FromVoxelToPoint code 54.80 % 66.21 % 52.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
42 RAFDet 54.68 % 65.13 % 52.20 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
43 MonoPSR code 54.65 % 68.98 % 50.07 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
44 F3D 54.53 % 64.68 % 51.90 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
45 centerpoint_pcdet 54.48 % 63.77 % 52.20 % 0.06 s 1 core @ 2.5 Ghz (Python)
46 voxelnext_pcdet 54.41 % 64.12 % 51.79 % 0.05 s 1 core @ 2.5 Ghz (Python)
47 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 54.38 % 63.12 % 51.98 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
48 PDV code 54.08 % 63.43 % 50.75 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
49 PSMS-Net
This method makes use of Velodyne laser scans.
54.07 % 66.04 % 51.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
50 ACFNet 53.97 % 65.55 % 49.97 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
51 casx 53.85 % 66.81 % 49.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
52 PASS-PV-RCNN-Plus 53.82 % 63.49 % 51.30 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
53 u_second_v4_epoch_10 53.81 % 64.38 % 51.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
54 monodle code 53.78 % 69.94 % 48.98 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
55 HA-PillarNet 53.77 % 63.18 % 50.98 % 0.05 s 1 core @ 2.5 Ghz (Python)
56 VPA 53.76 % 66.61 % 51.11 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
57 MGAF-3DSSD code 53.73 % 64.69 % 49.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
58 IOUFusion 53.71 % 64.03 % 49.66 % 0.1 s GPU @ 2.5 Ghz (Python)
59 SFA-GCL(80, k=4) code 53.43 % 66.21 % 50.74 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
60 LGSLNet 53.38 % 62.69 % 50.86 % 0.1 s GPU @ 2.5 Ghz (Python)
61 SRDL 53.36 % 63.39 % 50.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
62 SFA-GCL(80) code 53.26 % 64.46 % 48.99 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
63 IIOU code 53.22 % 63.25 % 49.25 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
64 PG-RCNN code 53.12 % 63.73 % 50.46 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
65 Anonymous code 53.12 % 66.41 % 48.96 % 0.04 s 1 core @ 2.5 Ghz (Python)
66 SFA-GCL_dataaug code 53.10 % 65.98 % 50.38 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
67 RAFDet code 53.10 % 63.36 % 49.53 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
68 casxv1 53.06 % 65.78 % 50.67 % 0.01 s 1 core @ 2.5 Ghz (Python)
69 PA-Det3D 53.03 % 62.44 % 50.51 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
70 SFA-GCL code 52.98 % 65.70 % 50.30 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
71 SFA-GCL(baseline) code 52.83 % 65.53 % 50.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
72 U_PV_V2_ep100_80 52.77 % 61.91 % 50.29 % 0... s 1 core @ 2.5 Ghz (Python)
73 U_second_v4_ep_100_8 52.73 % 63.41 % 50.32 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
74 LVFSD 52.72 % 63.39 % 49.93 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
75 IA-SSD (single) code 52.69 % 62.90 % 50.27 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
76 MonoUNI code 52.62 % 69.15 % 47.89 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
77 HMFI code 52.47 % 63.10 % 49.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
78 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 52.42 % 63.45 % 49.23 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
79 RAFDet 52.34 % 62.42 % 49.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
80 SVGA-Net 52.27 % 62.33 % 49.44 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
81 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 52.20 % 63.51 % 48.27 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
82 focal 52.19 % 60.54 % 49.90 % 100 s 1 core @ 2.5 Ghz (Python)
83 FRCNN+Or code 52.15 % 67.03 % 47.14 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
84 SIF 52.10 % 62.72 % 49.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
85 U_PV_V2_ep_100_100 51.89 % 60.70 % 49.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
86 DGEnhCL code 51.54 % 64.48 % 48.87 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
87 QD-3DT
This is an online method (no batch processing).
code 51.46 % 68.64 % 47.00 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
88 DDF 51.45 % 64.44 % 47.26 % 0.1 s 1 core @ 2.5 Ghz (Python)
89 PR-SSD 51.15 % 60.89 % 47.65 % 0.02 s GPU @ 2.5 Ghz (Python)
90 GF-pointnet 51.05 % 61.33 % 48.28 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
91 SFA-GCL code 51.00 % 63.63 % 46.80 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
92 GeVo 50.97 % 60.31 % 48.62 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
93 ACDet code 50.90 % 62.39 % 48.34 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
94 GUPNet code 50.74 % 68.93 % 44.01 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
95 SC-SSD 50.74 % 60.57 % 48.22 % 1 s 1 core @ 2.5 Ghz (C/C++)
96 DEVIANT code 50.66 % 68.78 % 45.89 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
97 DVFENet 50.52 % 60.32 % 47.92 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
98 TF-PartA2 50.50 % 60.42 % 46.90 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
99 OPA-3D code 50.42 % 68.35 % 43.91 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
100 PointPainting
This method makes use of Velodyne laser scans.
