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Abstract

This work investigates the estimation of dense three-dimensional motion fields, com-

monly referred to as scene flow. While great progress has been made in recent years,

large displacements and adverse imaging conditions as observed in natural outdoor

environments are still very challenging for current approaches to reconstruction and

motion estimation. In this paper, we propose a unified random field model which rea-

sons jointly about 3D scene flow as well as the location, shape and motion of vehicles

in the observed scene. We formulate the problem as the task of decomposing the scene

into a small number of rigidly moving objects sharing the same motion parameters.

Thus, our formulation effectively introduces long-range spatial dependencies which

commonly employed local rigidity priors are lacking. Our inference algorithm then

estimates the association of image segments and object hypotheses together with their

three-dimensional shape and motion. We demonstrate the potential of the proposed

approach by introducing a novel challenging scene flow benchmark which allows for a

thorough comparison of the proposed scene flow approach with respect to various base-

line models. In contrast to previous benchmarks, our evaluation is the first to provide

stereo and optical flow ground truth for dynamic real-world urban scenes at large scale.

Our experiments reveal that rigid motion segmentation can be utilized as an effective

regularizer for the scene flow problem, improving upon existing two-frame scene flow

methods. At the same time, our method yields plausible object segmentations without

∗Corresponding author
Email address: moritz.menze@alumni-uni-hannover.de (Moritz Menze)

Preprint submitted to ISPRS Journal of Photogrammetry and Remote Sensing March 9, 2018



requiring an explicitly trained recognition model for a specific object class.

Keywords: Scene Flow, Motion Estimation, Motion Segmentation, 3D

Reconstruction, Active Shape Model, Object Detection

1. Introduction

Scene flow estimation provides valuable information about the dynamic nature of

our three-dimensional environment. In particular, the three-dimensional scene flow

field comprises all 3D motion vectors of a densely reconstructed 3D surface model,

which is moving with respect to the camera. Recovering scene flow from image obser-5

vations, however, is an inherently ill-posed inverse problem, requiring the development

of appropriate priors for regularizing the space of solutions.

In addition to the inherent academic interest in perceiving systems, image-based

scene flow estimation is relevant for a broad range of applications. While active sensors

are a strong competitor in many fields, image sequences contain valuable dynamic in-10

formation. Automatic navigation of autonomous platforms (Geiger et al., 2014; Zhang

et al., 2013) is just one example requiring a detailed dynamic perception of the 3D

environment. While warning and avoidance of moving obstacles is already part of ad-

vanced driver assistance systems, existing solutions are still restricted to certain types

of objects, limited speed and ranges. The safe interaction of robots with their environ-15

ment also requires up-to-date and precise information about their surroundings. Fur-

thermore, motion cues are important for action and activity recognition for example in

video surveillance applications. All of these tasks benefit from an improved perception

of surrounding shapes and motions.

In this work, we propose a consistent model allowing for joint inference of both20

entities. In particular, we propose a unified random field model which reasons jointly

about 3D scene flow as well as the location, shape and motion of vehicles in the ob-

served scene. We formulate the problem as the task of decomposing the scene into

a small number of rigidly moving objects sharing the same motion parameters. Our

inference algorithm estimates the association of image segments and object hypothe-25

ses together with their three-dimensional shape and motion. We extend our model to
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jointly estimate the parametrized 3D shape of each vehicle in the scene. To evaluate

our approach, we develop a comprehensive dataset and evaluation, the KITTI 2015

scene flow benchmark1, allowing for detailed quantitative analysis of the results and an

in-depth comparison to the state-of-the-art.30

1.1. Related Work

Image-based methods for scene flow estimation can be categorized into variational

and discrete optimization approaches. With the advent of consumer grade active sen-

sors like the Microsoft Kinect, depth information has become readily available and is

leveraged by a number of recent scene flow approaches, e.g., Herbst et al. (2013); Hor-35

nacek et al. (2014); Quiroga et al. (2014). While active sensors work well for indoor

scenes of limited extent, the focus of this paper is on the outdoor scenario with applica-

tions to autonomous driving. Therefore, we concentrate on appearance based methods

in our literature review.

1.1.1. Scene Flow Estimation40

Following the seminal approaches to optical flow (Horn & Schunck, 1981) and

scene flow estimation (Vedula et al., 1999, 2005), the problem of estimating a three-

dimensional displacement field is traditionally formulated in a variational setting. As

depth information is needed, different ways to incorporate dense reconstruction into the

variational framework have been proposed. Analogous to the 2D case, optimization has45

to proceed in a coarse-to-fine manner to avoid local minima of the energy functional

and capture large displacements.

Pons et al. (2007) alternatingly optimize the reconstruction of a surface model and

the motion field. The key contribution addresses the data term. To circumvent com-

mon assumptions of similarity measures the authors propose a global prediction er-50

ror evaluating the consistency of all input images, which are warped according to the

reconstructed surfaces and estimated motion. The resulting algorithm appropriately

handles projective distortion and partial occlusions. To regularize the results simple

1http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
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smoothness constraints are imposed. The resulting energy functional is optimized in a

coarse-to-fine gradient descent framework.55

Huguet & Devernay (2007) generalize the variational optical flow method of Brox

et al. (2004) to jointly infer geometry and motion. To this end, they propose a mini-

mal representation of scene flow by four variables in the image domain. In particular,

they compute the disparity at the first time step t0, the optical flow with respect to the

reference image and the disparity at the second time step t1. Given a calibrated stereo60

camera, the three-dimensional scene flow can directly be computed from this repre-

sentation. To jointly optimize stereo disparity and optical flow, Huguet & Devernay

(2007) extend the respective data and smoothness terms to cover all sought entities

and combine them in a unified energy functional. This formulation leads to four par-

tial differential equations, which are optimized using the numerical scheme proposed65

by Brox et al. (2004) for 2D optical flow. Since stereo image matching typically has

to deal with large displacements, a dedicated initialization procedure is required. To

this end, pre-computed disparity and optical flow maps are employed. We leverage a

similar strategy for the initialization of the proposed approach (see Section 2.3).

An important aspect of scene flow estimation is regularization. Basha et al. (2013)70

argue that smooth 3D motion fields can project to discontinuous 2D flow fields and thus

propose a 3D model representing the scene as a point cloud with spatial motion vec-

tors. This formulation allows to apply regularization directly to the three-dimensional

motion vectors and to easily extend the method to a multi-view set-up. Vogel et al.

(2011) replace the global total variation regularization by a piecewise rigid prior. Thus,75

sharp discontinuities in the scene flow field can be preserved more faithfully.

Valgaerts et al. (2010) discard the common assumption of a fully calibrated stereo

rig and explicitly estimate the relative orientation between the stereo heads. Conse-

quently, the results are only retrieved up to an unknown scale factor. The energy func-

tional becomes more complex as it now comprises general stereo terms based on the un-80

known fundamental matrix and is minimized in a coarse-to-fine optimization scheme.

Furthermore, the authors decouple regularization of shape and motion, as they do not

assume respective discontinuities to coincide.

For reasons of computational efficiency, Wedel et al. (2008) completely decouple
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shape and motion estimation and focus on the computation of the displacement vector85

field, which significantly increases frame rate but also discards valuable mutual con-

straints between both entities. Rabe et al. (2010) parallelize the required computations

on a GPU. They apply Kalman filtering to each pixel individually to smooth the re-

sulting motion vectors over longer image sequences. Aiming at high frame rates, the

recent prediction-correction approach of Derome et al. (2016) follows a similar strat-90

egy. Depth maps from stereo image matching are combined with visual odometry to

predict optical flow vectors. While static parts of the scene can be recovered directly, a

correction step has to be applied to account for individually moving objects.

For stereo matching and optical flow estimation, several publications have demon-

strated the usefulness of slanted-plane models (Bleyer et al., 2011; Yamaguchi et al.,95

2013). Either the visible surface of the scene or its projected motion are assumed to

vary smoothly within small regions in the reference image. Extending this idea to 3D

forms the basis for the currently most successful scene flow models.

Yamaguchi et al. (2014) propose a semi-dense method, which builds on the well-

known semiglobal matching described in (Hirschmüller, 2008). The stereo approach is100

extended to incorporate a third image from the reference camera, taken at a second time

step. Based on the assumption of a static scene, this additional information increases

the robustness of image matching. In addition to the disparity map in the reference

image, it yields an estimate of the optical flow. To smooth and extrapolate the match-

ing results, a slanted-plane model is optimized yielding an over-segmentation of the105

reference view together with dense estimates of disparity and optical flow. The com-

bined approach is referred to as slanted plane smoothing of stereo and flow (SPS-StFl).

As in previous work (Yamaguchi et al., 2013) there is a purely stereoscopic variant of

the approach (SPS-St) and a dedicated version which is tailored towards optical flow

estimation (SPS-Fl). In a related work, Lv et al. (2016) proposed a purely continuous110

factor-graph optimization using a piecewise-planar scene flow model.

