Stereo Evaluation 2015


The stereo 2015 / flow 2015 / scene flow 2015 benchmark consists of 200 training scenes and 200 test scenes (4 color images per scene, saved in loss less png format). Compared to the stereo 2012 and flow 2012 benchmarks, it comprises dynamic scenes for which the ground truth has been established in a semi-automatic process. Our evaluation server computes the percentage of bad pixels averaged over all ground truth pixels of all 200 test images. For this benchmark, we consider a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields. More details can be found in Object Scene Flow for Autonomous Vehicles (CVPR 2015).

Our evaluation table ranks all methods according to the number of erroneous pixels. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. Legend:

  • D1: Percentage of stereo disparity outliers in first frame
  • D2: Percentage of stereo disparity outliers in second frame
  • Fl: Percentage of optical flow outliers
  • SF: Percentage of scene flow outliers (=outliers in either D0, D1 or Fl)
  • bg: Percentage of outliers averaged only over background regions
  • fg: Percentage of outliers averaged only over foreground regions
  • all: Percentage of outliers averaged over all ground truth pixels


Note: On 13.03.2017 we have fixed several small errors in the flow (noc+occ) ground truth of the dynamic foreground objects and manually verified all images for correctness by warping them according to the ground truth. As a consequence, all error numbers have decreased slightly. Please download the devkit and the annotations with the improved ground truth for the training set again if you have downloaded the files prior to 13.03.2017 and consider reporting these new number in all future publications. The last leaderboards before these corrections can be found here (optical flow 2015) and here (scene flow 2015). The leaderboards for the KITTI 2015 stereo benchmarks did not change.

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Motion stereo: Method uses epipolar geometry for computing optical flow
  • Additional training data: Use of additional data sources for training (see details)

Evaluation ground truth        Evaluation area

Method Setting Code D1-bg D1-fg D1-all Density Runtime Environment
1 MonSter++ code 1.12 % 2.65 % 1.37 % 100.00 % 0.45 s GPU @ 2.5 Ghz (Python)
J. Cheng, W. Liao, Z. Cai, L. Liu, G. Xu, X. Wang, Y. Wang, Z. Yuan, Y. Deng, J. Zang, Y. Shi, J. Tang and X. Yang: MonSter++: Unified Stereo Matching, Multi-view Stereo, and Real-time Stereo with Monodepth Priors. 2025.
2 Wavelet-MonSter 1.14 % 2.60 % 1.38 % 100.00 % 0.58 s 1 core @ 2.5 Ghz (Python)
3 BridgeDepth code 1.13 % 2.73 % 1.40 % 100.00 % 0.13 s Pytorch@NVIDIA RTX 3090
T. Guan, J. Guo, C. Wang and Y. Liu: BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment. ICCV 2025 Highlight.
4 LACA code 1.11 % 2.82 % 1.40 % 100.00 % 0.24 s GPU @ 2.5 Ghz (Python)
5 MonSter code 1.13 % 2.81 % 1.41 % 100.00 % 0.45 s 1 core @ 2.5 Ghz (Python)
J. Cheng, L. Liu, G. Xu, Z. Cai and X. Yang: MonSter: Marry Monodepth to Stereo Unleashes Power. CVPR 2025 Highlight.
6 DEFOM-Stereo code 1.25 % 2.23 % 1.41 % 100.00 % 0.30s 1 core @ 2.5 Ghz (Python)
H. Jiang, Z. Lou, L. Ding, R. Xu, M. Tan, W. Jiang and R. Huang: DEFOM-Stereo: Depth Foundation Model Based Stereo Matching. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2025.
7 Argus 1.22 % 2.38 % 1.42 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
8 SEA-Flow3D + Monster
This method uses optical flow information.
1.13 % 2.83 % 1.42 % 100.00 % 0.07 s GPU @ 2.5 Ghz (Python)
9 AdaDepth 1.25 % 2.25 % 1.42 % 100.00 % 0.7 s 1 core @ 2.5 Ghz (C/C++)
10 MGS-Selective 1.13 % 2.88 % 1.42 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
11 SLiDC-Stereo 1.16 % 2.74 % 1.42 % 100.00 % 0.29 s GPU @ 2.5 Ghz (Python)
12 S-IGEV-ICAE 1.26 % 2.24 % 1.43 % 100.00 % 0.251 s 1 core @ 2.5 Ghz (Python)
13 IGEV++ (DepthAny.) code 1.15 % 2.80 % 1.43 % 100.00 % 0.48 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry Encoding Volumes for Stereo Matching. IEEE TPAMI 2025.
14 MT 1.10 % 3.10 % 1.43 % 100.00 % 0.45 s GPU @ 2.5 Ghz (Python)
15 StereoBase code 1.28 % 2.26 % 1.44 % 100.00 % 0.29 s GPU @ 1.5 Ghz (Python)
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
16 SGD-Stereo 1.23 % 2.55 % 1.45 % 100.00 % 0.45 s 1 core @ 2.5 Ghz (C/C++)
17 TC-Stereo code 1.29 % 2.33 % 1.46 % 100.00 % 0.09 s NVIDIA RTX 3090 (Pytorch)
J. Zeng, C. Yao, Y. Wu and Y. Jia: Temporally Consistent Stereo Matching. European conference on computer vision 2024.
18 DS-Stereo 1.23 % 2.64 % 1.47 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (Python)
J. Lin, J. Du and H. Wang: DS-Stereo: Deep-Shallow Information Interaction for Stereo Matching. IEEE Robotics and Automation Letters 2025.
19 DispViT+ 1.12 % 3.26 % 1.47 % 100.00 % 0.15 s 1 core @ 2.5 Ghz (Python)
20 Depthstereo 1.22 % 2.79 % 1.48 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
21 FFLO-Net code 1.29 % 2.52 % 1.49 % 100.00 % 0.37 s NVIDIA RTX 3090 (PyTorch)
22 MoCha-V2 Beta code 1.27 % 2.62 % 1.49 % 100.00 % 0.28 s NVIDIA Tesla A30 (PyTorch)
Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Zhao and C. Chen: Motif Channel Opened in a White-Box: Stereo Matching via Motif Correlation Graph. arXiv preprint arXiv:2411.12426 2024.
Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu: MoCha-Stereo: Motif Channel Attention Network for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
23 GREAT-Selective code 1.27 % 2.62 % 1.49 % 100.00 % 0.43 s NVIDIA RTX 3090 (PyTorch)
J. Li, X. Chen, Z. Jiang, Q. Zhou, Y. Li and J. Wang: Global Regulation and Excitation via Attention Tuning for Stereo Matching. arXiv preprint arXiv:2509.15891 2025.
24 GREAT-IGEV code 1.28 % 2.59 % 1.50 % 100.00 % 0.33 s NVIDIA RTX 3090 (PyTorch)
J. Li, X. Chen, Z. Jiang, Q. Zhou, Y. Li and J. Wang: Global Regulation and Excitation via Attention Tuning for Stereo Matching. arXiv preprint arXiv:2509.15891 2025.
25 MatchStereo code 1.34 % 2.32 % 1.50 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python + C/C++)
T. Yan, T. Liu, X. Yang, Q. Zhao and Z. Xia: MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching. arXiv preprint arXiv:2510.14260 2025.
26 Reg-Stereo 1.30 % 2.54 % 1.50 % 100.00 % 0.37 s 1 core @ 2.5 Ghz (C/C++)
L. Zhu, E. Rigall, Y. Gao, Z. Zhang, Y. Bai and J. Dong: Region-Aware Driven Distribution Optimization for Stereo Matching. IEEE Transactions on Circuits and Systems for Video Technology 2025.
27 ViTAStereo code 1.21 % 2.99 % 1.50 % 100.00 % 0.22 s NVIDIA RTX 4090 (PyTorch)
C. Liu, Q. Chen and R. Fan: Playing to Vision Foundation Model's Strengths in Stereo Matching. IEEE Transactions on Intelligent Vehicles 2024.
28 UGIA-Selective 1.30 % 2.57 % 1.51 % 100.00 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao and W. Zhao: SR-Stereo \& DAPE: Stepwise Regression and Pre-Trained Edges for Practical Stereo Matching. IEEE Transactions on Intelligent Transportation Systems 2025.
W. Xiao and W. Zhao: Rectified Iterative Disparity for Stereo Matching. arXiv preprint arXiv:2406.10943 2024.
29 IGEV++ code 1.31 % 2.54 % 1.51 % 100.00 % 0.28 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry Encoding Volumes for Stereo Matching. IEEE TPAMI 2025.
30 MoCha-V2 Alpha code 1.35 % 2.40 % 1.52 % 100.00 % 0.33 s NVIDIA Tesla A100 (Pytorch)
Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Zhao and C. Chen: Motif Channel Opened in a White-Box: Stereo Matching via Motif Correlation Graph. arXiv preprint arXiv:2411.12426 2024.
Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu: MoCha-Stereo: Motif Channel Attention Network for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
31 MAFNet++ 1.33 % 2.53 % 1.53 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
32 ACVNet-ICAE 1.31 % 2.64 % 1.53 % 100.00 % 0.218 s 1 core @ 2.5 Ghz (Python)
33 MoCha-Stereo code 1.36 % 2.43 % 1.53 % 100.00 % 0.34 s NVIDIA Tesla A6000 (PyTorch)
Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu: MoCha-Stereo: Motif Channel Attention Network for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
34 AIO-Stereo 1.34 % 2.57 % 1.54 % 100.00 % 0.23 s GPU @ 2.5 Ghz (Python)
J. Zhou, H. Zhang, J. Yuan, P. Ye, T. Chen, H. Jiang, M. Chen and Y. Zhang: All-in-One: Transferring Vision Foundation Models into Stereo Matching. arXiv preprint arXiv:2412.09912 2024.
35 DiffuVolume 1.35 % 2.51 % 1.54 % 100.00 % 0.36 s GPU @ 2.5 Ghz (Python)
D. Zheng, X. Wu, Z. Liu, J. Meng and W. Zheng: DiffuVolume: Diffusion Model for Volume based Stereo Matching. arXiv preprint arXiv:2308.15989 2023.
36 GANet+ADL code 1.38 % 2.38 % 1.55 % 100.00 % 0.67s NVIDIA RTX 3090 (PyTorch)
P. Xu, Z. Xiang, C. Qiao, J. Fu and T. Pu: Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
37 Selective-IGEV code 1.33 % 2.61 % 1.55 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
38 MC-Stereo code 1.36 % 2.51 % 1.55 % 100.00 % 0.40 s GPU @ 2.5 Ghz (Python)
M. Feng, J. Cheng, H. Jia, L. Liu, G. Xu and X. Yang: MC-Stereo: Multi-peak Lookup and Cascade Search Range for Stereo Matching. International Conference on 3D Vision (3DV) 2024.
39 VMStereo-Base 1.38 % 2.44 % 1.55 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
40 SR Stereo_32_update 1.37 % 2.49 % 1.56 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao and W. Zhao: SR-Stereo \& DAPE: Stepwise Regression and Pre-Trained Edges for Practical Stereo Matching. IEEE Transactions on Intelligent Transportation Systems 2025.
41 frequence-stereo 1.24 % 3.18 % 1.56 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
42 TEST 1.36 % 2.57 % 1.56 % 100.00 % 0.48 1 core @ 2.5 Ghz (C/C++)
43 MTStereo 1.36 % 2.57 % 1.56 % 100.00 % 0.48 s GPU @ 2.5 Ghz (Python)
44 ForeEdge-Stereo 1.38 % 2.47 % 1.56 % 100.00 % 0.37 s GPU @ 2.5 Ghz (Python)
45 HSGC-Stereo(wo SCE) 1.39 % 2.46 % 1.57 % 100.00 % 1.76 s 1 core @ 2.5 Ghz (Python)
46 HART code 1.39 % 2.49 % 1.57 % 100.00 % 0.25 s NVIDIA Tesla A100 (PyTorch)
Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Wu, Y. Zhao and C. Chen: Hadamard Attention Recurrent Transformer: A Strong Baseline for Stereo Matching Transformer. arXiv preprint arXiv:2501.01023 2025.
47 DMIO 1.34 % 2.74 % 1.57 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
Y. Shi: Rethinking Iterative Stereo Matching from Diffusion Bridge Model Perspective. arXiv preprint arXiv:2404.09051 2024.
48 middle stereo 1.34 % 2.76 % 1.57 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
49 MTEV 1.26 % 3.17 % 1.57 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
50 NMRF-Stereo code 1.28 % 3.07 % 1.57 % 100.00 % 0.09 s NVIDIA RTX 3090 (PyTorch)
T. Guan, C. Wang and Y. Liu: Neural Markov Random Field for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
51 VIP-Stereo 1.40 % 2.46 % 1.58 % 100.00 % 0.40 s 1 core @ 2.5 Ghz (C/C++)
52 SG-IGEV code 1.40 % 2.50 % 1.58 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching. 2024.
53 OpenStereo-IGEV code 1.44 % 2.31 % 1.59 % 100.00 % 0.18 s NVIDIA-3090
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
54 RAFT-3D (CroCo)
This method uses optical flow information.
1.38 % 2.65 % 1.59 % 100.00 % 1.5 s GPU @ 2.5 Ghz (Python)
55 CroCo-Stereo code 1.38 % 2.65 % 1.59 % 100.00 % 0.93s NVIDIA A100
P. Weinzaepfel, T. Lucas, V. Leroy, Y. Cabon, V. Arora, R. Br\'egier, G. Csurka, L. Antsfeld, B. Chidlovskii and J. Revaud: CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow. ICCV 2023.
56 MS-RAFT-3D+
This method uses optical flow information.
code 1.38 % 2.65 % 1.59 % 100.00 % 3 s GPU @ 2.5 Ghz (Python)
J. Schmid, A. Jahedi, N. Senn and A. Bruhn: MS-RAFT-3D: A Multi-Scale Architecture for Recurrent Image-Based Scene Flow. IEEE International Conference on Image Processing (ICIP) 2025.
57 IGEV-Stereo code 1.38 % 2.67 % 1.59 % 100.00 % 0.18 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023.
58 DN+ACVNet 1.32 % 2.95 % 1.60 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (C/C++)
J. Zhang, L. Huang, X. Bai, J. Zheng, L. Gu and E. Hancock: Exploring the Usage of Pre-trained Features for Stereo Matching. International Journal of Computer Vision 2024.
59 dilated volume 1.34 % 2.87 % 1.60 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
60 depth dila volume 1.25 % 3.35 % 1.60 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
61 WGCF-Stereo 1.40 % 2.59 % 1.60 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
62 LACA_RVC code 1.21 % 3.56 % 1.60 % 100.00 % 0.24 s GPU @ 2.5 Ghz (Python)
63 volume rese 1.39 % 2.72 % 1.61 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
64 CMSF-stereo 1.37 % 2.82 % 1.61 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
65 UPFNet 1.38 % 2.85 % 1.62 % 100.00 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Q. Chen, B. Ge and J. Quan: Unambiguous Pyramid Cost Volumes Fusion for Stereo Matching. IEEE Transactions on Circuits and Systems for Video Technology 2023.
66 Selective-RAFT code 1.41 % 2.71 % 1.63 % 100.00 % 0.45 s 1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
67 xcit-stereo 1.36 % 2.97 % 1.63 % 100.00 % 0.44 s 1 core @ 2.5 Ghz (C/C++)
68 gaussi 1.51 % 2.24 % 1.63 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
69 DEFOM-Stereo_RVC code 1.42 % 2.68 % 1.63 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (C/C++)
H. Jiang, Z. Lou, L. Ding, R. Xu, M. Tan, W. Jiang and R. Huang: DEFOM-Stereo: Depth Foundation Model Based Stereo Matching. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2025.
70 [ICCV 2025] DKT-SMoE code 1.47 % 2.44 % 1.63 % 100.00 % 0.20 s 1 core @ 2.5 Ghz (C/C++)
J. Yun Wang: learning robust stereo matching in the wild with selective mixture-of-experts. arXiv preprint arXiv:2507.04631 2025.
71 NMRF-light 1.30 % 3.29 % 1.63 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
72 RobuSTereo 1.43 % 2.67 % 1.64 % 100.00 % 0.20 s 1 core @ 2.5 Ghz (Python)
73 GAStereo 1.43 % 2.68 % 1.64 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
74 mlt 1.25 % 3.59 % 1.64 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
75 WGCF-Stereo 1.46 % 2.57 % 1.64 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
76 StereoSA code 1.36 % 3.09 % 1.65 % 100.00 % 0.06 s RTX 4070S (Python)
77 M-FUSE
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 1.40 % 2.91 % 1.65 % 100.00 % 1.3 s GPU
L. Mehl, A. Jahedi, J. Schmalfuss and A. Bruhn: M-FUSE: Multi-frame Fusion for Scene Flow Estimation. Proc. Winter Conference on Applications of Computer Vision (WACV) 2023.
78 SF2SE3
This method uses optical flow information.
code 1.40 % 2.91 % 1.65 % 100.00 % 2.7 s GPU @ >3.5 Ghz (Python)
L. Sommer, P. Schröppel and T. Brox: SF2SE3: Clustering Scene Flow into SE (3)-Motions via Proposal and Selection. DAGM German Conference on Pattern Recognition 2022.
79 LEAStereo code 1.40 % 2.91 % 1.65 % 100.00 % 0.30 s GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020.
80 SplatFlow3D
This method uses optical flow information.
code 1.40 % 2.91 % 1.65 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
B. Wang, Y. Zhang, J. Li, Y. Yu, Z. Sun, L. Liu and D. Hu: SplatFlow: Learning Multi-frame Optical Flow via Splatting. International Journal of Computer Vision 2024.