50.22 % 59.25 % 46.95 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
101 MonoInsight 50.22 % 63.94 % 44.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
102 MonoInsight 50.22 % 63.94 % 44.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
103 BAPartA2S-4h 50.21 % 60.15 % 47.41 % 0.1 s 1 core @ 2.5 Ghz (Python)
104 Mix-Teaching code 50.19 % 64.04 % 44.37 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
105 M3DeTR code 50.09 % 58.90 % 47.66 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
106 IA-SSD (multi) code 49.58 % 62.51 % 47.17 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
107 HAF-PVP_test 49.33 % 58.87 % 46.53 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
108 XView 49.30 % 58.39 % 46.81 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
109 Test_dif code 48.72 % 58.85 % 46.44 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
110 ARPNET 48.49 % 60.47 % 45.02 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
111 PVTr 48.45 % 57.80 % 45.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
112 DPPFA-Net 48.38 % 56.13 % 45.93 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.
113 PI-SECOND code 48.05 % 57.38 % 44.39 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
114 PointPillars
This method makes use of Velodyne laser scans.
code 48.05 % 57.47 % 45.40 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
115 AMVFNet code 47.99 % 58.15 % 44.39 % 0.04 s GPU @ 2.5 Ghz (Python)
116 HINTED 47.84 % 62.13 % 43.71 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
117 MonoRUn code 47.82 % 63.28 % 43.23 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
118 XT-PartA2 47.80 % 57.11 % 45.03 % 0.1 s GPU @ >3.5 Ghz (Python)
119 SeSame-voxel code 47.60 % 58.80 % 43.53 % N/A s TITAN RTX @ 1.35 Ghz (Python)
120 L-AUG 47.59 % 58.42 % 44.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
121 AAMVFNet code 47.39 % 58.19 % 44.80 % 0.04 s GPU @ 2.5 Ghz (Python)
122 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 47.33 % 57.19 % 44.31 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
123 PUDet 47.30 % 58.44 % 44.83 % 0.3 s GPU @ 2.5 Ghz (Python)
124 MG 47.28 % 56.02 % 43.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
125 SeSame-point code 47.09 % 56.55 % 44.58 % N/A s TITAN RTX @ 1.35 Ghz (Python)
126 VoxelFSD-S 47.06 % 56.88 % 44.58 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
127 prcnn_v18_80_100 46.82 % 58.60 % 43.91 % 0.1 s 1 core @ 2.5 Ghz (Python)
128 S-AT GCN 46.64 % 56.55 % 44.23 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
129 PiFeNet code 46.59 % 55.11 % 44.14 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
130 Shift R-CNN (mono) code 46.56 % 64.73 % 41.86 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
131 DiffCandiDet 46.32 % 56.30 % 44.10 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
132 MonoAIU 46.23 % 63.48 % 39.81 % 0.03 s GPU @ 2.5 Ghz (Python)
133 IMLIDAR(base) 46.00 % 54.49 % 43.58 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
134 VSAC 45.97 % 58.47 % 43.24 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
135 Disp R-CNN
This method uses stereo information.
code 45.80 % 63.23 % 41.32 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
136 Disp R-CNN (velo)
This method uses stereo information.
code 45.66 % 63.16 % 41.14 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
137 bs 45.58 % 54.34 % 43.16 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
138 HomoLoss(monoflex) code 45.44 % 59.94 % 41.15 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
139 mm3d_PartA2 45.39 % 54.51 % 42.50 % 0.1 s GPU @ >3.5 Ghz (Python)
140 ROT_S3D 45.27 % 56.72 % 43.12 % 0.1 s GPU @ 2.5 Ghz (Python)
141 GraphAlign(ICCV2023) code 45.18 % 52.14 % 43.18 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
142 LSFM 44.92 % 48.58 % 42.74 % 0.05 s 4 cores @ 2.5 Ghz (Python)
143 Plane-Constraints code 44.76 % 57.28 % 40.56 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
144 MM_SECOND code 44.69 % 54.97 % 41.93 % 0.05 s GPU @ >3.5 Ghz (Python)
145 IIOU_LDR code 44.65 % 56.31 % 42.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
146 MonoFlex 44.20 % 58.96 % 39.89 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
147 AVOD-FPN
This method makes use of Velodyne laser scans.
code 43.99 % 53.48 % 41.56 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
148 CAT-Det 43.86 % 52.75 % 41.15 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
149 DSGN++
This method uses stereo information.