Vogel et al. (2013b) propose a scene flow approach assuming piece-wise rigid sur-

faces (PRSF). Their formulation decomposes the 3D scene into planar regions, each

undergoing a rigid motion. The reference image is decomposed into segments and for

each of the segments, a parametrized representation of shape and motion is retrieved.115
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Consequently, the number of unknowns is reduced compared to a pixel-wise represen-

tation. The smoothness assumption within each segment further implements a strong

regularization. Inference in this model assigns each pixel to an image segment and each

segment to one of several rigidly moving plane proposals in three-dimensional space,

thus casting the task as a discrete labeling problem.120

To initialize the plane proposals, 3D plane parameters and rigid body transforma-

tions are robustly fit to initial disparity and flow maps. These observations are evaluated

with respect to an initial segmentation of the reference frame. During inference, the re-

sulting planes are proposed for superpixels in the vicinity of the reference segment. An

estimate of the ego-motion is introduced as another proposal.125

The objective function optimized during inference is specified as a discrete condi-

tional random field. Based on the plane proposals, the energy is approximately min-

imized via α-expansion and quadratic pseudo-boolean optimization (QPBO) (Rother

et al., 2007). First, the association of image segments to plane proposals is found and

next the assignment of pixels to image segments is refined based on the initial result.130

Impressive performance has been demonstrated on challenging street scenes as well as

on the KITTI stereo and optical flow benchmarks (Geiger et al., 2012). In consecutive

work (Vogel et al., 2014, 2015) the model has been extended to longer image sequences

beyond the classical set-up of two subsequent stereo pairs.

The proposed scene flow method described in Section 2 is related to this line of135

work. In contrast to existing works, however, the proposed model takes advantage of

the fact that many real-world scenes can be decomposed into a small number of rigidly

moving objects including the background. In the spirit of energy-based model selection

algorithms (Isack & Boykov, 2012), our parametrization allows for implicit model se-

lection to determine the number of objects in the scene. The presented approach jointly140

estimates this decomposition as well as the motion of the objects and the plane param-

eters of each superpixel in the image. In contrast to Vogel et al. (2013b, 2014), where

all shape and motion proposals are fixed a-priori, we optimize the continuous variables

in our model jointly with the object assignments. Besides obtaining a segmentation of

the objects according to their motion, the scene flow in our model is uniquely deter-145

mined by only four parameters per superpixel (3 for its geometry and 1 for the object
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assignment), together with a small number of parameters for each moving object. This

implicitly provides a strong regularizer with respect to the types of expected scenes

and introduces long-range spatial interactions into the model (i.e., distant superpixels

which are assigned to the same object act upon the same rigid motion parameters).150

Experiments, presented in Section 4, reveal that our model yields faithful reconstruc-

tions and is able to overcome motion ambiguities, which are hard to handle with local

regularizers alone.

1.1.2. Object Models

As any ill-posed problem, scene flow estimation requires appropriate regularizers155

to overcome ambiguities. Adequate mathematical models impose reasonably general

assumptions on the observed displacement field (e.g., smoothness of surfaces). Con-

sidering specific applications such as autonomous driving, it seems promising to incor-

porate additional task-specific sources of information. Three-dimensional geometric

object models have a long history in supporting reconstruction from images in a broad160

range of applications.

Pioneering work, for example by Braun et al. (1995) and Debevec et al. (1996),

made use of shape primitives to support photogrammetric modeling of buildings. While

modeling generic objects, like buildings, is a very challenging task by itself, there are

tractable approaches to formalize the geometry of objects with moderate intra-class165

variability. Faces and cars are prominent examples of well-defined geometry, which

are frequently addressed in the literature. A widely used representation of such geo-

metric objects is the Active Shape Model (ASM) proposed by Cootes et al. (1995). This

model is based on manually annotated, corresponding landmark points. Mean positions

of these landmarks are computed from a set of annotated training examples. Princi-170

pal component analysis of the training data yields characteristic deformations between

similar shapes. Deformed versions of the model are computed as linear combinations

of the mean shape and a weighted sum of the deformations. Thus, the model is flexible

but it can only deform in accordance with the variability contained in the training data.

One exemplary line of work that points out the importance of a feedback-loop between175

early vision and high-level interpretation was published in (Leibe et al., 2006; Thomas
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et al., 2007). Based on an implicit shape model the approaches are able to transfer

meta information from training images to unseen object instances. This high-level ob-

ject knowledge can be employed as prior information for early vision tasks like depth

reconstruction.180

Recently, the integration of object models into reconstruction algorithms has at-

tracted renewed attention. Bao et al. (2013) support a multi-view stereo approach with

an object model. The authors compute a mean shape from laser scans of different

instances of an object class along with a set of discrete anchor points. An object de-

tector is applied to the input images to instantiate the model. Using HOG features, the185

mean shape is adapted to a newly observed instance of the object by registering the

anchor points. Dame et al. (2013) also use an object detector to infer the initial pose

and shape parameters of an object model, which they then optimize in a variational

SLAM framework. Güney & Geiger (2015) introduce CAD shapes to support binocu-

lar stereo matching. They make use of a semantic segmentation of the reference frame190

to initialize and constrain object hypotheses. So-called displets, object-specific dispar-

ity patches, are randomly sampled from a large set of CAD models and integrated into

the estimated disparity map to fill in uncertain regions. Zhou et al. (2015) optimize for

the geometry across several instances of an object class. Generic object detectors in

three-dimensional space are employed to bootstrap the process. As opposed to these195

methods, our model does not require an object detector but uses a simple, motion-based

segmentation of the scene to initialize object hypotheses.

Recently, Prisacariu et al. (2013) proposed an efficient way to compress prior in-

formation from CAD models with complex shape variations using Gaussian Process

Latent Variable Models. Zia et al. (2013, 2015) revisited the idea of the ASM and ap-200

plied it to a set of manually annotated CAD models to derive detailed 3D geometric

object class representations. While they tackle the problem of object recognition and

pose estimation from single images, in this work, such models are used in the context

of 3D scene flow estimation.
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1.2. Contributions205

A preliminary version of this article was published in (Menze & Geiger, 2015;

Menze et al., 2015b). This work provides the following additional contributions: First,

we combine our scene flow model with robust discrete optical flow estimates (Menze

et al., 2015a), tackling the large displacement problem and challenging imaging con-

ditions in realistic outdoor scenes. As demonstrated by our experiments, this results210

in reduced error rates and run times compared to the original version of the algo-

rithm. Second, we introduce an additional term that allows to jointly infer dense three-

dimensional scene flow and a parameterized reconstruction of objects. Towards this

goal, we extend the representation of objects by the shape and pose parameters of an

Active Shape Model of cars. Third, we provide a more detailed quantitative and qual-215

itative comparison to competing approaches on the proposed KITTI 2015 scene flow

benchmark, highlighting the benefits and drawbacks of our method. Finally, we also

provide a detailed description of the newly introduced KITTI 2015 scene flow dataset

and its construction, emphasizing additional features and challenges compared to ear-

lier versions of the benchmark.220

2. Method

In this work, joint estimation of three-dimensional geometry and motion of an ob-

served scene are enabled by processing stereoscopic image sequences. We make the

following general assumptions about the available input data: The relative pose of the

two cameras, which are mounted rigidly with respect to each other onto a stereo rig,225

is assumed to be known. Based on this information the images are rectified so that

epipolar lines are projected to corresponding image rows and stereo matching reduces

to one-dimensional disparity estimation. Besides, the synchronization of the stereo

cameras is regarded as sufficiently accurate to neglect influences induced by offset ex-

posure.230

Following prior work, we employ a slanted-plane model to capture geometry and

motion. More specifically, we assume that the variable three-dimensional structure of

the scene can be approximated by a set of piecewise planar surface elements, each
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undergoing a rigid body transformation. These surface elements are associated with

image segments, which completely cover the image domain of the reference view, see235

Figure 1 for an illustration. To capture all significant discontinuities in the sought

entities, an oversegmentation of the image is carried out.

2.1. Scene Flow Model

The major novelty of the presented model is the assumption that the observed scene

decomposes into a small number of rigidly moving objects. This is reasonable for typ-240

ical traffic scenes as observed by autonomous vehicles. While pedestrians move in a

non-rigid manner they are usually depicted at a scale that allows for the estimation

of the dominant rigid body transformation. Surrounding vehicles fully correspond to

this simple motion model. To emphasize this feature the proposed method is referred

to as Object Scene Flow (OSF). It is important to note that the static elements in the245

scene, which will be referred to as the background, can be easily handled as one of

the objects in the proposed formulation. Like individually moving foreground objects,

these parts of the scene (by definition) move rigidly with respect to the observer. For

moving cameras in static environments, the background object is able to capture the

complete observed motion. Based on the decomposition into objects, motion estima-250

tion simplifies to the optimization of a small number of shape and rigid body motion

parameters.

To formalize our model, let us assume a superpixelization of the reference image

as illustrated in Figure 1. Let S denote the set of superpixels and O denote the set of

objects. Each individual superpixel i ∈ S is associated with a region Ri in the reference255

image and a random variable si = (ni, li). In particular, ni ∈ R3 describes a plane in 3D

by its normal, scaled by the distance from the origin. Thus, nT
i X = 1 for points X ∈ R3

on the plane. The discrete label li ∈ {1, . . . , |O|} assigns each superpixel to one of the

objects. Label l = 1 is reserved for the static background.