81 LoS 1.42 % 2.81 % 1.65 % 100.00 % 0.19 s 1 core @ 2.5 Ghz (Python)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
82 ACVNet code 1.37 % 3.07 % 1.65 % 100.00 % 0.2 s NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for Accurate and Efficient Stereo Matching. CVPR 2022.
83 HSGC-Stereo 1.44 % 2.73 % 1.66 % 100.00 % 1.36 s GPU @ 2.5 Ghz (Python)
84 PCWNet code 1.37 % 3.16 % 1.67 % 100.00 % 0.44 s 1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. European Conference on Computer Vision(ECCV) 2022.
85 DSIGA 1.45 % 2.79 % 1.67 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
86 LaC+GANet code 1.44 % 2.83 % 1.67 % 100.00 % 1.8 s GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
87 SGCN-Stereo 1.51 % 2.52 % 1.68 % 100.00 % 0.76 s GPU @ 2.5 Ghz (Python)
88 MSF-Stereo 1.50 % 2.59 % 1.68 % 100.00 % 0.29 s 1 core @ 2.5 Ghz (C/C++)
89 CREStereo code 1.45 % 2.86 % 1.69 % 100.00 % 0.41 s GPU @ >3.5 Ghz (Python)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation. 2022.
90 RT-MonSter++ 1.47 % 2.78 % 1.69 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
91 LLKStereo 1.45 % 2.90 % 1.69 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (Python)
92 RTSN-P 1.42 % 3.06 % 1.70 % 100.00 % 0.04 s GPU @ 2.5 Ghz (C/C++)
93 GGEV 1.38 % 3.28 % 1.70 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
94 DuMa-Net 1.40 % 3.18 % 1.70 % 100.00 % 0.38 s PyTorch GPU
S. Sun, R. liu and S. Sun: Range-free disparity estimation with self- adaptive dual-matching. IET Computer Vision .
95 cs-Stereo 1.46 % 2.92 % 1.70 % 100.00 % 0.37 s 4 cores @ 2.5 Ghz (Python)
96 DKT-IGEV 1.46 % 3.05 % 1.72 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
J. Zhang, J. Li, L. Huang, X. Yu, L. Gu, J. Zheng and X. Bai: Robust Synthetic-to-Real Transfer for Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
97 Context-Stereo-I 1.47 % 3.05 % 1.73 % 100.00 % 0.04 s NVIDIA RTX 3080 (PyTorch)
98 [ICCV 2025] SMoESter code 1.50 % 2.88 % 1.73 % 100.00 % 0.20 s GPU @ 2.5 Ghz (Python)
J. Yun Wang: learning robust stereo matching in the wild with selective mixture-of-experts. ICCV 2025.
99 Patchmatch Stereo++ code 1.55 % 2.71 % 1.74 % 100.00 % 0.2 s
W. Ren, Q. Liao, Z. Shao, X. Lin, X. Yue, Y. Zhang and Z. Lu: Patchmatch Stereo++: Patchmatch Binocular Stereo with Continuous Disparity Optimization. Proceedings of the 31st ACM International Conference on Multimedia 2023.
100 CSPN 1.51 % 2.88 % 1.74 % 100.00 % 1.0 s GPU @ 2.5 Ghz (Python)
X. Cheng, P. Wang and R. Yang: Learning Depth with Convolutional Spatial Propagation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence(T-PAMI) 2019.
101 4D-IteraStereo 1.60 % 2.48 % 1.75 % 100.00 % 0.3 s GPU @ 1.5 Ghz (Python)
G. Han, S. Shan, Y. Xu, K. Zhang and H. Wei: 4D-IteraStereo: Stereo Matching via 4D Cost Volume Aggregation and Iterative Optimization. Measurement Science and Technology 2025.
102 LaC+GwcNet code 1.43 % 3.44 % 1.77 % 100.00 % 0. 65 s GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
103 GMStereo code 1.49 % 3.14 % 1.77 % 100.00 % 0.17 s GPU (Python)
H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao and A. Geiger: Unifying Flow, Stereo and Depth Estimation. arXiv preprint arXiv:2211.05783 2022.
104 BANet-3D 1.52 % 3.02 % 1.77 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
105 NLCA-Net v2 code 1.41 % 3.56 % 1.77 % 100.00 % 0.67 s GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in Stereo Matching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS .
106 LightStereo 1.66 % 2.32 % 1.77 % 100.00 % 0.3 s GPU @ 1.5 Ghz (Python)
107 GHUStereo code 1.48 % 3.21 % 1.77 % 100.00 % 0.034 s RTX 4070 (Python)
M. Tahmasebi, S. Huq, K. Meehan and M. McAfee: GHUStereo: A Lightweight Real-Time Stereo Matching Network with Guided Hourglass Up-Sampling. SSRN Electronic Journal 2025.
108 Context-Stereo-I 1.48 % 3.22 % 1.77 % 100.00 % 0.04 s NVIDIA RTX 3080 (PyTorch)
109 GANet+DSMNet 1.48 % 3.23 % 1.77 % 100.00 % 2.0 s GPU @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching Networks. Europe Conference on Computer Vision (ECCV) 2020.
110 NLSDR-Net 1.52 % 3.05 % 1.77 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
111 NLSDR-Net 1.55 % 2.97 % 1.78 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (Python)
112 PFSMNet code 1.54 % 3.02 % 1.79 % 100.00 % 0.31 s 1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2021.
113 Go-Stereo 1.51 % 3.16 % 1.79 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
114 RT-IGEV code 1.48 % 3.37 % 1.79 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry Encoding Volumes for Stereo Matching. IEEE TPAMI 2025.
115 SUW-Stereo 1.47 % 3.45 % 1.80 % 100.00 % 1.8 s 1 core @ 2.5 Ghz (C/C++)
H. Ren, A. Raj, M. El-Khamy and J. Lee: SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep Learning for Monocular Depth Estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 2020.
116 TemporalStereo
This method makes use of multiple (>2) views.
code 1.61 % 2.78 % 1.81 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
Y. Zhang, M. Poggi and S. Mattoccia: TemporalStereo: Efficient Spatial-Temporal Stereo Matching Network. IROS 2023.
117 Binary TTC
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 1.0 Ghz (Python)
A. Badki, O. Gallo, J. Kautz and P. Sen: Binary TTC: A Temporal Geofence for Autonomous Navigation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
118 RAFT-3D-MF
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
119 SEA-Flow3D+gannet
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.07 s 1 core @ 2.5 Ghz (Python)
120 CamLiRAFT
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning Optical Flow and Scene Flow with Bidirectional Camera-LiDAR Fusion. TPAMI 2023.
121 Scale-flow
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 0.8 s GPU @ 2.5 Ghz (Python)
H. Ling, Q. Sun, Z. Ren, Y. Liu, H. Wang and Z. Wang: Scale-flow: Estimating 3D Motion from Video. Proceedings of the 30th ACM International Conference on Multimedia 2022.
122 PAFlow
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.53 s 1 core @ 2.5 Ghz (C/C++)
123 CamLiRAFT-NR
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning Optical Flow and Scene Flow with Bidirectional Camera-LiDAR Fusion. arXiv preprint arXiv:2303.12017 2023.
124 RAFT-3D
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Teed and J. Deng: RAFT-3D: Scene Flow using Rigid-Motion Embeddings. arXiv preprint arXiv:2012.00726 2020.
125 OAMaskFlow
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (Python)
126 ADFactory
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
H. Ling, Q. Sun, Y. Sun, X. Xu and X. Li: ADFactory: An Effective Framework for Generalizing Optical Flow with NeRF. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
127 GANet-deep code 1.48 % 3.46 % 1.81 % 100.00 % 1.8 s GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
128 CamLiFlow
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 1.2 s GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu, W. Li and L. Chen: CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation. CVPR 2022.
129 Stereo expansion
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Upgrading Optical Flow to 3D Scene Flow through Optical Expansion. CVPR 2020.
130 G2L-Stereo 1.54 % 3.20 % 1.82 % 100.00 % 0.05 s GPU @ 1.5 Ghz (Python)
J. Tang, G. Peng, J. Liu and B. Yu: G2L-Stereo: Global to Local Two-Stage Real- Time Stereo Matching Network. IEEE Transactions on Computational Imaging 2025.
131 [TIP25]ADStereo code 1.59 % 2.94 % 1.82 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
Y. Wang, K. Li, L. Wang, J. Hu, D. Wu and Y. Guo: ADStereo: Efficient Stereo Matching with Adaptive Downsampling and Disparity Alignment. IEEE Transactions on Image Processing 2025.
132 LightStereo-H code 1.60 % 2.92 % 1.82 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen: Lightstereo: Channel boost is all you need for efficient 2d cost aggregation. ICRA 2025.
133 ESMStereo-L-gwc code 1.43 % 3.80 % 1.82 % 100.00 % 0.026 s RTX 4070S (Python)
134 OptStereo 1.50 % 3.43 % 1.82 % 100.00 % 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
135 BANet-2D 1.59 % 3.03 % 1.83 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
136 LoS_RVC 1.58 % 3.08 % 1.83 % 100.00 % 0.19 s 1 core @ 2.5 Ghz (C/C++)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024.