code 43.35 % 54.16 % 40.10 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
150 EPNet++ 43.29 % 51.89 % 40.98 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
151 MonoSIM_v2 43.09 % 56.78 % 37.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
152 Frustum-PointPillars code 42.97 % 49.04 % 40.69 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
153 MonoRCNN++ code 42.54 % 56.59 % 36.64 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
154 MonOAPC 42.52 % 56.84 % 38.43 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
155 MonoPair 42.38 % 55.26 % 38.53 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
156 DFSemONet(Baseline) 41.33 % 51.00 % 39.35 % 0.04 s GPU @ 2.5 Ghz (Python)
157 MonoDDE 41.09 % 55.28 % 36.85 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
158 PFF3D
This method makes use of Velodyne laser scans.
code 40.99 % 48.75 % 38.99 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
159 MMLAB LIGA-Stereo
This method uses stereo information.
code 40.98 % 53.16 % 38.12 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
160 Anonymous 40.52 % 54.94 % 34.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
161 MMpointpillars 40.32 % 50.36 % 37.58 % 0.05 s 1 core @ 2.5 Ghz (Python)
162 SH3D 40.07 % 52.95 % 36.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
163 LPCG-Monoflex code 39.79 % 56.60 % 35.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
164 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 39.76 % 50.30 % 36.90 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
165 P2P code 39.75 % 50.63 % 37.77 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
166 SS3D 39.60 % 53.72 % 35.40 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
167 SemanticVoxels 38.95 % 45.59 % 37.21 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
168 MonoLiG code 38.92 % 52.66 % 35.05 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
169 SeSame-voxel w/score code 38.87 % 46.62 % 36.58 % N/A s GPU @ 1.5 Ghz (Python)
170 HA PillarNet 38.19 % 47.57 % 35.73 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
171 DPM-VOC+VP 37.79 % 52.91 % 33.27 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
172 StereoDistill 37.58 % 48.49 % 34.41 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
173 fuf 37.16 % 48.56 % 33.51 % 10 s 1 core @ 2.5 Ghz (C/C++)
174 MonoAuxNorm 37.02 % 50.48 % 32.96 % 0.02 s GPU @ 2.5 Ghz (Python)
175 EQ-PVRCNN code 36.49 % 43.67 % 34.67 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
176 CG-Stereo
This method uses stereo information.
36.47 % 48.23 % 32.77 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
177 TANet code 36.21 % 42.54 % 34.39 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
178 ODGS 35.75 % 44.76 % 33.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
179 YOLOStereo3D
This method uses stereo information.
code 35.62 % 48.99 % 31.58 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
180 SCNet
This method makes use of Velodyne laser scans.
35.49 % 44.50 % 33.38 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
181 MonoDTR 35.11 % 49.41 % 31.41 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
182 BirdNet+
This method makes use of Velodyne laser scans.
code 35.01 % 41.84 % 33.03 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
183 MonoEF 34.63 % 47.45 % 31.01 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
184 sensekitti code 34.26 % 41.03 % 31.51 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
185 DA-Net 34.06 % 43.83 % 31.06 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
186 MMpp 33.67 % 40.93 % 31.51 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
187 D4LCN code 33.62 % 46.73 % 28.71 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
188 DDMP-3D 33.35 % 46.12 % 28.45 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
189 SparsePool code 33.35 % 43.86 % 29.99 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
190 SparsePool code 33.29 % 43.52 % 30.01 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
191 LSVM-MDPM-sv 33.01 % 45.60 % 29.27 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
192 SeSame-pillar code 32.73 % 40.30 % 30.56 % N/A s TITAN RTX @ 1.35 Ghz (Python)
193 PointRGBNet 32.57 % 43.08 % 29.17 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
194 MVAF-Net(3-classes) 32.33 % 39.62 % 30.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
195 AVOD
This method makes use of Velodyne laser scans.
code 32.19 % 42.54 % 29.09 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
196 Complexer-YOLO
This method makes use of Velodyne laser scans.
32.13 % 37.32 % 28.94 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
197 RPN+BF code 32.12 % 41.19 % 28.83 % 0.6 s GPU @ 2.5 Ghz (Matlab + C/C++)
L. Zhang, L. Lin, X. Liang and K. He: Is Faster R-CNN Doing Well for Pedestrian Detection?. ECCV 2016.
198 DMF
This method uses stereo information.
32.00 % 39.86 % 30.12 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
199 CMKD code 31.97 % 42.60 % 29.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
200 M3D-RPN code 31.88 % 44.33 % 28.55 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
201 Point-GNN
This method makes use of Velodyne laser scans.
code 31.86 % 39.16 % 29.65 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
202 SubCat 31.26 % 42.31 % 27.39 % 1.2 s 6 cores @ 2.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mobile Vision 2014.
203 SeSame-pillar w/scor code 30.83 % 38.16 % 28.98 % N/A s 1 core @ 2.5 Ghz (C/C++)
204 Aug3D-RPN 29.75 % 40.50 % 25.96 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
205 TS3D
This method uses stereo information.