Each object k ∈ O is associated with a random variable ok = (Rk, tk) ∈ S E(3) that260

contains a rotation matrix and a translation vector describing its rigid body motion in

3D. Each superpixel associated with object ok, i.e., for which li = k, inherits the rigid

motion parameters from this object. In combination with the plane normal ni, this fully
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(a) Reference View and Data Terms (b) Superpixels in the Reference View {(ni, li)}
|S|

i=1

Figure 1: Illustration of Data Terms and Image Segmentation. (a) Our data term measures photo consis-

tency between the reference view (red) and the three other views (gray). (b) Each superpixel in the reference

view is represented by a plane in 3D space (ni) and a label li which determines the associated object. Here,

the red superpixels have been associated with the background model (l = 1) and the yellow superpixels with

the first object hypothesis (l = 2).

determines the three-dimensional scene flow of each surface element in the reference

view.265

The parametrization of our model is illustrated in Figure 1. Panel (a) provides an

overview of the employed data terms, which are computed with respect to the reference

view. Panel (b) schematically depicts the approximation of the visible surfaces with

image segments. The arrows represent the estimated normals of planar segments in

three-dimensional space. In the figure, all superpixels drawn in red are assigned to the270

background while those in yellow constitute an individually moving foreground object.

We specify our scene flow model as a conditional random field expressed via the

Gibbs energy function

E(s, o) =
∑
i∈S

ϕi(si, o)︸  ︷︷  ︸
data

+
∑

(i, j)∈N

ψi j(si, s j)︸    ︷︷    ︸
smoothness

(1)

where s = {si | 1 ≤ i ≤ |S|} and o = {ok | 1 ≤ k ≤ |O|}. N denotes the set of adjacent

superpixels in S. As the neighborhood relations between image segments depend on275

the segmentation result, the number of neighboring superpixels differs from superpixel

to superpixel and corresponds to the number of image segments sharing boundary pix-

els. The respective adjacency matrix is computed based on the segmentation of the
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reference frame. A relative weight that trades off the influence of the data and the

smoothness term is included in the individual components as described in the follow-280

ing sections. Given the objective function (1), our goal is to jointly infer the geometry

of each segment ni, the association li of superpixels to objects, and the rigid body

motion (Rk, tk) of each object ok.

To constrain the problem we make use of different observations in the data term,

all of which will be explained in detail in the next section. The smoothness term will285

be described in Section 2.1.2 and implements the model assumptions that depth and

motion vary smoothly between neighboring image segments except for the case of

abrupt, significant changes of the respective entities.

2.1.1. Data Term

The data term of the random field model (1) evaluates the compatibility of the pro-290

posed parameters and the observed images. In particular, it implements the assumption

that corresponding image locations should be similar in appearance across the four

input images. This similarity assumption is enforced by penalizing the dissimilarity

between a segment in the reference view and its projection to all three remaining im-

ages. The necessary transformations are given by the combination of shape parameters295

and the rigid body transformation, inherited from the assigned object.

The data term depends on information from both types of hidden variables (i.e.,

geometry and motion). It is defined as a a pairwise potential between segments and

objects

ϕi(si, o) =
∑
k∈O

[li = k] · Di(ni, ok) (2)

where [·] denotes the Iverson bracket which ensures that ϕi is only evaluated with re-300

spect to the currently assigned object. The function Di(ni, ok) denotes a dissimilarity

measure for superpixel si that depends on plane parameters ni and the rigid body mo-

tion of the assigned object ok. To gather information from all images, the dissimilarity

measure is composed of a stereo, a flow and a cross term. The three terms are com-

puted between a reference view and the other three images, as illustrated in Figure 1a.305

Without loss of generality, we define the left image at t0 as the reference view. The
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complete dissimilarity measure in the data term reads as follows:

Di(n, o) = Dstereo
i (n, o) + Dflow

i (n, o) + Dcross
i (n, o) (3)

Each of the constituting terms is defined in (4) as the sum of matching costs C over

all pixels p inside superpixel si. Matching costs are computed by transforming each

pixel according to a homography induced by the associated geometry and motion. The310

comparison of image sites around the reference pixel and the transformed target pixel

can be expressed as:

Dx
i (n, o) =

∑
p∈Ri

Cx
(

p, K
(
Rx(o) − tx(o) · nT

)
K−1︸                            ︷︷                            ︸

3×3 homography Hx

p
)

(4)

Here, x refers to one of the different matching modalities specified above: x ∈ {stereo,

flow, cross}. K ∈ R3×3 denotes the camera calibration matrix containing the elements

of the interior orientation. For clarity of presentation, the interior orientation of the left315

and right camera is assumed to be equal. The transformation parameters (Rx(o), tx(o))

are applied to map a 3D point in reference coordinates to a 3D point in another cam-

era coordinate system according to the relative camera orientation and the rigid body

motion of ok. To directly transform homogeneous image coordinates from one view

to another a two-dimensional projective transformation is applied. The correspond-320

ing 3 × 3 homography matrix Hx is composed of two planar projections. First, the

reference pixel is transformed to a three-dimensional object point in the plane of its

superpixel. Next, it is mapped to the target image plane. For the stereo term the orig-

inal plane parameters are used while for projections to images at t1 the plane normal

is transformed according to the object motion. Consequently, Rx and tx depend on325

the matching modality x and are augmented with the parameters of the relative camera

orientation where necessary.

The matching cost Cx(p,q) returns a dissimilarity measure between a pixel at loca-

tion p ∈ R2 in the reference image and a pixel at location q ∈ R2 in the target image. In

the proposed model, we take advantage of dense correspondences as well as sparsely330

matched image features. Matching costs Cx(p,q) are defined as a weighted sum of

these two groups of observations with individual weights θ:

Cx(p,q) = θ1,x Cdense
x (p,q) + θ2,x Csparse

x (p,q) (5)
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The dense matching cost Cdense
x (p,q) is computed via the Hamming distance (denoted

by ‖ · ‖h in the following) of the respective 5 × 5 Census descriptors:

Cdense
x (p,q) =


ρCmax

(
‖IC(p) − IC

x (q)‖h
)

if q ∈ Ω

Cout otherwise
(6)

IC , IC
x denote the Census transformed versions of the reference view and the respective335

target image and we introduce q as a shorthand for the transformed pixel position Hxp.

This patch-based similarity measure was introduced by Zabih & Woodfill (1994) and

found to work well in the context of optical flow estimation (Vogel et al., 2013a). It ef-

ficiently builds a descriptor of a small image region by concatenating the binary results

of intensity value comparisons. Consequently, it is robust against additive changes in340

illumination. An outlier value of Cout is assigned to points leaving the image domain Ω.

While the employed Census descriptor accounts for small deviations from the simi-

larity assumption, it cannot cope with systematic influences like occlusions or perspec-

tive distortion. To limit the effect of such grossly wrong observations, e.g. next to depth

discontinuities, a robust penalty function is ρτ(x) is applied to compute the matching345

cost. It truncates the distance x at threshold τ: ρτ(x) = min(x, τ). An overview of all

truncation parameters is provided in Table 1.

In addition to the dense matching term, a second type of observation is exploited.

It evaluates the consistency of displacements induced by the estimated parameters and

those computed by specialized large-displacement matching approaches:350

Csparse
x (p,q) =


ρτ1

(
‖πx(p) − q‖2

)
if p ∈ Πx

0 otherwise
(7)

Here, πx(p) denotes the transformation of pixel p according to the respective sparse

feature correspondence, q is the result of transforming the reference pixel according to

the estimated parameters as before. Πx is the set of pixels in the reference image for

which correspondences have been established. Again, x refers to the matching modal-

ity and the truncation threshold τ1 limits the influence of outliers in the observations.355

Details about the employed matching approaches will be given in Section 4.
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2.1.2. Smoothness Term

The task of the smoothness term in (1) is to encourage smooth transitions between

adjacent superpixels. The smoothness term decomposes into three parts, weighted by

parameters θ:360

ψi j(si, s j) = θ3 ψ
depth
i j (ni,n j) + θ4 ψ

orientation
i j (ni,n j) + θ5 ψ

motion
i j (si, s j) (8)

First, regularization of depth is achieved by penalizing different disparity values d at

shared boundary pixels Bi j:

ψ
depth
i j (ni,n j) =

∑
p∈Bi j

ρτ2

(
‖d(ni,p) − d(n j,p)‖1

)
(9)

Here, the function d(n,p) returns the disparity at pixel p induced by the plane normal n

of the respective segment. This well established constraint is derived from the observa-

tion that surfaces of distinct objects typically exhibit only gradual changes of geometry.365

To allow for depth discontinuities, as typically encountered at object boundaries, the

robust penalty function ρτ2 from the previous section is applied.