137 NLCA-Net-3 code 1.45 % 3.78 % 1.83 % 100.00 % 0.44 s >8 cores @ 3.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
138 AMNet 1.53 % 3.43 % 1.84 % 100.00 % 0.9 s GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo Disparity Estimation Networks. 2019.
139 HCR 1.51 % 3.51 % 1.85 % 100.00 % 0.19 s GPU @ 2.5 Ghz (Python)
Y. Tuming Yuan: Hourglass cascaded recurrent stereo matching network. Image and Vision computing 2024.
140 [TIP25]ADStereo_fast code 1.57 % 3.25 % 1.85 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Wang, K. Li, L. Wang, J. Hu, D. Wu and Y. Guo: ADStereo: Efficient Stereo Matching with Adaptive Downsampling and Disparity Alignment. IEEE Transactions on Image Processing 2025.
141 UCFNet_RVC code 1.57 % 3.33 % 1.86 % 100.00 % 0.21 s GPU @ 2.5 Ghz (Python)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
142 LCA-Stereo 1.57 % 3.37 % 1.87 % 100.00 % 0.03 s NVIDIA RTX 3090 (PyTorch)
143 CFNet code 1.54 % 3.56 % 1.88 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
144 RTSN 1.62 % 3.21 % 1.88 % 100.00 % 0.029 s 1 core @ 2.5 Ghz (Python)
145 RigidMask+ISF
This method uses optical flow information.
code 1.53 % 3.65 % 1.89 % 100.00 % 3.3 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Learning to Segment Rigid Motions from Two Frames. CVPR 2021.
146 DCVSMNet code 1.60 % 3.33 % 1.89 % 100.00 % 0.053 s RTX 4070S (PyTorch)
M. Tahmasebi, S. Huq, K. Meehan and M. McAfee: DCVSMNet: Double Cost Volume Stereo Matching Network. Neurocomputing 2025.
147 AcfNet code 1.51 % 3.80 % 1.89 % 100.00 % 0.48 s GPU @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching. AAAI 2020.
148 Context-Stereo code 1.66 % 3.07 % 1.89 % 100.00 % 0.03 s NVIDIA RTX 3080 (PyTorch)
149 RSAstereo 1.58 % 3.50 % 1.90 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
150 LXF-Stereo 1.72 % 2.82 % 1.90 % 100.00 % 0.05 s GPU @ 2.0 Ghz (Python)
151 NLCA_NET_v2_RVC 1.51 % 3.97 % 1.92 % 100.00 % 0.67 s GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
152 CDN code 1.66 % 3.20 % 1.92 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
153 Abc-Net 1.47 % 4.20 % 1.92 % 100.00 % 0.83 s 4 core @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local attention network for stereo matching. The Visual Computer 2021.
154 LightStereo-L code 1.78 % 2.64 % 1.93 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen: Lightstereo: Channel boost is all you need for efficient 2d cost aggregation. ICRA 2025.
155 GANet-15 code 1.55 % 3.82 % 1.93 % 100.00 % 0.36 s GPU (Pytorch)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
156 PCVNet 1.68 % 3.19 % 1.93 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
J. Zeng, C. Yao, L. Yu, Y. Wu and Y. Jia: Parameterized Cost Volume for Stereo Matching. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
157 CAL-Net 1.59 % 3.76 % 1.95 % 100.00 % 0.44 s 2 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for Stereo Matching. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021 2021.
158 CCAStereo 1.58 % 3.81 % 1.95 % 100.00 % 0.05 s GPU @ 1.5 Ghz (Python)
H. Hashemi, Y. Baleghi and M. Hassanzadeh: Real-time stereo matching with enhanced geometric comprehension through cross-attention integration. Neurocomputing 2025.
159 NLCA-Net code 1.53 % 4.09 % 1.96 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
160 CFNet_RVC code 1.65 % 3.53 % 1.96 % 100.00 % 0.22 s GPU @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
161 PGNet 1.64 % 3.60 % 1.96 % 100.00 % 0.7 s 1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo matching. Neurocomputing 2021.
162 SG-MSNet3D 1.61 % 3.81 % 1.98 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching. 2024.
163 DPDNet_3D 1.59 % 3.95 % 1.98 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
164 HITNet code 1.74 % 3.20 % 1.98 % 100.00 % 0.02 s GPU @ 2.5 Ghz (C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021.
165 SGNet 1.63 % 3.76 % 1.99 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo Matching. Proceedings of the Asian Conference on Computer Vision (ACCV) 2020.
166 FIA-Net 1.64 % 3.77 % 1.99 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
167 CSN code 1.59 % 4.03 % 2.00 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python)
X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan and P. Tan: Cascade cost volume for high-resolution multi-view stereo and stereo matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
168 SG-PSMnet 1.77 % 3.13 % 2.00 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching. 2024.
169 Fast-ACVNet+ code 1.70 % 3.53 % 2.01 % 100.00 % 0.05 s NVIDIA RTX 3090 (PyTorch)
G. Xu, Y. Wang, J. Cheng, J. Tang and X. Yang: Accurate and efficient stereo matching via attention concatenation volume. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
170 CoEx code 1.74 % 3.41 % 2.02 % 100.00 % 0.027 s GPU RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
171 HD^3-Stereo code 1.70 % 3.63 % 2.02 % 100.00 % 0.14 s NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition for Match Density Estimation. CVPR 2019.
172 SCV-Stereo code 1.67 % 3.78 % 2.02 % 100.00 % 0.08 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo matching from a sparse cost volume. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
173 AANet+ code 1.65 % 3.96 % 2.03 % 100.00 % 0.06 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
174 G2L-ROB 1.76 % 3.39 % 2.03 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
175 LightStereo-M code 1.81 % 3.22 % 2.04 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen: Lightstereo: Channel boost is all you need for efficient 2d cost aggregation. ICRA 2025.
176 LR-PSMNet code 1.65 % 4.13 % 2.06 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
W. Chuah, R. Tennakoon, R. Hoseinnezhad, A. Bab-Hadiashar and D. Suter: Adjusting Bias in Long Range Stereo Matching: A semantics guided approach. 2020.
177 iRaftStereo_RVC 1.88 % 3.03 % 2.07 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
H. Jiang, R. Xu and W. Jiang: An Improved RaftStereo Trained with A Mixed Dataset for the Robust Vision Challenge 2022. arXiv preprint arXiv:2210.12785 2022.
178 PSM + SMD-Nets code 1.69 % 4.01 % 2.08 % 100.00 % 0.41 s 1 core @ 2.5 Ghz (Python + C/C++)
F. Tosi, Y. Liao, C. Schmitt and A. Geiger: SMD-Nets: Stereo Mixture Density Networks. Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
179 MDCNet 1.76 % 3.68 % 2.08 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
W. Chen, X. Jia, M. Wu and Z. Liang: Multi-Dimensional Cooperative Network for Stereo Matching. IEEE Robotics and Automation Letters 2022.
180 EdgeStereo-V2 1.84 % 3.30 % 2.08 % 100.00 % 0.32s Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task learning network for stereo matching and edge detection. International Journal of Computer Vision (IJCV) 2019.
181 SG-GwcNet-g 1.73 % 3.88 % 2.09 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching. 2024.
182 3D-MSNet / MSNet3D code 1.75 % 3.87 % 2.10 % 100.00 % 1.5s Python,1080Ti
F. Shamsafar, S. Woerz, R. Rahim and A. Zell: MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2022.
183 GwcNet-g code 1.74 % 3.93 % 2.11 % 100.00 % 0.32 s GPU @ 2.0 Ghz (Python + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network. CVPR 2019.
184 SSPCVNet 1.75 % 3.89 % 2.11 % 100.00 % 0.9 s 1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost Volumes. The IEEE International Conference on Computer Vision (ICCV) 2019.
185 WSMCnet code 1.72 % 4.19 % 2.13 % 100.00 % 0.39s Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network. Acta Optica Sinica 2019.
186 HSM-1.8x code 1.80 % 3.85 % 2.14 % 100.00 % 0.14 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
187 DeepPruner (best) code 1.87 % 3.56 % 2.15 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch. ICCV 2019.
188 Stereo-fusion-SJTU 1.87 % 3.61 % 2.16 % 100.00 % 0.7 s Nvidia GTX Titan Xp
X. Song, X. Zhao, H. Hu and L. Fang: EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching. Asian Conference on Computer Vision 2018.
189 CAR-Stereo 1.86 % 3.72 % 2.17 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
190 AutoDispNet-CSS code 1.94 % 3.37 % 2.18 % 100.00 % 0.9 s 1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity Estimation with AutoML. The IEEE International Conference on Computer Vision (ICCV) 2019.