29.65 % 42.36 % 25.91 % 0.09 s GPU @ 1.5 Ghz (Python + C/C++)
206 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 29.56 % 36.76 % 28.10 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
207 MVAF-Net(3-classes) 29.31 % 36.05 % 27.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
208 SeSame-point w/score code 28.86 % 39.33 % 26.47 % N/A s GPU @ 1.5 Ghz (Python)
209 RT3D-GMP
This method uses stereo information.
28.75 % 40.81 % 25.13 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
210 CMAN 28.16 % 40.27 % 24.82 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
211 Cube R-CNN code 28.07 % 34.26 % 25.14 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
212 CIE 27.84 % 37.65 % 25.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
213 BKDStereo3D w/o KD code 27.81 % 38.59 % 24.48 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
214 mdab 27.66 % 39.50 % 25.05 % 0.02 s 1 core @ 2.5 Ghz (Python)
215 BKDStereo3D code 27.64 % 38.65 % 23.62 % 0.1 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
216 PGD-FCOS3D code 27.61 % 40.20 % 24.29 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
217 FMF-occlusion-net 26.28 % 38.13 % 22.91 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
218 MonoTRKDv2 25.80 % 35.60 % 23.11 % 40 s 1 core @ 2.5 Ghz (Python)
219 MonoSIM 25.25 % 35.75 % 22.62 % 0.16 s 1 core @ 2.5 Ghz (Python)
220 SFEBEV 25.09 % 32.10 % 23.42 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
221 SVDM-VIEW 25.09 % 34.33 % 22.42 % 1 s 1 core @ 2.5 Ghz (Python)
222 MonoFRD 24.92 % 33.47 % 22.38 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
223 DFR-Net 24.88 % 35.75 % 21.72 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
224 MonoTAKD V2 24.37 % 35.52 % 21.37 % 0.1 s 1 core @ 2.5 Ghz (Python)
225 MonoLTKD 24.37 % 35.52 % 21.37 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
226 MonoTAKD 24.37 % 35.52 % 21.37 % 0.1 s 1 core @ 2.5 Ghz (Python)
227 MonoLTKD_V3 24.37 % 35.52 % 21.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
228 DSGN
This method uses stereo information.
code 24.32 % 31.21 % 23.09 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
229 ACF 24.31 % 32.23 % 21.70 % 1 s 1 core @ 3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
230 PS-fld code 23.67 % 32.84 % 21.40 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
231 SGM3D code 23.54 % 33.73 % 20.50 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
232 multi-task CNN 22.80 % 30.30 % 20.47 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
233 ACF-MR 22.61 % 29.23 % 20.08 % 0.6 s 1 core @ 3.5 Ghz (C/C++)
R. Rajaram, E. Ohn-Bar and M. Trivedi: Looking at Pedestrians at Different Scales: A Multi-resolution Approach and Evaluations. T-ITS 2016.
234 OC Stereo
This method uses stereo information.
code 22.02 % 31.36 % 20.20 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
235 BirdNet
This method makes use of Velodyne laser scans.
21.83 % 27.12 % 20.56 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
236 MonoNeRD code 20.54 % 28.43 % 18.36 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
237 DPM-C8B1
This method uses stereo information.
19.17 % 27.79 % 16.48 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
238 ESGN
This method uses stereo information.
19.17 % 26.02 % 16.90 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
239 RefinedMPL 17.26 % 25.83 % 15.41 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
240 CaDDN code 17.13 % 24.45 % 15.79 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
241 RT3DStereo
This method uses stereo information.
15.34 % 21.41 % 13.23 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
242 SST [st]
This method uses stereo information.
13.91 % 20.31 % 12.77 % 1 s 1 core @ 2.5 Ghz (Python)
243 MonoGhost_Ped_Cycl 8.22 % 11.25 % 8.21 % 0.03 s 1 core @ 2.5 Ghz (Python)
244 init 0.02 % 0.02 % 0.02 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
245 mdab 0.02 % 0.02 % 0.02 % 0.02 s 1 core @ 2.5 Ghz (Python)
246 DA3D+KM3D+v2-99 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
247 DA3D+KM3D 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
248 DA3D 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods


Cyclists


Method Setting Code Moderate Easy Hard Runtime Environment
1 OFFNet 86.00 % 88.86 % 81.12 % 0.1 s GPU @ 2.5 Ghz (Python)
2 TED code 84.08 % 92.46 % 78.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
3 CasA++ code 83.98 % 92.24 % 78.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
4 UPIDet code 83.78 % 89.86 % 76.98 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
5 LoGoNet code 83.51 % 89.90 % 77.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
6 CasA code 82.95 % 92.71 % 76.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
7 IMLIDAR(base) 81.31 % 90.67 % 74.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
8 RangeIoUDet
This method makes use of Velodyne laser scans.