Second, the orientation of neighboring planes is encouraged to be similar. This

is a necessary extension of the preceding pairwise term to fully formalize the afore-

mentioned smoothness assumption. While the requirement of consistent disparity at370

boundary pixels attaches neighboring segments, it does not penalize implausible folds

in the reconstructed surface. Thus, our second term evaluates the similarity of plane

normals n:

ψorientation
i j (ni,n j) = ρτ3

(
1 −

|nT
i n j|

(‖ni‖‖n j‖)

)
(10)

Again, a threshold is applied to allow for sudden changes of surface orientation where

needed.375

Finally, we encourage coherence of the assigned object indices by an orientation-

sensitive Potts model:

ψmotion
i j (si, s j) = w(ni,n j) · [li , l j] (11)

The intuition behind this term is to penalize fragmented objects by adding a penal-

ity wherever neighboring superpixels are assigned to different objects. The weight is
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defined as380

w(ni,n j) =
|nT

i n j|

(‖ni‖‖n j‖)
· exp

− α

|Bi j|

∑
p∈Bi j

(d(ni,p) − d(n j,p))2

 (12)

and prefers motion boundaries that coincide with folds in the reconstructed surface.

Here, α is the shape parameter of the penalty function, which is normalized by the

number of shared boundary pixels |Bi j|. Furthermore, the penalty increases if the sur-

face orientation of the compared superpixels is similar.

2.2. Joint Estimation of Vehicles and Scene Flow385

The scene flow model introduced in the previous section is based on a decompo-

sition of the observed scene into rigidly moving objects. So far, rigidity is the major

assumption made with respect to the objects. In this section, the flexibility of the

developed scene flow model is demonstrated. In particular, by adding a semantic inter-

pretation to the motion-based segmentation, additional shape knowledge can be incor-390

porated into the model. In the following, we focus on the perception of traffic scenes

as encountered in the context of autonomous driving and introduce a parametric shape

model of cars, which we infer jointly with the scene flow and the segmentation. On

the one hand, dedicated object models allow for an efficient parametrized reconstruc-

tion of highly relevant parts of the scene. The accurate estimation of object pose and395

shape establishes the basis for further analyses. On the other hand, high-level object

knowledge can support regularization of the ill-posed scene flow problem.

2.2.1. 3D Object Model

More specifically, we leverage the Active Shape Model from Zia et al. (2013) to

encode the geometry of the objects o introduced in Section 2.1. A training set of 38400

manually annotated CAD models of passenger cars forms the basis for this geometric

representation. Principal component analysis is applied to a set of manually annotated

key points to retrieve the directions of the most dominant deformations between the

samples in the training set. Based on the resulting Active Shape Model, novel object

instances can be generated within the range of deformations in the training set, see405

Figure 2 for an illustration.
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Figure 2: Instantiations of our 3D Active Shape Model. The mean shape is shown in the center with

γ = (0, 0). The left and right panels contain instances illustrating the range of possible deformations with

shape parameters γleft = (−1.0,−0.8) and γright = (1.0, 0.8).

To incorporate shape and pose parameters into the scene flow approach, the basic

object model o, introduced in Section 2.1, is extended by two additional vectors. The

shape parameters γ control the influence of the individual deformations of the ASM.

Further, the vector ξ comprises the pose parameters of the extended object model. The410

two-dimensional position on the ground plane and a heading angle provide a compact

representation of the position and orientation of the model relative to the reference

camera. The extended representation of objects (γk, ξk,Rk, tk) comprises a total of 11

parameters for foreground objects (6 for rigid body motion, 3 for pose and 2 for shape).

We jointly infer these variables with the scene flow and segmentation as shown in415

Figure 3. In panel (a), the red box represents the static background and the yellow

box corresponds to the object in Figure 1b. In this example, the green box represents

an additional spurious motion hypothesis, which is not associated with any of the su-

perpixels. This underlines the fact that the proposed model is capable of performing

implicit model selection (i.e., it is able to also determine the number of rigidly moving420

components) while only an upper bound on the number of expected rigid body mo-

tions is required. Panel (b) illustrates the pose parameters ξ that define the position and

orientation of the objects.

2.2.2. Extension of the Scene Flow Model

To constrain the additional parameters of the revised object model, an additional425

shape and pose consistency term is incorporated into our random field formulation:

E(s, o) =
∑
i∈S

( ϕi(si, o)︸  ︷︷  ︸
data

+ κi(si, o)︸  ︷︷  ︸
shape&pose

) +
∑

(i, j)∈N

ψi j(si, s j)︸    ︷︷    ︸
smoothness

(13)

Here, o is the extended object representation introduced in the previous section, s rep-

resents the same planar superpixels as before and N denotes the set of adjacent super-
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(a) Transformation and Shape {(Rk , tk ,γk)}|O|k=1

x

z

α

(b) Object Pose (ξk)

Figure 3: Object Representation. (a) Each object, including the static background, is represented by its

rigid body motion (Rk , tk). Additionally, object pose ξk and shape γk can be inferred for each foreground

object. (b) The object pose ξk is defined as the 2D position in the ground plane (x, z) and a heading angle α

of the object.

pixels.

The novel shape and pose consistency term κ(·) encourages the set of estimated430

3D object models to agree with the planes of the associated superpixels. In accor-

dance with the employed parametrization of scene flow, the evaluation of a consistency

measure is conducted in disparity space. Like the original data term in equation (2), the

additional term κ is composed of computationally tractable pairwise potentials between

superpixels and the assigned objects:435

κi(si, o) = θ6

∑
k∈O

[li = k] · S i(ni, ok) + [li , k ∧ k > 1] · Oik(ok) (14)

Here, κi defines the cost function for a distinct image segment si. It combines the shape

consistency term S and an occlusion penalty O, which will be defined in the following.

The shape consistency term S i(ni, ok) enforces consistency between the shape of

object ok and the assigned planes described by ni. In analogy with the data term, shape

consistency is evaluated with respect to the object associated with the superpixel via li.440

The penalty function S i considers two cases

S i(n, o) =


Cbg if o is background∑

p∈Ri
Cobj(n, o,p) otherwise

(15)

Cbg denotes a constant penalty for superpixels associated with the background object

and is imposed to avoid a bias towards purely static scenes. Cobj(n, o,p) compares two
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disparity maps and evaluates the shape consistency between superpixel and foreground

object parameters at all pixels covered by the superpixel, i.e. p ∈ Ri, as follows:445

Cobj(n, o,p) =


ρθ7 (|d(n,p) − d(o,p)|) if p ∈ π(o)

θ7 otherwise
(16)

Here, π(o) denotes the set of pixels covered by the projection of an object o onto the

image plane and d(o,p) returns the disparity induced by the projection of object o at

pixel p. The pixel-wise penalty Cobj is computed as the truncated absolute difference

(i.e., ρθ7 (x) = min(x, θ7)) between the virtual disparity from the projection of o and

the disparity induced by the plane n. Differences are computed for all pixels which450

coincide with the projection of o. Pixels remaining uncovered by the projected model

are penalized with θ7, a multiple of Cbg. This encourages the projected model to ap-

proximately align with superpixel boundaries. Note that in contrast to the data term Di,

which encourages consistency between estimated 3D plane parameters and image ob-

servations, this term evaluates the consistency between the deformed 3D shape model455

and the reconstructed superpixels.

The second part of (14) is the occlusion penalty, which is formally defined as

Oik(ok) = θocc ·
∑
p∈Ri

[p ∈ π(ok)] (17)

It penalizes overlap between parts of a foreground model and superpixels that are as-

signed to a different object via the arguments of the leading Iverson bracket in (14).

We found this term crucial to prevent object models from exceeding the true object460

boundaries.

2.3. Preprocessing & Initialization

In the previous sections, we specified our scene flow model which contains a mix-

ture of discrete and continuous variables: While the plane normals ni of image seg-

ments and the motion parameters (Rk, tk) of objects live in continuous domains, the la-465

bel li corresponds to a discrete object index. As optimizing a joint discrete-continuous

energy function is hard, we iteratively discretize the continuous variables and solve a

sequence of discrete energy minimization problems to find an approximate solution.
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In this section, we describe the pre-processing of the data and the initialization of the

parameters.470

2.3.1. Image Segments and Correspondences

We first segment the reference view into superpixels and calculate disparity maps

of both stereo pairs using SPS-Stereo (Yamaguchi et al., 2014), which is a state-of-the-

art approach to these problems. According to the paper, images from the KITTI dataset

are decomposed into approximately one thousand segments, which is shown to yield475

best performance concerning stereo matching and flow estimation.

In addition, we compute semi-dense associations between the reference view and

the subsequent frame of the left camera via Discrete Flow (Menze et al., 2015a). The

method leverages discrete optimization techniques to accurately and efficiently esti-

mate large-displacement optical flow. While for the stand-alone optical flow method480

the resulting matches are interpolated using EpicFlow (Revaud et al., 2015), we directly

use the sparse, discrete matches as observations in equation (7).

Both types of observations are combined to establish correspondences connecting

the reference view to the right frame at t1, i.e., optical flow vectors in the left image

are combined with disparities in the left view at t1 to yield an initial prediction of the485

complete displacement vector for the cross term.