191 BGNet+ 1.81 % 4.09 % 2.19 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
192 Bi3D code 1.95 % 3.48 % 2.21 % 100.00 % 0.48 s GPU @ 1.5 Ghz (Python)
A. Badki, A. Troccoli, K. Kim, J. Kautz, P. Sen and O. Gallo: Bi3D: Stereo Depth Estimation via Binary Classifications. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
193 EFSNet 1.95 % 3.53 % 2.21 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
194 dh 1.86 % 4.01 % 2.22 % 100.00 % 1.9 s 1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
195 SENSE
This method uses optical flow information.
code 2.07 % 3.01 % 2.22 % 100.00 % 0.32s GPU, GTX 2080Ti
H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz: SENSE: A Shared Encoder Network for Scene-Flow Estimation. The IEEE International Conference on Computer Vision (ICCV) 2019.
196 IINet 2.02 % 3.39 % 2.25 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
197 SegStereo code 1.88 % 4.07 % 2.25 % 100.00 % 0.6 s Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic Information for Disparity Estimation. ECCV 2018.
198 DTF_SENSE
This method uses optical flow information.
This method makes use of multiple (>2) views.
2.08 % 3.13 % 2.25 % 100.00 % 0.76 s 1 core @ 2.5 Ghz (C/C++)
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
199 DBCANet code 2.02 % 3.44 % 2.26 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
200 OpenStereo-PSMNet code 1.80 % 4.58 % 2.26 % 100.00 % 0.21 s GPU RTX3090
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
201 MCV-MFC 1.95 % 3.84 % 2.27 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Guo, Y. Feng, W. Chen, L. Qiao, L. Zhou, J. Zhang and H. Liu: Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE transactions on pattern analysis and machine intelligence 2019.
202 HSM-1.5x code 1.95 % 3.93 % 2.28 % 100.00 % 0.085 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
203 SG-MSNet2D 1.94 % 4.07 % 2.29 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching. 2024.
204 new-distil 1.94 % 4.09 % 2.30 % 100.00 % 0.37 s 1 core @ 2.5 Ghz (C/C++)
205 LightStereo-S code 2.00 % 3.80 % 2.30 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen: Lightstereo: Channel boost is all you need for efficient 2d cost aggregation. ICRA 2025.
206 Separable Convs code 1.90 % 4.36 % 2.31 % 100.00 % 2 s 1 core @ 2.5 Ghz (Python)
R. Rahim, F. Shamsafar and A. Zell: Separable Convolutions for Optimizing 3D Stereo Networks. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
207 Separable Convs code 1.90 % 4.36 % 2.31 % 100.00 % 2 s 1 core @ 2.5 Ghz (Python)
R. Rahim, F. Shamsafar and A. Zell: Separable Convolutions for Optimizing 3D Stereo Networks. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
208 CFP-Net code 1.90 % 4.39 % 2.31 % 100.00 % 0.9 s 8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching. arXiv preprint 2019.
209 PSMNet code 1.86 % 4.62 % 2.32 % 100.00 % 0.41 s Nvidia GTX Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network. arXiv preprint arXiv:1803.08669 2018.
210 GANetREF_RVC code 1.88 % 4.58 % 2.33 % 100.00 % 1.62 s GPU @ >3.5 Ghz (Python + C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End- to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
211 TriStereoNet code 1.86 % 4.77 % 2.35 % 100.00 % 0.5 s Python,1080Ti
F. Shamsafar and A. Zell: TriStereoNet: A Trinocular Framework for Multi-baseline Disparity Estimation. arXiv preprint arXiv:2111.12502 2021.
212 GhostStereoNet 2.07 % 4.00 % 2.39 % 100.00 % 0.04 s GPU @ 3.0 Ghz (Python)
213 MABNet_origin code 1.89 % 5.02 % 2.41 % 100.00 % 0.38 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
214 DPDNet_2D 1.91 % 5.29 % 2.47 % 100.00 % 0.09 s GPU @ 2.5 Ghz (Python)
215 EFSNet-lite 2.15 % 4.13 % 2.48 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
216 EfficientRAFTStereo 2.10 % 4.41 % 2.48 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
217 JBFNet2 2.01 % 4.90 % 2.49 % 100.00 % 0.29 s GPU @ 3.0 Ghz (Python)
218 JBFNet 2.14 % 4.25 % 2.49 % 100.00 % 0.29 s GPU @ 3.0 Ghz (Python)
219 ERSCNet 2.11 % 4.46 % 2.50 % 100.00 % 0.28 s GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
220 BGNet 2.07 % 4.74 % 2.51 % 100.00 % 0.02 s GPU @ >3.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
221 EfficientStereo code 2.16 % 4.40 % 2.54 % 100.00 % 0.015 s NVIDIA RTX 3090 (PyTorch)
J. Tang, J. Liu, S. Ding and others: EfficientStereo: A Real-Time Stereo Matching Approach Using Lightweight Feature Extraction and Disparity-Dimensional Convolution. 2025.
222 UberATG-DRISF
This method uses optical flow information.
2.16 % 4.49 % 2.55 % 100.00 % 0.75 s CPU+GPU @ 2.5 Ghz (Python)
W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Rigid Instance Scene Flow. CVPR 2019.
223 AANet code 1.99 % 5.39 % 2.55 % 100.00 % 0.062 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
224 PDSNet 2.29 % 4.05 % 2.58 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (Python)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching. Proceedings of the international conference on Neural Information Processing Systems (NIPS) 2018.
225 DeepPruner (fast) code 2.32 % 3.91 % 2.59 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch. ICCV 2019.
226 FADNet code 2.50 % 3.10 % 2.60 % 100.00 % 0.05 s Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network for Disparity Estimation. arXiv preprint arXiv:2003.10758 2020.
227 MMStereo 2.25 % 4.38 % 2.61 % 100.00 % 0.04 s Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for Robotic Manipulation in Homes. .
228 SCV code 2.22 % 4.53 % 2.61 % 100.00 % 0.36 s Nvidia GTX 1080 Ti
C. Lu, H. Uchiyama, D. Thomas, A. Shimada and R. Taniguchi: Sparse Cost Volume for Efficient Stereo Matching. Remote Sensing 2018.
229 WaveletStereo: 2.24 % 4.62 % 2.63 % 100.00 % 0.27 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients for stereo matching. arXiv: Computer Vision and Pattern Recognition 2019.
230 RLStereo code 2.09 % 5.38 % 2.64 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Anonymous: RLStereo: Real-time Stereo Matching based on Reinforcement Learning. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
231 BaCon-IGEV 2.21 % 4.86 % 2.65 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
232 AANet_RVC 2.23 % 4.89 % 2.67 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
233 CRL code 2.48 % 3.59 % 2.67 % 100.00 % 0.47 s Nvidia GTX 1080
J. Pang, W. Sun, J. Ren, C. Yang and Q. Yan: Cascade residual learning: A two-stage convolutional neural network for stereo matching. ICCV Workshop on Geometry Meets Deep Learning 2017.
234 EfficientStereo_FP16 code 2.37 % 4.77 % 2.77 % 100.00 % 0.003 s NVIDIA RTX 4090 (TensorRT)
235 BaCon-IGEV* 2.44 % 4.75 % 2.82 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
236 2D-MSNet / MSNet2D code 2.49 % 4.53 % 2.83 % 100.00 % 0.4s Python,1080Ti
F. Shamsafar, S. Woerz, R. Rahim and A. Zell: MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2022.
237 GC-NET 2.21 % 6.16 % 2.87 % 100.00 % 0.9 s Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. Proceedings of the International Conference on Computer Vision (ICCV) 2017.
238 DualNet code 2.46 % 5.25 % 2.92 % 100.00 % 0.17 s 1 core @ 2.5 Ghz (C/C++)
Y. Wang, J. Zheng, C. Zhang, Z. Zhang, K. Li, Y. Zhang and J. Hu: DualNet: Robust Self-Supervised Stereo Matching with Pseudo-Label Supervision. Proceedings of the AAAI Conference on Artificial Intelligence 2025.
239 RoSe 2.65 % 4.36 % 2.94 % 100.00 % 0.17 s 1 core @ 2.5 Ghz (C/C++)
240 PVStereo 2.29 % 6.50 % 2.99 % 100.00 % 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
241 LRCR 2.55 % 5.42 % 3.03 % 100.00 % 49.2 s Nvidia GTX Titan X
Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng and W. Liu: Left-Right Comparative Recurrent Model for Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
242 Fast DS-CS code 2.83 % 4.31 % 3.08 % 100.00 % 0.02 s GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures. WACV 2020 (to appear).
243 AdaStereo 2.59 % 5.55 % 3.08 % 100.00 % 0.41 s GPU @ 2.5 Ghz (Python)
X. Song, G. Yang, X. Zhu, H. Zhou, Z. Wang and J. Shi: AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching. CVPR 2021.
X. Song, G. Yang, X. Zhu, H. Zhou, Y. Ma, Z. Wang and J. Shi: AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach. IJCV 2021.
244 RFlow3D+monster
This method uses optical flow information.
2.51 % 6.04 % 3.09 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
245 RFlow3D
This method uses optical flow information.