81.24 % 90.24 % 74.49 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
9 HMFI code 81.13 % 89.09 % 74.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
10 VPA 81.12 % 89.41 % 74.43 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
11 MLF-DET 81.07 % 87.17 % 73.92 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
12 USVLab BSAODet code 80.87 % 86.64 % 73.87 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
13 HA-PillarNet 80.36 % 89.76 % 74.40 % 0.05 s 1 core @ 2.5 Ghz (Python)
14 U_PV_V2_ep100_80 80.31 % 89.14 % 73.46 % 0... s 1 core @ 2.5 Ghz (Python)
15 CAT-Det 80.25 % 87.79 % 73.41 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
16 BPG3D 80.12 % 88.63 % 73.11 % 0.05 s 1 core @ 2.5 Ghz (Python)
17 EQ-PVRCNN code 80.09 % 88.92 % 73.79 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
18 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 80.05 % 88.52 % 74.20 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
19 PIPC-3Ddet code 80.02 % 89.47 % 73.26 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
20 Anonymous code 79.93 % 89.44 % 72.84 % 0.04 s 1 core @ 2.5 Ghz (Python)
21 HINTED 79.73 % 86.59 % 73.13 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
22 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 79.70 % 86.43 % 72.96 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
23 PSMS-Net
This method makes use of Velodyne laser scans.
79.46 % 88.39 % 72.63 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
24 PDV code 79.34 % 88.66 % 72.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
25 U_PV_V2_ep_100_100 79.22 % 86.74 % 72.91 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
26 GeVo 79.16 % 88.89 % 72.76 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
27 CZY_PPF_Net 79.14 % 87.01 % 72.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
28 KPTr 79.10 % 87.02 % 72.03 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
29 PASS-PV-RCNN-Plus 78.82 % 86.15 % 72.28 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
30 M3DeTR code 78.80 % 87.21 % 71.88 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
31 HAF-PVP_test 78.66 % 89.62 % 71.38 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
32 DiffCandiDet 78.64 % 88.43 % 72.22 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
33 PV-RCNN-Plus 78.56 % 86.39 % 72.31 % 1 s 1 core @ 2.5 Ghz (C/C++)
34 IA-SSD (single) code 78.34 % 88.78 % 71.63 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
35 HotSpotNet 78.31 % 85.79 % 71.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
36 PG-RCNN code 78.30 % 87.89 % 71.76 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
37 DDF 78.02 % 88.97 % 71.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
38 LGNet-3classes code 77.80 % 84.31 % 71.26 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
39 focalnet 77.79 % 84.68 % 72.72 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
40 focalnet 77.75 % 84.80 % 72.57 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
41 SDGUFusion 77.61 % 85.79 % 71.37 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
42 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 77.52 % 88.70 % 70.41 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
43 DFAF3D 77.41 % 86.98 % 70.42 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
44 FIRM-Net 77.23 % 89.35 % 70.31 % 0.07 s 1 core @ 2.5 Ghz (Python)
45 PVTr 77.19 % 89.56 % 70.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
46 casx 77.18 % 88.67 % 70.42 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
47 mm3d_PartA2 77.15 % 88.70 % 70.69 % 0.1 s GPU @ >3.5 Ghz (Python)
48 PointPainting
This method makes use of Velodyne laser scans.
76.92 % 87.33 % 68.21 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
49 3ONet 76.91 % 88.98 % 69.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
50 RPF3D 76.91 % 89.31 % 70.07 % 0.1 s 1 core @ 2.5 Ghz (Python)
51 OGMMDet code 76.86 % 86.40 % 71.57 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
52 ANM code 76.86 % 88.28 % 71.57 % ANM ANM
53 GraphAlign(ICCV2023) code 76.81 % 84.53 % 71.90 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
54 RAFDet 76.73 % 87.01 % 70.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
55 F-ConvNet
This method makes use of Velodyne laser scans.