2.3.2. Scene Flow Model

Next, we extract object hypotheses based on the sparse observations described

above. Motion segmentation is applied to detect individually moving objects in the

initial scene flow field computed via SPS-Stereo and Discrete Flow as described above.490

More specifically, the sparse approximation of the three-dimensional displacement

field is examined to reveal consistent motion patterns. First, we recover the dominant

motion in the scene. It typically describes the relative motion between background

and camera. We apply a standard approach to robust rigid motion estimation from two

stereo image pairs as described in Geiger et al. (2011). The resulting transformation495

parameters (R, t) define the background motion hypothesis and can be leveraged for

motion-based segmentation of the remaining objects.

20



Before extracting objects we reduce the number of outliers in the correspondence

set by excluding image regions for which the scene flow leaves the image domain in

any of the other views. More specifically, all pixels with valid disparities in the refer-500

ence view are triangulated and projected into the target view based on the background

motion. Static points falling outside the image domain are removed from the set of

sparse correspondences.

Next, we detect all foreground object hypotheses as consistent clusters of scene

flow correspondences that disagree with the background motion. More specifically,505

a threshold of 5 pixels is applied to the endpoint error of motion vectors induced by

the background motion and the sparse scene flow correspondences. The retained dis-

placement vectors are clustered according to their rigid body motion. From the set

of outliers, we randomly sample 50 initial correspondences throughout the image. A

three-dimensional rigid motion transformation is robustly fit to all correspondences510

within a sphere of radius 2.5 meters (approximating an average car’s volumetric ex-

tent) around the initial matches using the 3-point RANSAC algorithm. Subsequently,

we retrieve the top |O| − 1 hypotheses while applying non-maximum suppression to

avoid multiple overlapping proposals corresponding to the same object. Note that false

positive object hypotheses are typically not critical as they will not be associated with515

any of the image segments during inference.

2.3.3. 3D Object Model

To initialize the parameters of the extended scene flow model, we adapt the motion-

based segmentation described in the previous section to the more complex parametri-

zation of this model. First, each object hypothesis is initialized by the mean shape of520

the ASM (i.e., γ = 0). We use the mean 3D coordinates of object hypotheses, reduced

to the ground plane, as approximate values for the position. To complete the initial ob-

ject pose parameters ξ we compute the heading angle of the objects from their moving

directions. For approximately symmetric objects, like cars, it is important to carefully

choose initial values as to avoid failure cases, like 180◦ turns, due to this ambiguity.525

Working with individually moving objects, this information can be extracted reliably

from the moving direction. As before, this initialization procedure will lead to some
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spurious object hypotheses. During inference, such false positives are pruned if no

superpixels are associated with them.

2.4. Inference530

Given the initialization of variables described in the previous section, we now aim

to minimize the objective function (1). Inspired by the work of Yamaguchi et al. (2012),

we apply particle max-product belief propagation (MP-PBP) (Trinh & McAllester,

2009), which iteratively resamples all continuous variables and solves a sequence of

discrete optimization problems, minimizing the objective function (1) in each iteration.535

In this section, we first describe the details of our inference algorithm for the basic

scene flow model and then explain how to incorporate the 3D model based extension.

2.4.1. Scene Flow Model

In each iteration of MP-PBP, we sample a set of hypotheses around the current

solution of each parameter and select the proposal which minimizes the objective func-540

tion to perform derivative-free optimization. We include the best solution so far into

the proposal set to ensure that the objective function decreases at each iteration. More

specifically, proposals are drawn from normal distributions around the current estimate.

The variance of the distributions is reduced after each iteration to refine the discretiza-

tion and encourage convergence. Additionally, the proposal set of each superpixel is545

augmented by a fixed number of MAP solutions from neighboring image sites, which

increases diversity in the proposal set and propagates promising proposals to nearby

image locations.

Note that even after discretization, optimization of the loopy CRF specified in (1)

with respect to all superpixel and object parameters is an NP-hard combinatorial prob-550

lem. We therefore compute an approximate solution at each MP-PBP iteration via

sequential tree-reweighted message passing (TRW-S) (Kolmogorov, 2006).

2.4.2. 3D Object Model

Sampling the object shape and pose parameters required for the extended model

in addition to the rigid body transformation would result in a large number of parti-555

cles, significantly increasing the computational complexity of the problem. To keep
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computation tractable, we perform “informed” sampling of pose and shape parameters

based on the respective data term. In each iteration of the outer loop, we first draw 50

particles representing object pose and shape from normal distributions centered at the

preceding MAP solution. As before, the respective standard deviations are iteratively560

reduced. To prune the proposals, the shape and pose consistency term (14) is evaluated

for each particle with respect to the disparity map induced by the current MAP solu-

tion of the superpixels. Only the best shape/pose particle of each object is accepted.

During the optimization of the remaining parameters, the shape and pose consistency

term remains active, guiding the optimization of the remaining variables.565

3. KITTI 2015 Scene Flow Dataset

For evaluating our scene flow approach with respect to competing methods, an

appropriate benchmark dataset is required. Unfortunately, the creation of reference data

for motion fields is a challenging task on its own. One reason for this is that there exists

virtually no sensor capable of capturing ground truth correspondences in challenging570

real-world scenes, leading to a shortage of appropriate reference data, especially for

the task of scene flow evaluation. As an alternative to real data, synthetic renderings of

spheres (Huguet & Devernay, 2007; Valgaerts et al., 2010), other geometric primitives

(Vogel et al., 2011; Cech et al., 2011; Basha et al., 2013) or simple street scenes (Wedel

et al., 2008; Rabe et al., 2010) have typically been employed to measure quantitative575

performance.

Departing from this paradigm, the KITTI benchmark suite provided the first real-

istic platform to evaluate stereo and motion algorithms (Geiger et al., 2012), providing

a range of challenges with a focus on automotive applications. The provided stereo-

scopic image sequences were captured from a car driving in regular traffic on public580

roads. Three-dimensional reference data has been captured by a 360◦ laser scanner

mounted on top of the car. A similar approach has been used by Kondermann et al.

(2015) who register stereo imagery with scans of an urban environment. Although the

images are much more realistic compared to synthetic renderings, both datasets provide

reference data for static scenes only. This prohibits the evaluation of the core properties585
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(a) Large Displacements

(b) Cast Shadows on Dynamic Objects

(c) Low Light Conditions

Figure 4: Challenges of the proposed KITTI 2015 Scene Flow Evaluation.

of any scene flow algorithm, namely to precisely estimate the dynamic nature of the

scene and the individual motion of independently moving objects therein.

We therefore augmented the KITTI vision benchmark with a scene flow extension

(Menze & Geiger, 2015) capturing dynamic scenes. In this article, this extension will

be referred to as “KITTI 2015” as opposed to the original “KITTI 2012” stereo and590

flow benchmark. Our extension comprises very challenging outdoor scenes with depth

and motion ground truth even for individually moving objects, making it the first re-
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alistic scene flow dataset. Figure 4 provides an overview over the challenges present

in our dataset, including (a) large displacements, (b) severe shadows, and (c) low light

conditions. All of these adverse effects are commonplace in automotive applications595

and pose difficulties to current image matching algorithms.

Starting from the raw data, which was collected for the KITTI project (Geiger et al.,

2013), we selected 200 training and 200 test images with large independent motions

based on the annotated 3D object trajectories in the KITTI raw data. Our annotation

process consists of two major steps that are explained in the following. First, the static600

background of the scene is recovered from laser range measurements. Second, the

dynamic elements in the scene are annotated with the help of 3D CAD models.

For recovering the static background and registering it to the moving camera, the

laser scans are first corrected with respect to the rolling shutter effect using the camera

motion and the timestamps of the individual laser measurements. We found that nei-605

ther the GPS/IMU system of the KITTI car nor ICP fitting of 3D point clouds alone

yielded sufficiently accurate motion estimates and thus combine both techniques using

non-linear least-squares optimization to retrieve a highly accurate and consistent reg-

istration of the individual scans. For each reference view, we accumulate scans over

a temporal window of 7 frames in a common coordinate system. We further remove610

all 3D points belonging to moving objects using the 3D bounding box annotations pro-

vided on the KITTI website2.

Unfortunately, the dynamic elements in the scene cannot be recovered from sparse

and noisy 3D laser measurements alone. For this reason, we inserted detailed 3D CAD

models of cars from 3D Warehouse3. It is important to note that, given the limited615

measurement accuracy of stereo techniques, our 3D CAD models are not required with

millimeter-accuracy, which would be intractable considering the broad variety of ve-

hicles in the video footage. Instead, we select the most similar model from a limited

but diverse set of vehicles from 3D Warehouse. For each model, we obtain a three-

dimensional point cloud by uniformly sampling approximately 3, 000 points from all620

2http://www.cvlibs.net/datasets/kitti/raw_data.php
3https://3dwarehouse.sketchup.com/
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Figure 5: Annotation process. The topmost panel of this figure shows the subsampled CAD model (green)

together with the 3D laser observations (red) used for registering the model. Additionally, we use disparity

maps (second row) and 2D manual annotations (red crosses, third row) to optimize the model. The last

row shows the resulting disparity map. All panels are split to show the state before (left) and after (right)

minimizing equation (18).

faces of the CAD model. We use this point cloud for fitting the 3D CAD model to both

frames of the sequence using 2D and 3D measurements. Figure 5 provides an overview

of the annotation process.