2.51 % 6.04 % 3.09 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
246 RecResNet code 2.46 % 6.30 % 3.10 % 100.00 % 0.3 s GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN Architecture for Disparity Map Enhancement. In International Conference on 3D Vision (3DV) 2018.
247 Syn2Real Stereo 2.69 % 5.20 % 3.11 % 100.00 % 0.28 s 1 core @ 2.5 Ghz (C/C++)
248 NVStereoNet code 2.62 % 5.69 % 3.13 % 100.00 % 0.6 s NVIDIA Titan Xp
N. Smolyanskiy, A. Kamenev and S. Birchfield: On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach. arXiv preprint arXiv:1803.09719 2018.
249 DRR 2.58 % 6.04 % 3.16 % 100.00 % 0.4 s Nvidia GTX Titan X
S. Gidaris and N. Komodakis: Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling. arXiv preprint arXiv:1612.04770 2016.
250 S2M2 2.61 % 6.31 % 3.23 % 100.00 % .13 s Nvidia 4090
251 DWARF
This method uses optical flow information.
3.20 % 3.94 % 3.33 % 100.00 % 0.14s - 1.43s TitanXP - JetsonTX2
F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia: Learning end-to-end scene flow by distilling single tasks knowledge. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) 2020.
252 SsSMnet 2.70 % 6.92 % 3.40 % 100.00 % 0.8 s P100
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo Matching with Self-Improving Ability. arXiv:1709.00930 2017.
253 L-ResMatch code 2.72 % 6.95 % 3.42 % 100.00 % 48 s 1 core @ 2.5 Ghz (C/C++)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway Networks and Reflective Loss. arXiv preprint arxiv:1701.00165 2016.
254 Displets v2 code 3.00 % 5.56 % 3.43 % 100.00 % 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
255 LBPS code 2.85 % 6.35 % 3.44 % 100.00 % 0.39 s GPU @ 2.5 Ghz (C/C++)
P. Knöbelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer and T. Pock: Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
256 ACOSF
This method uses optical flow information.
2.79 % 7.56 % 3.58 % 100.00 % 5 min 1 core @ 3.0 Ghz (Matlab + C/C++)
C. Li, H. Ma and Q. Liao: Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model. International Conference on Pattern Recognition (ICPR) 2020.
257 CNNF+SGM 2.78 % 7.69 % 3.60 % 100.00 % 71 s TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New Features for Effective Dense Matching. IEEE Transactions on Image Processing 2018.
258 PBCP 2.58 % 8.74 % 3.61 % 100.00 % 68 s Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.
259 SGM-Net 2.66 % 8.64 % 3.66 % 100.00 % 67 s Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural Networks. CVPR 2017.
260 FSMNet 2.95 % 7.39 % 3.69 % 100.00 % 1 s 1 core @ 2.5 Ghz (Python + C/C++)
261 DSMNet-synthetic 3.11 % 6.72 % 3.71 % 100.00 % 1.6 s 4 cores @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching Networks. Europe Conference on Computer Vision (ECCV) 2020.
262 HSM-Net_RVC code 2.74 % 8.73 % 3.74 % 100.00 % 0.97 s GPU @ 2.5 Ghz (Python)
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical deep stereo matching on high-resolution images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
263 DualNet-one stage code 2.89 % 8.73 % 3.86 % 100.00 % 0.17 s 1 core @ 2.5 Ghz (C/C++)
Y. Wang, J. Zheng, C. Zhang, Z. Zhang, K. Li, Y. Zhang and J. Hu: DualNet: Robust Self-Supervised Stereo Matching with Pseudo-Label Supervision. Proceedings of the AAAI Conference on Artificial Intelligence 2025.
264 MABNet_tiny code 3.04 % 8.07 % 3.88 % 100.00 % 0.11 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
265 MC-CNN-acrt code 2.89 % 8.88 % 3.89 % 100.00 % 67 s Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. Submitted to JMLR .
266 FD-Fusion code 3.22 % 7.44 % 3.92 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations. International Conference on 3D Vision (3DV) 2019.
267 ADCPNet 3.27 % 7.58 % 3.98 % 100.00 % 0.007 s GPU @ 2.5 Ghz (Python)
H. Dai, X. Zhang, Y. Zhao, H. Sun and N. Zheng: Adaptive Disparity Candidates Prediction Network for Efficient Real-Time Stereo Matching. IEEE Transactions on Circuits and Systems for Video Technology 2022.
268 Reversing-PSMNet code 3.13 % 8.70 % 4.06 % 100.00 % 0.41 s 1 core @ 1.5 Ghz (Python)
F. Aleotti, F. Tosi, L. Zhang, M. Poggi and S. Mattoccia: Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation. European Conference on Computer Vision (ECCV) 2020.
269 ReaSMNet 3.47 % 7.20 % 4.09 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
270 DGS 3.21 % 8.62 % 4.11 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python + C/C++)
W. Chuah, R. Tennakoon, A. Bab-Hadiashar and D. Suter: Achieving Domain Robustness in Stereo Matching Networks by Removing Shortcut Learning. arXiv preprint arXiv:2106.08486 2021.
271 PRSM
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 3.02 % 10.52 % 4.27 % 99.99 % 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015.
272 DispNetC code 4.32 % 4.41 % 4.34 % 100.00 % 0.06 s Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.
273 SGM-Forest 3.11 % 10.74 % 4.38 % 99.92 % 6 seconds 1 core @ 3.0 Ghz (Python/C/C++)
J. Schönberger, S. Sinha and M. Pollefeys: Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching. European Conference on Computer Vision (ECCV) 2018.
274 Pseudo-Stereo 2.93 % 11.67 % 4.39 % 100.00 % 0.45 s 1 core @ 2.5 Ghz (Python)
275 SSF
This method uses optical flow information.
3.55 % 8.75 % 4.42 % 100.00 % 5 min 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Ren, D. Sun, J. Kautz and E. Sudderth: Cascaded Scene Flow Prediction using Semantic Segmentation. International Conference on 3D Vision (3DV) 2017.
276 SMV 3.45 % 9.32 % 4.43 % 100.00 % 0.5 s GPU @ 2.5 Ghz (C/C++)
W. Yuan, Y. Zhang, B. Wu, S. Zhu, P. Tan, M. Wang and Q. Chen: Stereo Matching by Self- supervision of Multiscopic Vision. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
277 ISF
This method uses optical flow information.
4.12 % 6.17 % 4.46 % 100.00 % 10 min 1 core @ 3 Ghz (C/C++)
A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. International Conference on Computer Vision (ICCV) 2017.
278 Content-CNN 3.73 % 8.58 % 4.54 % 100.00 % 1 s Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching. CVPR 2016.
279 BaCon-IGEV-zeroshot 2.89 % 13.19 % 4.60 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
280 MADnet code 3.75 % 9.20 % 4.66 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia and L. Di Stefano: Real-Time self-adaptive deep stereo. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
281 Self-SuperFlow-ft
This method uses optical flow information.
3.81 % 8.92 % 4.66 % 100.00 % 0.13 s GTX 1080 Ti
K. Bendig, R. Schuster and D. Stricker: Self-SuperFlow: Self-supervised Scene Flow Prediction in Stereo Sequences. International Conference on Image Processing (ICIP) 2022.
282 DTF_PWOC
This method uses optical flow information.
This method makes use of multiple (>2) views.
3.91 % 8.57 % 4.68 % 100.00 % 0.38 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
283 P3SNet+ code 4.15 % 7.59 % 4.72 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
284 VN 4.29 % 7.65 % 4.85 % 100.00 % 0.5 s GPU @ 3.5 Ghz (Python + C/C++)
P. Knöbelreiter and T. Pock: Learned Collaborative Stereo Refinement. German Conference on Pattern Recognition (GCPR) 2019.
285 MC-CNN-WS code 3.78 % 10.93 % 4.97 % 100.00 % 1.35 s 1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep metrics for stereo reconstruction. ICCV 2017.
286 3DMST 3.36 % 13.03 % 4.97 % 100.00 % 93 s 1 core @ >3.5 Ghz (C/C++)
X. Lincheng Li and L. Zhang: 3D Cost Aggregation with Multiple Minimum Spanning Trees for Stereo Matching. submitted to Applied Optics .
287 CBMV_ROB code 3.55 % 12.09 % 4.97 % 100.00 % 250 s 6 core @ 3.0 Ghz (Python + C/C++)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
288 OAUSM 3.51 % 12.56 % 5.02 % 100.00 % 0.33 s 1 core @ 2.5 Ghz (Python)
289 Un-ViTAStereo 3.58 % 12.30 % 5.03 % 100.00 % 0.22 s GPU @ 1.0 Ghz (Python)
290 OSF+TC
This method uses optical flow information.
This method makes use of multiple (>2) views.
4.11 % 9.64 % 5.03 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Neoral and J. Šochman: Object Scene Flow with Temporal Consistency. 22nd Computer Vision Winter Workshop (CVWW) 2017.
291 P3SNet code 4.40 % 8.28 % 5.05 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
292 CBMV code 4.17 % 9.53 % 5.06 % 100.00 % 250 s 6 cores @ 3.0 Ghz (Python,C/C++,CUDA Nvidia TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. 2018.
293 PWOC-3D
This method uses optical flow information.
code 4.19 % 9.82 % 5.13 % 100.00 % 0.13 s GTX 1080 Ti
R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker: PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation. Intelligent Vehicles Symposium (IV) 2019.
294 EfficientStereo_INT8 code 4.91 % 6.49 % 5.17 % 100.00 % 0.005 s NVIDIA RTX 4090 (TensorRT)
295 stereoVAE code 4.25 % 10.18 % 5.23 % 100.00 % 0.03 s Jetson AGX Xavier GPU
Q. Chang, X. Li, X. Xu, X. Liu, Y. Li and J. Miyazaki: StereoVAE: A lightweight stereo-matching system using embedded GPUs. 2023 IEEE International Conference on Robotics and Automation (ICRA) 2023.
296 IFUSM-Stereo 3.93 % 11.78 % 5.24 % 100.00 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
297 PUI-Stereo2 3.60 % 13.48 % 5.24 % 100.00 % 0.33 s 1 core @ 2.5 Ghz (Python)
298 OSF 2018
This method uses optical flow information.
code 4.11 % 11.12 % 5.28 % 100.00 % 390 s 1 core @ 2.5 Ghz (Matlab + C/C++)
M. Menze, C. Heipke and A. Geiger: Object Scene Flow. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018.
299 SPS-St code 3.84 % 12.67 % 5.31 % 100.00 % 2 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
300 MDP
This method uses stereo information.
4.19 % 11.25 % 5.36 % 100.00 % 11.4 s 4 cores @ 3.5 Ghz (Matlab + C/C++)
A. Li, D. Chen, Y. Liu and Z. Yuan: Coordinating Multiple Disparity Proposals for Stereo Computation. IEEE Conference on Computer Vision and Pattern Recognition 2016.
301 PUI-Stereo 3.62 % 14.24 % 5.39 % 99.99 % 0.33 s GPU @ 2.5 Ghz (Python)
302 SFF++
This method uses optical flow information.
This method makes use of multiple (>2) views.
4.27 % 12.38 % 5.62 % 100.00 % 78 s 4 cores @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker: SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation. International Journal of Computer Vision (IJCV) 2019.
303 TinyStereo 4.99 % 9.33 % 5.71 % 100.00 % 0.02 s Jetson AGX Xavier GPU
Q. Chang, X. Xu, A. Zha, M. Er, Y. Sun and Y. Li: TinyStereo: A Tiny Coarse-to-Fine Framework for Vision-Based Depth Estimation on Embedded GPUs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2024.
304 OSF
This method uses optical flow information.
code 4.54 % 12.03 % 5.79 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
305 pSGM 4.84 % 11.64 % 5.97 % 100.00 % 7.77 s 4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal Matching. IEEE Signal Processing Letters 2018.
306 CSF
This method uses optical flow information.
4.57 % 13.04 % 5.98 % 99.99 % 80 s 1 core @ 2.5 Ghz (C/C++)
Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert: A Continuous Optimization Approach for Efficient and Accurate Scene Flow. European Conf. on Computer Vision (ECCV) 2016.
307 MBM 4.69 % 13.05 % 6.08 % 100.00 % 0.13 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo. IV 2015.
308 CRD-Fusion code 4.59 % 13.68 % 6.11 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion. Conference on Robots and Vision 2022.
309 PR-Sceneflow
This method uses optical flow information.
code 4.74 % 13.74 % 6.24 % 100.00 % 150 s 4 core @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. ICCV 2013.
310 DispSegNet 4.20 % 16.97 % 6.33 % 100.00 % 0.9 s GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End- to-End Learning of Disparity Estimation From Stereo Imagery. IEEE Robotics and Automation Letters 2019.
311 DeepCostAggr code 5.34 % 11.35 % 6.34 % 99.98 % 0.03 s GPU @ 2.5 Ghz (C/C++)
A. Kuzmin, D. Mikushin and V. Lempitsky: End-to-end Learning of Cost-Volume Aggregation for Real-time Dense Stereo. 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) 2017.
312 SGM_RVC 5.06 % 13.00 % 6.38 % 100.00 % 0.11 s Nvidia GTX 980
H. Hirschm\"uller: Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008.
313 UHP 5.00 % 13.70 % 6.45 % 100.00 % 0.02 s GPU @ 2.5 Ghz (C/C++)
R. Yang, X. Li, R. Cong and J. Du: Unsupervised Hierarchical Iterative Tile Refinement Network with 3D Planar Segmentation Loss. IEEE Robotics and Automation Letters 2024.
314 SceneFFields
This method uses optical flow information.
5.12 % 13.83 % 6.57 % 100.00 % 65 s 4 cores @ 3.7 Ghz (C/C++)
R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker: SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences. IEEE Winter Conference on Applications of Computer Vision (WACV) 2018.
315 SPS+FF++
This method uses optical flow information.
code 5.47 % 12.19 % 6.59 % 100.00 % 36 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller and D. Stricker: Dense Scene Flow from Stereo Disparity and Optical Flow. ACM Computer Science in Cars Symposium (CSCS) 2018.
316 Flow2Stereo 5.01 % 14.62 % 6.61 % 99.97 % 0.05 s GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching. CVPR 2020.
317 FSF+MS
This method uses optical flow information.
This method makes use of the epipolar geometry.
This method makes use of multiple (>2) views.
5.72 % 11.84 % 6.74 % 100.00 % 2.7 s 4 cores @ 3.5 Ghz (C/C++)
T. Taniai, S. Sinha and Y. Sato: Fast Multi-frame Stereo Scene Flow with Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) 2017.
318 AABM 4.88 % 16.07 % 6.74 % 100.00 % 0.08 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces. IV 2013.
319 SGM+C+NL
This method uses optical flow information.
code 5.15 % 15.29 % 6.84 % 100.00 % 4.5 min 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
D. Sun, S. Roth and M. Black: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them. IJCV 2013.
320 SGM+LDOF
This method uses optical flow information.
code 5.15 % 15.29 % 6.84 % 100.00 % 86 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
T. Brox and J. Malik: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. PAMI 2011.
321 SGM+SF
This method uses optical flow information.
5.15 % 15.29 % 6.84 % 100.00 % 45 min 16 core @ 3.2 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
M. Hornacek, A. Fitzgibbon and C. Rother: SphereFlow: 6 DoF Scene Flow from RGB-D Pairs. CVPR 2014.
322 WT-kan code 5.15 % 16.09 % 6.97 % 100.00 % 0.12 s gpu @ 2.5 Ghz (Python)
323 SNCC 5.36 % 16.05 % 7.14 % 100.00 % 0.08 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation. DICTA 2010.
324 Permutation Stereo 5.53 % 15.47 % 7.18 % 99.93 % 30 s GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self- Supervised Stereo Matching Problem. 2022 19th Conference on Robots and Vision (CRV) 2022.
325 PASMnet code 5.41 % 16.36 % 7.23 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
L. Wang, Y. Guo, Y. Wang, Z. Liang, Z. Lin, J. Yang and W. An: Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence(T-PAMI) 2020.
326 AAFS 6.27 % 13.95 % 7.54 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices. Proceedings of the Asian Conference on Computer Vision 2020.
327 Z2ZNCC code 6.55 % 13.19 % 7.65 % 99.93 % 0.035s Jetson TX2 GPU @ 1.0 Ghz (CUDA)
Q. Chang, A. Zha, W. Wang, X. Liu, M. Onishi, L. Lei, M. Er and T. Maruyama: Efficient stereo matching on embedded GPUs with zero-means cross correlation. Journal of Systems Architecture 2022.
328 ReS2tAC
This method uses stereo information.
6.27 % 16.07 % 7.90 % 86.03 % 0.06 s Jetson AGX GPU @ 1.5 Ghz (C/C++)
B. Ruf, J. Mohrs, M. Weinmann, S. Hinz and J. Beyerer: ReS2tAC - UAV-Borne Real-Time SGM Stereo Optimized for Embedded ARM and CUDA Devices. Sensors 2021.
329 SGSMnet 6.62 % 14.72 % 7.97 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
330 Self-SuperFlow
This method uses optical flow information.
5.78 % 19.76 % 8.11 % 100.00 % 0.13 s GTX 1080 Ti
K. Bendig, R. Schuster and D. Stricker: Self-SuperFlow: Self-supervised Scene Flow Prediction in Stereo Sequences. International Conference on Image Processing (ICIP) 2022.
331 CSCT+SGM+MF 6.91 % 14.87 % 8.24 % 100.00 % 0.0064 s Nvidia GTX Titan X @ 1.0 Ghz (CUDA)
D. Hernandez-Juarez, A. Chacon, A. Espinosa, D. Vazquez, J. Moure and A. Lopez: Embedded real-time stereo estimation via Semi-Global Matching on the GPU. Procedia Computer Science 2016.
332 MBMGPU 6.61 % 16.70 % 8.29 % 100.00 % 0.0019 s GPU @ 1.0 Ghz (CUDA)
Q. Chang and T. Maruyama: Real-Time Stereo Vision System: A Multi-Block Matching on GPU. IEEE Access 2018.
333 MeshStereo code 5.82 % 21.21 % 8.38 % 100.00 % 87 s 1 core @ 2.5 Ghz (C/C++)
C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao and Y. Rui: MeshStereo: A Global Stereo Model With Mesh Alignment Regularization for View Interpolation. The IEEE International Conference on Computer Vision (ICCV) 2015.
334 PCOF + ACTF
This method uses optical flow information.
6.31 % 19.24 % 8.46 % 100.00 % 0.08 s GPU @ 2.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
335 PCOF-LDOF
This method uses optical flow information.
6.31 % 19.24 % 8.46 % 100.00 % 50 s 1 core @ 3.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
336 OASM-Net 6.89 % 19.42 % 8.98 % 100.00 % 0.73 s GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning. Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
337 ELAS_RVC code 7.38 % 21.15 % 9.67 % 100.00 % 0.19 s 4 cores @ >3.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
338 EMR-MSF
This method uses optical flow information.
8.61 % 15.15 % 9.70 % 100.00 % 0.25 s GPU @ 2.5 Ghz (Python)
Z. Jiang and M. Okutomi: EMR-MSF: Self-Supervised Recurrent Monocular Scene Flow Exploiting Ego-Motion Rigidity. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
339 ELAS code 7.86 % 19.04 % 9.72 % 92.35 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
340 PGC-WCNet code 7.98 % 18.63 % 9.75 % 99.86 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
341 REAF code 8.43 % 18.51 % 10.11 % 100.00 % 1.1 s 1 core @ 2.5 Ghz (C/C++)
C. Cigla: Recursive Edge-Aware Filters for Stereo Matching. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2015.
342 iGF
This method makes use of multiple (>2) views.
8.64 % 21.85 % 10.84 % 100.00 % 220 s 1 core @ 3.0 Ghz (C/C++)
R. Hamzah, H. Ibrahim and A. Hassan: Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. Journal of Visual Communication and Image Representation 2016.
343 OCV-SGBM code 8.92 % 20.59 % 10.86 % 90.41 % 1.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching and mutual information. PAMI 2008.
344 TW-SMNet 11.92 % 12.16 % 11.96 % 100.00 % 0.7 s GPU @ 2.5 Ghz (Python)
M. El-Khamy, H. Ren, X. Du and J. Lee: TW-SMNet: Deep Multitask Learning of Tele-Wide Stereo Matching. arXiv:1906.04463 2019.
345 SDM 9.41 % 24.75 % 11.96 % 62.56 % 1 min 1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis in complex scenes. BMVC 2003.
346 SGM&FlowFie+
This method uses optical flow information.
11.93 % 20.57 % 13.37 % 81.24 % 29 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: Combining Stereo Disparity and Optical Flow for Basic Scene Flow. Commercial Vehicle Technology Symposium (CVTS) 2018.
347 GCSF
This method uses optical flow information.
code 11.64 % 27.11 % 14.21 % 100.00 % 2.4 s 1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by growing Correspondence Seeds. CVPR 2011.
348 3DG-DVO
This method uses optical flow information.
14.12 % 18.68 % 14.88 % 100.00 % 0.04 s GPU @ 1.5 Ghz (Python)
349 MT-TW-SMNet 15.47 % 16.25 % 15.60 % 100.00 % 0.4s GPU @ 2.5 Ghz (Python)
M. El-Khamy, X. Du, H. Ren and J. Lee: Multi-Task Learning of Depth from Tele and Wide Stereo Image Pairs. Proceedings of the IEEE Conference on Image Processing 2019.
350 RAFT-MSF++
This method uses optical flow information.
10.60 % 43.68 % 16.11 % 100.00 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
351 Mono-SF
This method uses optical flow information.
14.21 % 26.94 % 16.32 % 100.00 % 41 s 1 core @ 3.5 Ghz (Matlab + C/C++)
F. Brickwedde, S. Abraham and R. Mester: Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes. Proc. of International Conference on Computer Vision (ICCV) 2019.
352 CostFilter code 17.53 % 22.88 % 18.42 % 100.00 % 4 min 1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. CVPR 2011.
353 MonoComb
This method uses optical flow information.
17.89 % 21.16 % 18.44 % 100.00 % 0.58 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow. ACM Computer Science in Cars Symposium (CSCS) 2020.
354 DWBSF
This method uses optical flow information.
19.61 % 22.69 % 20.12 % 100.00 % 7 min 4 cores @ 3.5 Ghz (C/C++)
C. Richardt, H. Kim, L. Valgaerts and C. Theobalt: Dense Wide-Baseline Scene Flow From Two Handheld Video Cameras. 3DV 2016.
355 monoResMatch code 22.10 % 19.81 % 21.72 % 100.00 % 0.16 s Titan X GPU
F. Tosi, F. Aleotti, M. Poggi and S. Mattoccia: Learning monocular depth estimation infusing traditional stereo knowledge. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
356 Self-Mono-SF-ft
This method uses optical flow information.
code 20.72 % 29.41 % 22.16 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
357 Multi-Mono-SF-ft
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 21.60 % 28.22 % 22.71 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame Monocular Scene Flow. CVPR 2021.
358 OCV-BM code 24.29 % 30.13 % 25.27 % 58.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library. Dr. Dobb's Journal of Software Tools 2000.
359 VSF
This method uses optical flow information.
code 27.31 % 21.72 % 26.38 % 100.00 % 125 min 1 core @ 2.5 Ghz (C/C++)
F. Huguet and F. Devernay: A Variational Method for Scene Flow Estimation from Stereo Sequences. ICCV 2007.
360 SED code 25.01 % 40.43 % 27.58 % 4.02 % 0.68 s 1 core @ 2.0 Ghz (C/C++)
D. Pe\~{n}a and A. Sutherland: Disparity Estimation by Simultaneous Edge Drawing. Computer Vision -- ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II 2017.
361 Multi-Mono-SF
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 27.48 % 47.30 % 30.78 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame Monocular Scene Flow. CVPR 2021.
362 mts1 code 28.03 % 46.55 % 31.11 % 2.52 % 0.18 s 4 cores @ 3.5 Ghz (C/C++)
R. Brandt, N. Strisciuglio, N. Petkov and M. Wilkinson: Efficient binocular stereo correspondence matching with 1-D Max-Trees. Pattern Recognition Letters 2020.
363 Self-Mono-SF
This method uses optical flow information.
code 31.22 % 48.04 % 34.02 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
364 MST code 45.83 % 38.22 % 44.57 % 100.00 % 7 s 1 core @ 2.5 Ghz (Matlab + C/C++)
Q. Yang: A Non-Local Cost Aggregation Method for Stereo Matching. CVPR 2012.
365 Stereo-RSSF
This method uses optical flow information.
code 56.60 % 73.05 % 59.34 % 9.26 % 2.5 s 8 core @ 2.5 Ghz (Matlab)
E. Salehi, A. Aghagolzadeh and R. Hosseini: Stereo-RSSF: stereo robust sparse scene-flow estimation. The Visual Computer 2023.
366 CU-Model
This method uses optical flow information.
75.89 % 49.98 % 71.58 % 100.00 % 0.99 s GPU @ 1.5 Ghz (Python)
Table as LaTeX | Only published Methods




Related Datasets

  • HCI/Bosch Robust Vision Challenge: Optical flow and stereo vision challenge on high resolution imagery recorded at a high frame rate under diverse weather conditions (e.g., sunny, cloudy, rainy). The Robert Bosch AG provides a prize for the best performing method.
  • Image Sequence Analysis Test Site (EISATS): Synthetic image sequences with ground truth information provided by UoA and Daimler AG. Some of the images come with 3D range sensor information.
  • Middlebury Stereo Evaluation: The classic stereo evaluation benchmark, featuring four test images in version 2 of the benchmark, with very accurate ground truth from a structured light system. 38 image pairs are provided in total.
  • Daimler Stereo Dataset: Stereo bad weather highway scenes with partial ground truth for freespace
  • Make3D Range Image Data: Images with small-resolution ground truth used to learn and evaluate depth from single monocular images.
  • Lubor Ladicky's Stereo Dataset: Stereo Images with manually labeled ground truth based on polygonal areas.
  • Middlebury Optical Flow Evaluation: The classic optical flow evaluation benchmark, featuring eight test images, with very accurate ground truth from a shape from UV light pattern system. 24 image pairs are provided in total.

Citation

When using this dataset in your research, we will be happy if you cite us:
@article{Menze2018JPRS,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Object Scene Flow},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing (JPRS)},
  year = {2018}
}
@inproceedings{Menze2015ISA,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Joint 3D Estimation of Vehicles and Scene Flow},
  booktitle = {ISPRS Workshop on Image Sequence Analysis (ISA)},
  year = {2015}
}



eXTReMe Tracker