code 76.71 % 86.39 % 66.92 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
56 P2V-RCNN 76.52 % 88.21 % 69.90 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
57 af 76.21 % 85.40 % 71.04 % 1 s GPU @ 2.5 Ghz (Python)
58 BAPartA2S-4h 76.18 % 88.80 % 70.06 % 0.1 s 1 core @ 2.5 Ghz (Python)
59 XT-PartA2 76.18 % 87.18 % 70.88 % 0.1 s GPU @ >3.5 Ghz (Python)
60 RAFDet 76.12 % 88.40 % 69.51 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
61 GF-pointnet 75.98 % 85.13 % 69.35 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
62 AAMVFNet code 75.55 % 85.41 % 69.15 % 0.04 s GPU @ 2.5 Ghz (Python)
63 F3D 75.42 % 88.22 % 68.69 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
64 ACFNet 75.34 % 86.11 % 70.41 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
65 PR-SSD 75.28 % 85.63 % 69.93 % 0.02 s GPU @ 2.5 Ghz (Python)
66 casxv1 75.23 % 88.07 % 68.40 % 0.01 s 1 core @ 2.5 Ghz (Python)
67 AMVFNet code 75.20 % 84.47 % 69.12 % 0.04 s GPU @ 2.5 Ghz (Python)
68 DA-Net 75.11 % 86.16 % 70.49 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
69 u_second_v4_epoch_10 75.04 % 87.83 % 69.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
70 TF-PartA2 74.98 % 86.86 % 68.78 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
71 centerpoint_pcdet 74.76 % 85.81 % 67.86 % 0.06 s 1 core @ 2.5 Ghz (Python)
72 Fast-CLOCs 74.74 % 89.54 % 67.54 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
73 VoxelFSD-S 74.66 % 87.04 % 67.75 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
74 bs 74.64 % 83.68 % 68.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
75 SVGA-Net 74.64 % 84.62 % 67.64 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
76 ACDet code 74.52 % 88.21 % 68.33 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
77 LGSLNet 74.48 % 83.67 % 69.78 % 0.1 s GPU @ 2.5 Ghz (Python)
78 U_second_v4_ep_100_8 74.46 % 84.32 % 67.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
79 prcnn_v18_80_100 74.30 % 86.21 % 66.60 % 0.1 s 1 core @ 2.5 Ghz (Python)
80 voxelnext_pcdet 74.13 % 87.44 % 67.34 % 0.05 s 1 core @ 2.5 Ghz (Python)
81 SC-SSD 74.05 % 84.20 % 67.45 % 1 s 1 core @ 2.5 Ghz (C/C++)
82 VPFNet code 73.62 % 82.08 % 65.27 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
83 DVFENet 73.43 % 85.32 % 66.87 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
84 focal 73.38 % 83.92 % 68.69 % 100 s 1 core @ 2.5 Ghz (Python)
85 PA-Det3D 73.25 % 83.13 % 66.97 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
86 SRDL 73.21 % 85.22 % 66.45 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
87 RAFDet code 73.13 % 84.78 % 66.98 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
88 L-AUG 73.07 % 83.69 % 67.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
89 PI-SECOND code 72.97 % 86.80 % 66.52 % 0.05 s GPU @ >3.5 Ghz (Python + C/C++)
90 IIOU code 72.87 % 86.72 % 65.65 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
91 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 72.81 % 85.94 % 65.84 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
92 MM_SECOND code 72.74 % 84.69 % 65.85 % 0.05 s GPU @ >3.5 Ghz (Python)
93 SIF 72.73 % 84.96 % 64.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
94 XView 72.70 % 87.59 % 64.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
95 FromVoxelToPoint code 72.62 % 86.71 % 65.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
96 EOTL code 72.37 % 82.07 % 62.06 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
97 H^23D R-CNN code 72.20 % 85.09 % 65.25 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
98 Test_dif code 72.16 % 85.41 % 67.13 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
99 SFA-GCL(80) code 71.96 % 86.93 % 64.97 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
100 SeSame-point code 71.88 % 83.97 % 65.00 % N/A s TITAN RTX @ 1.35 Ghz (Python)
101 P2P code 71.78 % 82.09 % 65.28 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
102 SFA-GCL(80, k=4) code 71.75 % 86.48 % 62.80 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
103 SFA-GCL code 71.73 % 86.78 % 64.73 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
104 MG 71.09 % 83.49 % 64.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
105 S-AT GCN 71.04 % 82.31 % 65.13 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
106 IOUFusion 71.00 % 85.88 % 64.05 % 0.1 s GPU @ 2.5 Ghz (Python)
107 DGEnhCL code 70.83 % 85.51 % 61.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
108 LVFSD 70.52 % 85.37 % 64.21 % 0.06 s
ERROR: Wrong syntax in BIBTEX file.
109 MGAF-3DSSD code 70.16 % 86.28 % 62.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
110 IA-SSD (multi) code 70.13 % 84.82 % 65.13 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
111 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 69.54 % 82.18 % 62.98 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
112 fuf 69.44 % 84.83 % 62.66 % 10 s 1 core @ 2.5 Ghz (C/C++)
113 SFA-GCL(baseline) code 69.29 % 86.10 % 60.34 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
114 SeSame-voxel code 69.21 % 86.97 % 62.47 % N/A s TITAN RTX @ 1.35 Ghz (Python)
115 IIOU_LDR code 69.15 % 82.85 % 64.18 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
116 VSAC 69.14 % 88.31 % 62.03 % 0.07 s 1 core @ 1.0 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
117 SFA-GCL_dataaug code 69.10 % 85.79 % 62.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
118 SFA-GCL code 69.05 % 85.82 % 62.07 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
119 ARPNET 68.72 % 82.61 % 62.00 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
120 PointPillars
This method makes use of Velodyne laser scans.