More specifically, for each dynamic object in the scene, we estimate a 3D similarity

transformation defining the 3D pose and scale of the 3D model in the first frame as well625

as the 3D rigid body motion of the object, yielding a 15-dimensional parameter vector

ζ ∈ R15 (three for translation, three rotation angles, three for scaling in the reference

view and six rigid motion parameters). We leverage three different types of observa-

tions: First, we accumulate 3D points belonging to a moving object over all frames

using the annotated 3D bounding boxes. Second, we incorporate disparity estimates630
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computed by semiglobal matching. In contrast to the laser points, these observations

are not subject to the rolling shutter effect. While SGM estimates are not always reli-

able, we only optimize for a very small number of parameters and found, by manual

verification, that including this term as a weak prior improves the results. As a third

observation, we introduce manually annotated correspondences between geometrically635

meaningful vertices of the 3D CAD model and the corresponding image coordinates

in both frames. We found that including 5 to 10 such correspondences per object is

sufficient for obtaining accurate optical flow ground truth.

Given these observations, we obtain the transformation parameters ζ by minimizing

the following energy function640

E(ζ) =
∑

t∈{1,2}

(
θ3D E3D

t (ζ)
)2

+
(
θS GM ES GM

t (ζ)
)2

+
(
θ2D E2D

t (ζ)
)2

(18)

where t is the frame index and Et are the energy terms corresponding to each of the

observations. More specifically, E3D
t denotes the truncated distance between the set of

3D laser points P inside the object’s 3D bounding box and their geometrically nearest

neighbors in the transformed CAD model:

E3D
t (ζ) =

∑
p∈P

ρτ3D

(
‖XCAD(ζ) − Xp‖2

)
(19)

ES GM
t represents the truncated distance between the disparity map induced by the trans-645

formed CAD model and the set of valid SGM measurements D covered by the model

in image space:

ES GM
t (ζ) =

∑
p∈D

ρτS GM (|dS GM(ζ,p) − d(p)|) (20)

E2D
t is the error with respect to the manually selected 2D − 3D correspondences C in

frame t. In accordance with the annotations it is computed in image space with respect

to the projected CAD vertices X2D
CAD:650

E2D
t (ζ) =

∑
p∈C

‖X2D
CAD(ζ) − p‖2 (21)

Our optimization scheme alternates between minimizing equation (18) with respect to

ζ using non-linear least-squares estimation and updating all nearest neighbor associa-

tions until convergence. The weights of the terms are chosen to ensure a dominating

influence of the manual input.
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(a) KITTI 2012 vs. KITTI 2015 (b) KITTI 2015: Background vs. Foreground

Figure 6: Histograms of Displacements in u- and v-axis. Panel (a) compares the displacements con-

tained in KITTI 2015 and KITTI 2012 benchmarks. Panel (b) shows the displacements on foreground and

background objects, which are only relevant for KITTI 2015. For the sake of clarity, the y-axes are scaled

logarithmically.

For generating the final disparity and optical flow maps we project a more densely655

sampled 3D CAD model into all four images according to the estimated ζ. To handle

occlusions within and between objects, we employ a z-buffer to decide which points

are used in the reference data. Finally, non-rigidly moving objects like pedestrians or

bicyclists and erroneous regions in the laser scans are masked manually. Histograms of

the resulting displacements are provided in Figure 6. All resulting flow and disparity660

maps are validated by visual inspection. In addition, critical cases are identified and ex-

cluded by sparse, manually annotated control points. While we empirically found that

for most parts our ground truth is at least 3 pixels accurate, we observed that very large

motions at the image boundaries degrade the accuracy of the ground truth. All results

are therefore evaluated using a dedicated metric that takes these error characteristics665

into account (see Section 4).

The dataset and an online evaluation on test data with held back reference are avail-

able as part of the KITTI benchmark suite4. In addition to the evaluation of scene flow

estimates, it allows for the individual evaluation of results for the stereo matching and

optical flow sub-problems.670

4http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
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4. Evaluation

This section provides a detailed experimental evaluation of the proposed approach.

We start with details on the scene flow evaluation metric and a brief overview of our

training strategy. Next, we report quantitative results of our model and compare the

performance of the proposed method to the state-of-the-art. Finally, we present a num-675

ber of qualitative results and analyze the abilities and limitations of the approach.

4.1. Evaluation Protocol

Our novel KITTI 2015 scene flow benchmark evaluates four values per pixel which

uniquely determine the 3D scene flow field: Two disparity values, one in the first and

one in the second frame, and the displacement in x and y direction. To ease evalua-680

tion and mitigate the problem of occlusions, all values are represented in the reference

image coordinate system, e.g., the disparity value of the second frame (after displace-

ment) is stored at the corresponding pixel location before displacement. Our dedicated

scene flow metric evaluates the combination of all three measures, i.e., only pixels with

correct disparities and flow are considered as correct scene flow estimates. All entities685

are evaluated at each valid ground truth pixel in the reference view. An estimate is

considered wrong if one of the disparity values or the optical flow vector exceeds a

distance of 3 pixels and 5% of the respective ground truth value. This combination of

error metrics ensures an evaluation which is faithful with respect to the uncertainties

in the reference data (due to the complex annotation process, large displacements are690

assigned a tolerance with regard to their magnitude). Summary statistics over all 200

test images are collected by averaging errors over valid reference values of foreground

and background regions and the combination of both.

4.2. Parameter Training

The scene flow model described in Section 2 contains a number of parameters,695

which can be trained to adapt the model to specific datasets. To enable unbiased com-

parison and to decrease the computational burden during training, the available training

data is split into two sets of equal size. One half is used for parameter training and the

other serves validation purposes. Due to the small number of hyper-parameters in the
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Parameter Value

θ1,stereo 1.00

θ1,flow 1.00

θ1,cross 1.00

θ2,stereo 0.02

θ2,flow 0.76

θ2,cross 0.76

θ3 0.38

θ4 14.79

θ5 83.13

θ6 0.30

Parameter Value

θ7, θocc 4.00

Cbg 1.00

Cmax 0.79

Cout 0.36

τ1,stereo 1.82

τ1,flow 3.90

τ1,cross 3.90

τ2 2.56

τ3 0.26

α 0.20

Table 1: Model Parameters. This table provides the model parameter values, trained as described in Sec-

tion 4.2.

model, we estimated their values on a subset of the KITTI 2015 training set using a700

discrete variant of block coordinate descent. This simple, iterative strategy discretizes

the solution space of each variable within a plausible range. The training error is com-

puted for each of the samples and the best-performing parameter value is chosen. To

account for some of the correlations, for example between truncation thresholds and

weights, some of the parameters are jointly optimized. This strategy implies quadratic705

growth of the number of samples in parameter space and is thus restricted to the most

obvious dependencies. The parameter values provided in Table 1 are the result of 10

block coordinate descent iterations and are used throughout all of our experiments.

4.3. Quantitative Results

The quantitative analysis of the scene flow approach consists of two major parts.710

First, the importance of the model components is investigated in ablation studies. Sec-

ond, the full scene flow model and the extension to 3D model reconstruction are com-

pared numerically to the results of state-of-the-art scene flow methods.
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D1 D2 Fl SF

# bg fg bg&fg bg fg bg&fg bg fg bg&fg bg fg bg&fg

1 Data (SPSS+SpF) 3.8 12.4 5.2 4.8 21.4 7.4 5.5 25.1 8.5 6.7 30.4 10.4

2 Data (Census) 4.8 12.8 6.0 5.8 14.4 7.1 6.1 19.0 8.1 7.6 25.1 10.3

3 Data (All) 3.9 11.0 5.0 4.8 12.9 6.1 5.4 17.4 7.3 6.6 23.0 9.1

4 Data (All) + Smooth (Boundary) 3.5 8.6 4.3 4.4 10.7 5.4 5.1 16.1 6.8 6.2 20.3 8.4

5 Data (All) + Smooth (Normal) 3.8 10.7 4.9 4.7 12.6 6.0 5.4 17.2 7.2 6.5 22.6 9.0

6 Data (All) + Smooth (Object) 4.0 12.1 5.3 4.9 13.2 6.2 5.4 17.2 7.2 6.6 22.7 9.1

7 Data (SPSS+SpF) + Smooth (All) 4.6 15.1 6.2 5.7 16.1 7.3 6.2 18.1 8.0 7.6 23.1 10.0

8 Data (Census) + Smooth (All) 3.6 8.9 4.4 4.5 10.0 5.4 5.1 15.5 6.7 6.2 19.4 8.2

9 Data (All) + Smooth (All) 3.5 9.2 4.4 4.4 10.6 5.3 5.0 15.1 6.5 6.0 19.2 8.1

Table 2: Influence of Scene Flow Model Components. This table shows the error rates for disparities in

the reference frame (D1) and the target frame (D2), optical flow (Fl) and scene flow (SF) averaged over all

100 validation images. For each modality, the outlier percentage is reported for the background region (bg),

all foreground objects (fg) as well as all annotated pixels in the image (bg&fg). The evaluation is conducted

on the validation portion of the KITTI 2015 training set.

4.3.1. Ablation Studies

First, we assess the contribution of each individual term in the energy function715

(1). Our evaluation is conducted on a validation portion of 100 training images from

the scene flow dataset. Table 2 shows the results when evaluating all annotated im-

age locations. The columns show errors in terms of disparity at both time steps (“D1”,

“D2”), optical flow (“Fl”) and scene flow (“SF”) using the conventions specified in Sec-

tion 4.1. For each modality, the table provides results in terms of the static background720

(“bg”), individually moving foreground objects (“fg”) as well as the combination of

both (“bg&fg”). The first three rows of the table show the results of Object Scene Flow

using only the data terms. The overall scene flow error is comparable when using only

sparse or dense features, and is reduced significantly using the combination of both.

Rows 4 to 6 show results for different combinations of data terms and selected smooth-725

ness terms. It can be seen that the boundary term in row 4 is the strongest pairwise cue.

In combination with all data terms, it produces the lowest error rates for disparities in

the first frame. The remaining pairwise terms encourage consistently moving objects

and contribute to D2, Fl and SF. Again, the combination of all pairwise terms, shown

in row 9, yields the overall best scene flow results. The last three rows show the two730
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Figure 7: Model Parameters. This figure shows the percentage of scene flow outliers of our method with

respect to the number of object proposals and iterations of the particle-based optimization. Different colors

encode the results for foreground regions (green), background regions (blue) and the combined metric (red).

The evaluation is conducted on the validation portion of the KITTI 2015 training set.

groups of data terms together with all smoothness terms and the full model. In com-

bination with the pairwise terms, the dense Census features are almost on par with the

full model, which yields the overall best results.

Next, we investigate the performance of the full model with respect to the size of

the object set and the number of iterations, see Figure 7. In particular, we vary the735

number of allowed object hypotheses in our model between 1 and 15. Note that by

allowing only one object we restrict the model to completely static scenes, effectively

implementing a motion stereo approach. The left panel of Figure 7 affirms our assump-

tion that the outdoor scenes we consider can be described sufficiently well by a small

number of rigidly moving objects. The overall error (shown in red) drops significantly740

from 1 to 5 objects. It improves slightly to its minimal value at 10 objects and then

starts to rise again. A moderate number of ten objects accounts for two phenomena:

On the one hand, it covers complex scenes with many visible objects and distinct mo-

tions. On the other, it ensures a large enough number of object hypotheses to allow

for some false detections from the motion-based segmentation and still cover the true745

objects. As can be expected, the background error is not affected by the number of

32



objects since it typically corresponds to the dominant object in the scene. The right

panel of Figure 7 shows the performance of our method with respect to the number of

iterations in the particle-based optimization framework. This plot shows that the error

rate reduces significantly within the first 5 iterations and then saturates at 10 iterations.750

Based on these results we chose the parameters for the following experiments. We

use 10 shape particles per superpixel, 10 objects and 5 motion particles per object. As

a tradeoff between run time and overall accuracy 10 iterations of max-product parti-

cle belief propagation (MP-PBP) are performed. All motion particles and half of the

shape particles are drawn from a normal distribution centered at the MAP solution of755

the last iteration or the initialization, respectively. The remaining shape particles are

proposed using the plane parameters from spatially neighboring superpixels. These

are randomly sampled conditioned on the distance of superixel centers. Both strate-

gies complement each other and we found their combination important for efficiently

exploring the search space.760

4.3.2. Comparison to the state-of-the-art

Table 3 compares the error rates of the proposed Object Scene Flow (OSF 2018)

to several baselines on all annotated image locations of the KITTI 2015 test data. The

table contains all methods which were submitted and published by the end of 2016.

To ensure a fair comparison based on all annotated pixels, the results of sparse and765

semi-dense methods are interpolated using a standard routine provided by the KITTI

development kit.

Besides the classic variational approach (VSF) of Huguet & Devernay (2007) and

the recent continuous method (CSF) of Lv et al. (2016), the table provides results

for the prediction-correction approach (PCOF) of Derome et al. (2016) and the sparse770

scene flow method of Cech et al. (2011) (GCSF). For the initial release of the bench-

mark, further baselines were constructed by combining two state-of-the-art optical flow

algorithms with disparity estimates in both frames obtained using semiglobal match-

ing. In particular, we combine SGM with large displacement optical flow (LDOF)

(Brox & Malik, 2011) and with a classical hierarchical variational approach with non-775

local regularization (C+NL) (Sun et al., 2014). As a representative for RGB-D based
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D1 D2 Fl SF Run

bg fg bg&fg bg fg bg&fg bg fg bg&fg bg fg bg&fg time [s]

PRSM (multi-frame) 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97 300

OSF 2018 4.11 11.12 5.28 5.01 17.28 7.06 5.38 17.61 7.41 6.68 24.59 9.66 390

OSF 2015 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23 3000

OSF-M 2018 4.47 11.62 5.66 5.69 18.30 7.79 6.03 19.66 8.29 7.53 26.25 10.65 500

CSF 4.57 13.04 5.98 7.92 20.76 10.06 10.40 25.78 12.96 12.21 33.21 15.71 80

PRSF 4.74 13.74 6.24 11.14 20.47 12.69 11.73 24.33 13.83 13.49 31.22 16.44 150

SGM+SF 5.15 15.29 6.84 14.10 23.13 15.60 20.91 25.50 21.67 23.09 34.46 24.98 2700

PCOF-LDOF 6.31 19.24 8.46 19.09 30.54 20.99 14.34 38.32 18.33 25.26 49.39 29.27 50

PCOF + ACTF (GPU) 6.31 19.24 8.46 19.15 36.27 22.00 14.89 60.15 22.43 25.77 67.75 32.76 0.08

SGM+C+NL 5.15 15.29 6.84 28.77 25.65 28.25 34.24 42.46 35.61 38.21 50.95 40.33 270

SGM+LDOF 5.15 15.29 6.84 29.58 23.48 28.56 40.81 31.92 39.33 43.99 42.09 43.67 86

DWBSF 19.61 22.69 20.12 35.72 28.15 34.46 40.74 31.16 39.14 46.42 40.76 45.48 420

GCSF 11.64 27.11 14.21 32.94 35.77 33.41 47.38 41.50 46.40 52.92 56.68 53.54 3

VSF 27.31 21.72 26.38 59.51 44.93 57.08 50.06 45.40 49.28 67.69 62.93 66.90 7500

Table 3: Results on the proposed KITTI 2015 Test Set. This table shows error rates for disparities in

the reference frame (D1) and the target frame (D2), optical flow (Fl) and scene flow (SF) averaged over all

200 test images. For each modality, the outlier percentage is reported for the background region (bg), all

foreground objects (fg) as well as all annotated pixels in the image (bg&fg). The table contains all methods

which were submitted and published by the end of 2016.

algorithms, the results of Sphere Flow (SGM+SF) by Hornacek et al. (2014) are pro-

vided. To emulate the required depth component 3D object points were reconstructed

from all valid pixels of the SGM disparity maps. The results of the piece-wise rigid

scene flow (PRSF) approach by Vogel et al. (2013b) were computed with the original780

parameter setting, which was trained on KITTI 2012.

Table 3 contains a duplicate entry of OSF in the third row, entitled OSF 2015, that

provides the results of the first version published in Menze & Geiger (2015). In contrast

to the variant described in this paper disparity observations were originally computed

using SGM instead of SPS-Stereo and the sparse optical flow matches from Geiger785

et al. (2011) were used instead of Discrete Flow. The improved observations used in

this work allow for a reduced number of shape particles and iterations during infer-

ence. A decrease of the outlier percentage in all evaluated categories is accompanied

by a significant reduction of the required run time. Overall, the proposed method yields

top performance amongst all two-frame scene flow methods to date on the challeng-790
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ing KITTI 2015 evaluation. However, while leading to plausible qualititative results,

the model-based extension (OSF-M 2018) does not lead to increased quantitative per-

formance. We analyze the reasons for this in the experimental evaluation. Further,

the advantages of processing more than two frames is demonstrated by PRSM (Vogel

et al., 2014). It obtains the best results amongst all published methods to date, but out-795

performs our two-frame scene flow method only slightly. We expect similar gains in

the results of our method when extending it to more than two frames.

4.4. Qualitative Results

In the following, we provide qualitative results to asses the strengths and weak-

nesses of the proposed method. In Figure 8, we present the results of our approach800

compared to competing submissions for one example sequence. Figure 9 shows addi-

tional results of our method, including the model-based extension.

Figure 8 shows the results as published on the KITTI 2015 website at the time of

submission (February 2017). In particular, we compare the results of the proposed OSF

model with respect to a variational baseline (VSF) and other top-performing methods805

(PRSF, PRSM) on the benchmark. The top row shows the input images of the left

camera. Due to the strong relative motion, the car on the left-most lane undergoes sig-

nificant perspective distortion and induces heavy occlusions. The results are ordered

with respect to descending overall scene flow error on the provided example. The sub-

figures below the input images are split into visualizations of disparity in both frames810

(first and second row) and the estimated optical flow map (third row), shown in the left

part, as well as color-coded error maps, shown on the right. The legend for the error

maps is provided at the bottom of the figure. Inliers according to the combined 3px

/ 5% scene flow metric are depicted in blue shades while outliers are depicted in red

shades.815

The optical flow field estimated by VSF in panel (a) is only correct near the center

of the image where the observed displacements are small. In contrast, large displace-

ments are successfully recovered by the prediction-correction approach PCOF-LDOF,

shown in panel (b). It provides significantly smaller errors in the flow map but around

the vehicle it suffers from erroneous results in the disparity map at t2. The contin-820
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uous method CSF in panel (c) optimizes a slanted-plane model using a variational

framework. While CSF improves upon PCOF-LDOF, some of the very small image

segments result in gross errors due to the difficulties of CSF in estimating the optical

flow correctly.