code 68.55 % 83.79 % 61.71 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
121 ROT_S3D 68.28 % 84.11 % 63.43 % 0.1 s GPU @ 2.5 Ghz (Python)
122 EPNet++ 67.26 % 79.81 % 61.75 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
123 TANet code 66.37 % 81.15 % 60.10 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
124 PointRGBNet 65.68 % 79.64 % 59.48 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
125 HA PillarNet 65.49 % 77.81 % 58.58 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
126 PUDet 65.35 % 79.42 % 58.98 % 0.3 s GPU @ 2.5 Ghz (Python)
127 MMpointpillars 64.10 % 75.90 % 58.55 % 0.05 s 1 core @ 2.5 Ghz (Python)
128 PFF3D
This method makes use of Velodyne laser scans.
code 64.06 % 78.02 % 58.06 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
129 MMpp 63.72 % 78.33 % 57.50 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
130 SeSame-pillar code 63.61 % 75.66 % 57.48 % N/A s TITAN RTX @ 1.35 Ghz (Python)
131 SubCNN 63.36 % 71.97 % 55.42 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
132 PiFeNet code 62.62 % 77.54 % 55.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
133 Pose-RCNN 62.02 % 75.74 % 53.99 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
134 SCNet
This method makes use of Velodyne laser scans.
61.11 % 77.77 % 54.82 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
135 DMF
This method uses stereo information.
60.85 % 71.83 % 54.58 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
136 SFEBEV 60.01 % 72.79 % 54.59 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
137 BirdNet+
This method makes use of Velodyne laser scans.
code 59.44 % 67.52 % 54.27 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
138 AVOD-FPN
This method makes use of Velodyne laser scans.
code 58.70 % 69.21 % 53.47 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
139 Deep3DBox 58.56 % 68.31 % 50.30 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
140 3DOP
This method uses stereo information.
code 58.45 % 72.24 % 51.91 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
141 Complexer-YOLO
This method makes use of Velodyne laser scans.
58.28 % 65.41 % 54.27 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
142 DFSemONet(Baseline) 57.61 % 74.31 % 51.75 % 0.04 s GPU @ 2.5 Ghz (Python)
143 DD3D code 57.42 % 73.60 % 50.90 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
144 DeepStereoOP 56.55 % 69.36 % 49.37 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
145 MonoLiG code 54.91 % 76.10 % 47.58 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
146 SeSame-voxel w/score code 54.49 % 66.51 % 49.51 % N/A s GPU @ 1.5 Ghz (Python)
147 MonoInsight 54.40 % 70.86 % 46.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
148 MonoInsight 54.40 % 70.86 % 46.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
149 Mix-Teaching code 54.00 % 70.90 % 46.66 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
150 Mono3D code 53.96 % 67.33 % 47.91 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
151 MVAF-Net(3-classes) 51.18 % 65.18 % 47.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
152 AVOD
This method makes use of Velodyne laser scans.
code 51.05 % 64.81 % 45.12 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
153 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 50.94 % 69.92 % 47.01 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
154 MVAF-Net(3-classes) 50.64 % 61.90 % 46.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
155 FRCNN+Or code 49.53 % 63.45 % 43.65 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
156 MonoPSR code 49.32 % 58.63 % 43.05 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
157 StereoDistill 48.99 % 65.65 % 43.14 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
158 MonoFlex 47.91 % 65.51 % 40.40 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
159 HomoLoss(monoflex) code 47.36 % 62.89 % 40.55 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
160 MonoLSS 47.09 % 65.31 % 41.74 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
161 QD-3DT
This is an online method (no batch processing).
code 46.24 % 64.64 % 40.58 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
162 DSGN++
This method uses stereo information.
code 45.94 % 57.93 % 41.93 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
163 MonoDDE 45.58 % 63.91 % 39.29 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
164 LPCG-Monoflex code 45.24 % 63.07 % 39.28 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
165 MonoUNI code 45.21 % 62.21 % 38.28 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
166 MMLAB LIGA-Stereo
This method uses stereo information.
code 45.13 % 63.89 % 39.23 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
167 monodle code 45.12 % 61.84 % 37.95 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
168 BirdNet
This method makes use of Velodyne laser scans.
45.03 % 62.69 % 41.88 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
169 MonOAPC 44.74 % 60.40 % 38.01 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
170 SparsePool code 43.50 % 59.77 % 39.36 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
171 MonoDTR 42.45 % 56.40 % 36.32 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
172 SH3D 41.71 % 60.19 % 36.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
173 sensekitti code 41.14 % 47.48 % 35.07 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
174 MonoSIM_v2 40.72 % 58.96 % 35.22 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
175 CG-Stereo
This method uses stereo information.