(a) VSF (74.33%) (b) PCOF-LDOF (17.14%)

(c) CSF (15.28%) (d) PRSF (9.59%)

(e) OSF 2018 (6.38%) (f) PRSM (6.21%)

0.38 - 0.740.19 - 0.370.00 - 0.18 0.75 - 1.49 1.50 - 2.99 3.00 - 5.99 6.00 - 11.99 12.00 - 23.99 24.00 - 47.99 48.00 - Inf

Figure 8: Comparison to Related Work. The top row provides the input imagery from the left camera.

Each sub-figure shows from top-to-bottom: The estimated disparity maps at t1 and t2 and the estimated

optical flow between both views (left panel) as well as the respective error images using the logarithmic

color scheme depicted in the legend (right panel). Inliers are depicted in blue shades while outliers are

depicted in red shades.
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The occluded region left of the car on the opposite lane is also difficult for PRSF.825

As a consequence, the scene flow error is slightly bigger than that of the proposed

OSF, which handles the car successfully up to small bleeding artifacts due to imperfect

segmentation. The benefits of taking into account more than two input frames are

evidenced by the results of PRSM in panel (f).

Figure 9 provides additional qualitative results of our method and the model-based830

extension. Here, each subfigure shows (from top-to-bottom) the disparity (left) and

optical flow (right) ground truth, the first disparity map and the optical flow map es-

timated by our method and the respective error maps in the last row. The lower part

of the figure additionally shows the predicted models before (first row) and after (sec-

ond row) inference overlayed as wireframe models onto the disparity and optical flow835

estimates.

The first row of this figure contains two examples on which the proposed method

works well. As evidenced by the error images, it is able to recover the correct dispar-

ity and optical flow in a variety of challenging situations. The effect of sub-optimal

segmentation is evidenced around the outline of foreground objects and on the traffic840

lights in both depicted scenes, causing bleeding artifacts around the cars. However,

most of the annotated disparities and displacements on the narrow poles are recovered

correctly. In contrast to the related approach of Vogel et al. (2013b), we do not re-

fine the initial segmentation during inference. This helps to limit the computational

burden. As a consequence, errors in the segmentation directly transfer to artifacts at845

object boundaries. To counter this effect, superpixels are chosen to be sufficiently small

to faithfully capture scene geometry and motion. Including the segmentation into the

optimization will be an interesting avenue for future research.

We observed that even objects that are not perfectly rigid are detected and assigned

plausible estimates. As an example consider the bicyclist in the top-left panel of Fig-850

ure 9, which moves at the same speed as the observing vehicle. Therefore, the optical

flow map shows brighter colors indicating smaller displacements compared to the sur-

rounding background. However, as neither the laser scanner nor the rigid CAD models

provide appropriate annotations for articulated objects, we excluded the respective im-

age regions manually from the quantitative evaluation in the KITTI 2015 benchmark.855
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In the right panel of the first row, the proposed method struggles with background

areas close to the image boundaries. The reason for this is that the leftmost region

leaves the image domain of the three remaining frames. In this case, the smoothness

terms are not able to extrapolate the disparity estimate correctly. The challenges at the

bottom right of the image are more subtle. Here, a small stretch of grass stands out860

from the otherwise flat ground. The rightmost portion of it is supported by enough

image evidence to induce a depth jump, while the rest is smoothed by the slanted-plane

model. Overall, however, the scene flow error in these two examples lies below the test

set average reported in Table 3.

The second row of Figure 9 provides results with higher error than on average. In865

the left panel, some gross errors are evident on the vegetation area next to the road.

Small twigs and leaves contradicting the slanted plane assumption are responsible for

these errors. They are caused by the chosen model but, in many applications, such very

fine details can be considered irrelevant. On the more important persistent parts of the

scene, like the traffic sign and the visible tree trunks, OSF yields mostly correct dispar-870

ities and displacements. The disparity map on the left shows a faithful segmentation

of the delivery truck. While the reconstruction is largely successful, the optical flow

result is less accurate around the roof of the vehicle.

The example on the right of the second row can be considered a failure case. Diffi-

cult lighting conditions, reflecting surfaces and a quickly moving object on the opposite875

lane render this example especially challenging. Striking errors in the disparity map

occur on the leftmost vehicle and the bright area next to it. In addition, OSF fails to

recover the motion of the approaching vehicles.

The lower part of Figure 9 illustrates resulting disparity and optical flow maps

together with wire-frame renderings of the object models. The panels show results880

for six representative scenes. The top row of each sub-figure depicts the layout after

initialization as described in Section 2. In most cases, the shapes do not match the

observed cars and there are some significant translational offsets. In addition, there are

many spurious objects initialized due to wrong object hypotheses. The center row of

each panel shows our reconstruction results after optimizing the energy function (13).885

Objects which are not assigned to any of the superpixels are considered absent and thus
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Figure 9: Qualitative Results of our Scene Flow Approach. In the upper part, each sub-figure shows

from top-to-bottom: The disparity and optical flow ground truth in the reference view, the disparity map

(D1) and optical flow map (Fl) estimated by our scene flow algorithm, and the respective error images using

the logarithmic color scheme depicted in the legend. The lower part additionally shows the results of the

model-based extension before and after inference.
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not drawn. The last row of each panel provides color-coded error maps as before.

For all examples shown in the first row, the model position is successfully aligned

with the observed object and the shape of the model is faithfully adapted to the depicted

cars. Further, spurious hypotheses are initialized next to the road and on some road890

markings. They are successfully removed, demonstrating the intrinsic model selection

capability of the approach.

In the second row, we compare a very good result to a representative failure case of

our method. The left panel shows one successfully reconstructed car in the foreground.

The initialization also contains one spurious object around the traffic light, which is895

removed during inference. On the right panel, the depicted van exceeds the shape space

of the Active Shape Model. Therefore, two models are fitted to the consistently moving

region corresponding to the van. In the flow error map on the right, it becomes obvious

that the upper part of the vehicle is not assigned to the reconstructed objects. This

is expected, as the respective image segments are not covered by the object models.900

Under the proposed setup, failure cases like this lead to the increased average errors

in Table 3. Besides, complex scene geometry, as encountered next to the road in this

example, can randomly generate groups of consistently deviating displacements. Such

motion cues may cause false object hypotheses. Sometimes, these objects remain even

after optimization, if the model geometry can be adapted to agree with the observations.905

False object hypotheses are also initialized in the left panel of the last row of Figure 9.

In this case, however, the corresponding image regions are correctly assigned to the

background during inference.

Containing six individually moving cars, the scene depicted in the last panel on

the right is one of the most complex in the dataset. Here, only two of the six vehicles910

present in the scene are correctly initialized as object hypotheses. Two more vehicles

are moving in the same direction as the observing car. As they are located close to the

center of the image and move slowly, they are missed by the motion-based segmenta-

tion. Two vehicles on the opposite lane are missed as well. One of them appears rela-

tively small in the input image and is likely to be missed due to larger, erroneous object915

hypotheses. The other is depicted in a saturated area that does not provide strong im-

age evidence. While two of the initialized object hypotheses remain after optimization
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only the central car is recovered correctly. The model for the leftmost car is initialized

with a significant angular error which cannot be recovered during inference. Adding

a recognition component to our approach for detecting the shape and pose of objects920

in the scene could help in the aforementioned situation and has already demonstrated

promising results on other task, e.g., stereo estimation (Güney & Geiger, 2015). We

consider the combination of scene flow and recognition as a promising direction for

future work.

5. Conclusions925

In this paper, we presented a novel model for joint rigid motion segmentation, 3D

scene flow estimation and 3D model fitting. In addition, we developed the first real-

istic benchmark for 3D scene flow evaluation in challenging dynamic outdoor scenes

and compared our method to the state-of-the-art techniques on this dataset. Our core

technical contribution is the efficient parametrization of the problem via superpixels930

and individually moving objects. It maintains the necessary flexibility of the model

while imposing valuable constraints by introducing long-range spatial dependencies.

We experimentally demonstrated that our assumptions hold for the processed outdoor

image sequences and lead to improved results on the challenging KITTI 2015 dataset.

Additional performance gains can be expected when extending our approach to more935

than 2 frames. While the computational complexity of the resulting algorithm allows

for tractable inference, it still significantly exceeds the requirements of real-time ap-

plications. We plan to address this issue in the future. Besides, we believe that a

combination of the presented model with object recognition or semantic segmentation

to exploit the synergistic effects between these modalities will be promising for future940

research.
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