40.64 % 60.24 % 35.55 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
176 MonoRCNN++ code 39.84 % 56.32 % 34.82 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
177 MonoPair 39.47 % 53.36 % 33.95 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
178 CMKD code 38.70 % 56.46 % 34.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
179 DEVIANT code 38.46 % 57.64 % 32.76 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
180 Disp R-CNN (velo)
This method uses stereo information.
code 35.93 % 52.35 % 31.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
181 Disp R-CNN
This method uses stereo information.
code 35.92 % 52.37 % 31.08 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
182 MonoAIU 35.88 % 53.18 % 30.98 % 0.03 s GPU @ 2.5 Ghz (Python)
183 GUPNet code 35.03 % 55.03 % 31.18 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
184 Shift R-CNN (mono) code 34.77 % 51.95 % 31.10 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
185 MonoAuxNorm 34.71 % 52.62 % 30.22 % 0.02 s GPU @ 2.5 Ghz (Python)
186 SparsePool code 34.56 % 43.33 % 31.09 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
187 MonoRUn code 34.36 % 49.04 % 30.22 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
188 SPG_mini
This method makes use of Velodyne laser scans.
code 34.28 % 36.23 % 32.09 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
189 BtcDet
This method makes use of Velodyne laser scans.
code 33.94 % 35.79 % 31.90 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
190 Plane-Constraints code 32.87 % 48.36 % 28.52 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
191 Point-GNN
This method makes use of Velodyne laser scans.
code 32.37 % 36.29 % 29.81 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
192 MonoEF 32.19 % 43.70 % 27.93 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
193 D4LCN code 31.70 % 48.03 % 26.99 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
194 OPA-3D code 31.64 % 45.97 % 27.92 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
195 M3D-RPN code 31.09 % 48.11 % 26.10 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
196 Aug3D-RPN 30.01 % 42.60 % 24.74 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
197 DDMP-3D 29.53 % 46.42 % 25.91 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
198 Anonymous 29.16 % 44.95 % 26.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
199 PS-fld code 27.99 % 41.21 % 24.75 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
200 SS3D 27.79 % 42.95 % 24.26 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
201 CMAN 27.63 % 42.58 % 23.14 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
202 MonoFRD 26.87 % 39.05 % 24.09 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
203 DFR-Net 24.85 % 38.60 % 21.86 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
204 MonoTRKDv2 24.38 % 35.75 % 21.06 % 40 s 1 core @ 2.5 Ghz (Python)
205 MonoTAKD V2 24.18 % 37.61 % 21.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
206 MonoLTKD 24.18 % 37.61 % 21.44 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
207 MonoTAKD 24.18 % 37.61 % 21.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
208 MonoLTKD_V3 24.18 % 37.61 % 21.44 % 0.04 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
209 Cube R-CNN code 23.98 % 29.00 % 21.67 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
210 SeSame-pillar w/scor code 21.79 % 19.53 % 20.12 % N/A s 1 core @ 2.5 Ghz (C/C++)
211 DSGN
This method uses stereo information.
code 20.28 % 29.76 % 19.13 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
212 MonoNeRD code 20.13 % 30.64 % 18.19 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
213 SVDM-VIEW 20.06 % 30.50 % 17.45 % 1 s 1 core @ 2.5 Ghz (Python)
214 CaDDN code 19.96 % 30.35 % 17.38 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
215 LSVM-MDPM-sv 19.15 % 26.05 % 18.02 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
216 PGD-FCOS3D code 19.10 % 31.75 % 16.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
217 OC Stereo
This method uses stereo information.
code 18.99 % 29.07 % 16.40 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
218 DPM-VOC+VP 18.92 % 27.97 % 17.43 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
219 CIE 17.52 % 24.39 % 15.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
220 SST [st]
This method uses stereo information.
16.72 % 27.08 % 14.53 % 1 s 1 core @ 2.5 Ghz (Python)
221 SGM3D code 16.50 % 25.51 % 15.09 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
222 RT3D-GMP
This method uses stereo information.
16.18 % 23.91 % 14.23 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
223 RefinedMPL 16.02 % 26.54 % 13.20 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
224 FMF-occlusion-net 15.24 % 23.82 % 13.84 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
225 DPM-C8B1
This method uses stereo information.
14.64 % 23.93 % 13.09 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
226 MonoGhost_Ped_Cycl 14.12 % 19.66 % 12.40 % 0.03 s 1 core @ 2.5 Ghz (Python)
227 MonoSIM 13.83 % 19.81 % 11.81 % 0.16 s 1 core @ 2.5 Ghz (Python)
228 SeSame-point w/score code 10.17 % 12.39 % 9.31 % N/A s GPU @ 1.5 Ghz (Python)
229 mdab 9.59 % 15.41 % 8.62 % 0.02 s 1 core @ 2.5 Ghz (Python)
230 ESGN
This method uses stereo information.
7.73 % 12.50 % 6.80 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
231 RT3DStereo
This method uses stereo information.
3.88 % 5.46 % 3.54 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
232 init 0.04 % 0.04 % 0.02 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
233 DA3D+KM3D+v2-99 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
234 mdab 0.00 % 0.00 % 0.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
235 DA3D+KM3D 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
236 DA3D 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods


Related Datasets

Citation

When using this dataset in your research, we will be happy if you cite us:
@inproceedings{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker