\begin{tabular}{c | c | c | c | c | c}
{\bf Method} & {\bf D1-bg} & {\bf D1-fg} & {\bf D1-all} & {\bf Density} & {\bf Runtime}\\ \hline
StereoBase \cite{guo2023openstereo} & 1.28 \% & 2.26 \% & 1.44 \% & 100.00 \% & 0.29 s / GPU \\
TC-Stereo \cite{zeng2024temporally} & 1.29 \% & 2.33 \% & 1.46 \% & 100.00 \% & 0.09 s / \\
ViTAStereo \cite{liu2024playing} & 1.21 \% & 2.99 \% & 1.50 \% & 100.00 \% & 0.22 s / \\
IGEV++ \cite{xu2024igev++} & 1.31 \% & 2.54 \% & 1.51 \% & 100.00 \% & 0.28 s / \\
MoCha-Stereo \cite{mocha} & 1.36 \% & 2.43 \% & 1.53 \% & 100.00 \% & 0.34 s / \\
DiffuVolume \cite{zheng2023diffuvolume} & 1.35 \% & 2.51 \% & 1.54 \% & 100.00 \% & 0.36 s / GPU \\
GANet+ADL \cite{mocha} & 1.38 \% & 2.38 \% & 1.55 \% & 100.00 \% & 0.67s / \\
Selective-IGEV \cite{wang2024selective} & 1.33 \% & 2.61 \% & 1.55 \% & 100.00 \% & 0.24 s / 1 core \\
MC-Stereo \cite{feng2023mc} & 1.36 \% & 2.51 \% & 1.55 \% & 100.00 \% & 0.40 s / GPU \\
SR Stereo\_32\_update \cite{xiao2024stepwise} & 1.37 \% & 2.49 \% & 1.56 \% & 100.00 \% & 0.18 s / 1 core \\
DMIO \cite{shi2024rethinking} & 1.34 \% & 2.74 \% & 1.57 \% & 100.00 \% & 0.3 s / 1 core \\
NMRF-Stereo \cite{guan2024neural} & 1.28 \% & 3.07 \% & 1.57 \% & 100.00 \% & 0.09 s / \\
OpenStereo-IGEV \cite{guo2023openstereo} & 1.44 \% & 2.31 \% & 1.59 \% & 100.00 \% & 0.18 s / \\
CroCo-Stereo \cite{crocov2} & 1.38 \% & 2.65 \% & 1.59 \% & 100.00 \% & 0.93s / \\
IGEV-Stereo \cite{xu2023iterative} & 1.38 \% & 2.67 \% & 1.59 \% & 100.00 \% & 0.18 s / \\
DN+ACVNet \cite{zhang2024exploring} & 1.32 \% & 2.95 \% & 1.60 \% & 100.00 \% & 0.24 s / 1 core \\
UPFNet \cite{10172044} & 1.38 \% & 2.85 \% & 1.62 \% & 100.00 \% & 0.25 s / 1 core \\
Selective-RAFT \cite{wang2024selective} & 1.41 \% & 2.71 \% & 1.63 \% & 100.00 \% & 0.45 s / 1 core \\
M-FUSE \cite{Mehl2023} & 1.40 \% & 2.91 \% & 1.65 \% & 100.00 \% & 1.3 s / \\
SF2SE3 \cite{sommer2022sf2se3} & 1.40 \% & 2.91 \% & 1.65 \% & 100.00 \% & 2.7 s / GPU \\
LEAStereo \cite{cheng2020hierarchical} & 1.40 \% & 2.91 \% & 1.65 \% & 100.00 \% & 0.30 s / GPU \\
LoS \cite{likh2024los} & 1.42 \% & 2.81 \% & 1.65 \% & 100.00 \% & 0.19 s / 1 core \\
ACVNet \cite{xu2022attention} & 1.37 \% & 3.07 \% & 1.65 \% & 100.00 \% & 0.2 s / \\
PCWNet \cite{shenpcw} & 1.37 \% & 3.16 \% & 1.67 \% & 100.00 \% & 0.44 s / 1 core \\
LaC+GANet \cite{liu2022local} & 1.44 \% & 2.83 \% & 1.67 \% & 100.00 \% & 1.8 s / GPU \\
CREStereo \cite{Li2022PracticalSM} & 1.45 \% & 2.86 \% & 1.69 \% & 100.00 \% & 0.41 s / GPU \\
ESM\_Net \cite{ERROR: Wrong syntax in BIBTEX file.} & 1.37 \% & 3.30 \% & 1.69 \% & 100.00 \% & 0.03 s / 1 core \\
DuMa-Net \cite{sunrange} & 1.40 \% & 3.18 \% & 1.70 \% & 100.00 \% & 0.38 s / \\
DKT-IGEV \cite{zhang2024robust} & 1.46 \% & 3.05 \% & 1.72 \% & 100.00 \% & 0.18 s / 1 core \\
Patchmatch Stereo++ \cite{10.11453581783.3611862} & 1.55 \% & 2.71 \% & 1.74 \% & 100.00 \% & 0.2 s / \\
CSPN \cite{8869936} & 1.51 \% & 2.88 \% & 1.74 \% & 100.00 \% & 1.0 s / GPU \\
LaC+GwcNet \cite{liu2022local} & 1.43 \% & 3.44 \% & 1.77 \% & 100.00 \% & 0. 65 s / GPU \\
GMStereo \cite{xu2022unifying} & 1.49 \% & 3.14 \% & 1.77 \% & 100.00 \% & 0.17 s / \\
NLCA-Net v2 \cite{Rao2021Rethinking} & 1.41 \% & 3.56 \% & 1.77 \% & 100.00 \% & 0.67 s / GPU \\
GANet+DSMNet \cite{zhang2019domaininvariant} & 1.48 \% & 3.23 \% & 1.77 \% & 100.00 \% & 2.0 s / GPU \\
PFSMNet \cite{Zeng2021Deep} & 1.54 \% & 3.02 \% & 1.79 \% & 100.00 \% & 0.31 s / 1 core \\
RT-IGEV++ \cite{xu2024igev++} & 1.48 \% & 3.37 \% & 1.79 \% & 100.00 \% & 0.05 s / 1 core \\
SUW-Stereo \cite{ren2020suw} & 1.47 \% & 3.45 \% & 1.80 \% & 100.00 \% & 1.8 s / 1 core \\
TemporalStereo \cite{Zhang2023TemporalStereo} & 1.61 \% & 2.78 \% & 1.81 \% & 100.00 \% & 0.04 s / 1 core \\
Binary TTC \cite{badki2021BiTTC} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 2 s / GPU \\
CamLiRAFT \cite{liu2023learning} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 1 s / GPU \\
Scale-flow \cite{ling2022scale} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 0.8 s / GPU \\
CamLiRAFT-NR \cite{liu2023learning} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 1 s / GPU \\
RAFT-3D \cite{teed2020raft} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 2 s / GPU \\
ADFactory \cite{ling2024adfactory} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 0.1 s / GPU \\
GANet-deep \cite{zhang2019GANet} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 1.8 s / GPU \\
CamLiFlow \cite{liu2021camliflow} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 1.2 s / GPU \\
Stereo expansion \cite{yang2020upgrading} & 1.48 \% & 3.46 \% & 1.81 \% & 100.00 \% & 2 s / GPU \\
LightStereo-L* \cite{guo2024lightstereo} & 1.60 \% & 2.92 \% & 1.82 \% & 100.00 \% & 0.05 s / 1 core \\
OptStereo \cite{wang2021pvstereo} & 1.50 \% & 3.43 \% & 1.82 \% & 100.00 \% & 0.10 s / GPU \\
LoS\_RVC \cite{likh2024los} & 1.58 \% & 3.08 \% & 1.83 \% & 100.00 \% & 0.19 s / 1 core \\
NLCA-Net-3 \cite{rao2020nlca} & 1.45 \% & 3.78 \% & 1.83 \% & 100.00 \% & 0.44 s / >8 cores \\
AMNet \cite{1904.09099} & 1.53 \% & 3.43 \% & 1.84 \% & 100.00 \% & 0.9 s / GPU \\
HCR \cite{HCRNet} & 1.51 \% & 3.51 \% & 1.85 \% & 100.00 \% & 0.19 s / GPU \\
UCFNet\_RVC \cite{ucfnet} & 1.57 \% & 3.33 \% & 1.86 \% & 100.00 \% & 0.21 s / GPU \\
CFNet \cite{cfnet} & 1.54 \% & 3.56 \% & 1.88 \% & 100.00 \% & 0.18 s / 1 core \\
RigidMask+ISF \cite{yang2021rigidmask} & 1.53 \% & 3.65 \% & 1.89 \% & 100.00 \% & 3.3 s / GPU \\
DCVSMNet \cite{tahmasebi2024dcvsmnet} & 1.60 \% & 3.33 \% & 1.89 \% & 100.00 \% & 0.07 s / GPU \\
AcfNet \cite{zhang2019adaptive} & 1.51 \% & 3.80 \% & 1.89 \% & 100.00 \% & 0.48 s / GPU \\
NLCA\_NET\_v2\_RVC \cite{rao2020nlca} & 1.51 \% & 3.97 \% & 1.92 \% & 100.00 \% & 0.67 s / GPU \\
CDN \cite{garg2020wasserstein} & 1.66 \% & 3.20 \% & 1.92 \% & 100.00 \% & 0.4 s / GPU \\
Abc-Net \cite{li2021area} & 1.47 \% & 4.20 \% & 1.92 \% & 100.00 \% & 0.83 s / 4 core \\
LightStereo-L \cite{guo2024lightstereo} & 1.78 \% & 2.64 \% & 1.93 \% & 100.00 \% & 0.03 s / 1 core \\
GANet-15 \cite{zhang2019GANet} & 1.55 \% & 3.82 \% & 1.93 \% & 100.00 \% & 0.36 s / \\
PCVNet \cite{zeng2023parameterized} & 1.68 \% & 3.19 \% & 1.93 \% & 100.00 \% & 0.05 s / GPU \\
CAL-Net \cite{DBLPconficasspChenLWZLW21} & 1.59 \% & 3.76 \% & 1.95 \% & 100.00 \% & 0.44 s / 2 cores \\
NLCA-Net \cite{rao2020nlca} & 1.53 \% & 4.09 \% & 1.96 \% & 100.00 \% & 0.6 s / 1 core \\
CFNet\_RVC \cite{cfnet} & 1.65 \% & 3.53 \% & 1.96 \% & 100.00 \% & 0.22 s / GPU \\
PGNet \cite{CHEN2021609} & 1.64 \% & 3.60 \% & 1.96 \% & 100.00 \% & 0.7 s / 1 core \\
HITNet \cite{tankovich2021hitnet} & 1.74 \% & 3.20 \% & 1.98 \% & 100.00 \% & 0.02 s / GPU \\
SGNet \cite{Chen2020ACCV} & 1.63 \% & 3.76 \% & 1.99 \% & 100.00 \% & 0.6 s / 1 core \\
CSN \cite{gu2020cascade} & 1.59 \% & 4.03 \% & 2.00 \% & 100.00 \% & 0.6 s / 1 core \\
Fast-ACVNet+ \cite{xu2023accurate} & 1.70 \% & 3.53 \% & 2.01 \% & 100.00 \% & 0.05 s / \\
CoEx \cite{bangunharcana2021correlate} & 1.74 \% & 3.41 \% & 2.02 \% & 100.00 \% & 0.027 s / \\
HD^3-Stereo \cite{yin2019hd3} & 1.70 \% & 3.63 \% & 2.02 \% & 100.00 \% & 0.14 s / \\
SCV-Stereo \cite{wang2021scv} & 1.67 \% & 3.78 \% & 2.02 \% & 100.00 \% & 0.08 s / GPU \\
AANet+ \cite{xu2020aanet} & 1.65 \% & 3.96 \% & 2.03 \% & 100.00 \% & 0.06 s / \\
LightStereo-M \cite{guo2024lightstereo} & 1.81 \% & 3.22 \% & 2.04 \% & 100.00 \% & 0.02 s / 1 core \\
LR-PSMNet \cite{chuah2020adjusting} & 1.65 \% & 4.13 \% & 2.06 \% & 100.00 \% & 0.5 s / GPU \\
iRaftStereo\_RVC \cite{jiang2022improved} & 1.88 \% & 3.03 \% & 2.07 \% & 100.00 \% & 0.5 s / GPU \\
PSM + SMD-Nets \cite{Tosi2021CVPR} & 1.69 \% & 4.01 \% & 2.08 \% & 100.00 \% & 0.41 s / 1 core \\
MDCNet \cite{9627805} & 1.76 \% & 3.68 \% & 2.08 \% & 100.00 \% & 0.05 s / 1 core \\
EdgeStereo-V2 \cite{song2019edgestereo} & 1.84 \% & 3.30 \% & 2.08 \% & 100.00 \% & 0.32s / \\
3D-MSNet / MSNet3D \cite{shamsafar2022mobilestereonet} & 1.75 \% & 3.87 \% & 2.10 \% & 100.00 \% & 1.5s / \\
GwcNet-g \cite{guo2019group} & 1.74 \% & 3.93 \% & 2.11 \% & 100.00 \% & 0.32 s / GPU \\
SSPCVNet \cite{Wu2019ICCV} & 1.75 \% & 3.89 \% & 2.11 \% & 100.00 \% & 0.9 s / 1 core \\
WSMCnet \cite{wang2019WSMCnet} & 1.72 \% & 4.19 \% & 2.13 \% & 100.00 \% & 0.39s / \\
HSM-1.8x \cite{yang2019hsm} & 1.80 \% & 3.85 \% & 2.14 \% & 100.00 \% & 0.14 s / \\
DeepPruner (best) \cite{Duggal2019ICCV} & 1.87 \% & 3.56 \% & 2.15 \% & 100.00 \% & 0.18 s / 1 core \\
Stereo-fusion-SJTU \cite{song2018stereo} & 1.87 \% & 3.61 \% & 2.16 \% & 100.00 \% & 0.7 s / \\
AutoDispNet-CSS \cite{iccv19autodispnet} & 1.94 \% & 3.37 \% & 2.18 \% & 100.00 \% & 0.9 s / 1 core \\
BGNet+ \cite{bgnet2021} & 1.81 \% & 4.09 \% & 2.19 \% & 100.00 \% & 0.03 s / GPU \\
Bi3D \cite{badki2020Bi3D} & 1.95 \% & 3.48 \% & 2.21 \% & 100.00 \% & 0.48 s / GPU \\
dh \cite{zhang2019GANet} & 1.86 \% & 4.01 \% & 2.22 \% & 100.00 \% & 1.9 s / 1 core \\
SENSE \cite{Jiang2019ICCV} & 2.07 \% & 3.01 \% & 2.22 \% & 100.00 \% & 0.32s / \\
SegStereo \cite{yang2018SegStereo} & 1.88 \% & 4.07 \% & 2.25 \% & 100.00 \% & 0.6 s / \\
DTF\_SENSE \cite{schuster2021dtf} & 2.08 \% & 3.13 \% & 2.25 \% & 100.00 \% & 0.76 s / 1 core \\
OpenStereo-PSMNet \cite{guo2023openstereo} & 1.80 \% & 4.58 \% & 2.26 \% & 100.00 \% & 0.21 s / \\
MCV-MFC \cite{liang2019stereo} & 1.95 \% & 3.84 \% & 2.27 \% & 100.00 \% & 0.35 s / 1 core \\
HSM-1.5x \cite{yang2019hsm} & 1.95 \% & 3.93 \% & 2.28 \% & 100.00 \% & 0.085 s / \\
LightStereo-S \cite{guo2024lightstereo} & 2.00 \% & 3.80 \% & 2.30 \% & 100.00 \% & 0.01 s / 1 core \\
Separable Convs \cite{rahim2021separable} & 1.90 \% & 4.36 \% & 2.31 \% & 100.00 \% & 2 s / 1 core \\
Separable Convs \cite{rahim2021separable} & 1.90 \% & 4.36 \% & 2.31 \% & 100.00 \% & 2 s / 1 core \\
CFP-Net \cite{Zhu2019Multi} & 1.90 \% & 4.39 \% & 2.31 \% & 100.00 \% & 0.9 s / 8 cores \\
PSMNet \cite{chang2018pyramid} & 1.86 \% & 4.62 \% & 2.32 \% & 100.00 \% & 0.41 s / \\
GANetREF\_RVC \cite{Zhang2019GANet} & 1.88 \% & 4.58 \% & 2.33 \% & 100.00 \% & 1.62 s / GPU \\
TriStereoNet \cite{shamsafar2021tristereonet} & 1.86 \% & 4.77 \% & 2.35 \% & 100.00 \% & 0.5 s / \\
MABNet\_origin \cite{xingmabnet} & 1.89 \% & 5.02 \% & 2.41 \% & 100.00 \% & 0.38 s / \\
ERSCNet \cite{ERSCNet2020} & 2.11 \% & 4.46 \% & 2.50 \% & 100.00 \% & 0.28 s / GPU \\
BGNet \cite{bgnet2021} & 2.07 \% & 4.74 \% & 2.51 \% & 100.00 \% & 0.02 s / GPU \\
UberATG-DRISF \cite{Ma2019CVPR} & 2.16 \% & 4.49 \% & 2.55 \% & 100.00 \% & 0.75 s / CPU+GPU \\
AANet \cite{xu2020aanet} & 1.99 \% & 5.39 \% & 2.55 \% & 100.00 \% & 0.062 s / \\
PDSNet \cite{tulyakovetal2018b} & 2.29 \% & 4.05 \% & 2.58 \% & 100.00 \% & 0.5 s / 1 core \\
DeepPruner (fast) \cite{Duggal2019ICCV} & 2.32 \% & 3.91 \% & 2.59 \% & 100.00 \% & 0.06 s / 1 core \\
FADNet \cite{wang2020fadnet} & 2.50 \% & 3.10 \% & 2.60 \% & 100.00 \% & 0.05 s / \\
MMStereo \cite{unpublished} & 2.25 \% & 4.38 \% & 2.61 \% & 100.00 \% & 0.04 s / \\
SCV \cite{lu2018sparse} & 2.22 \% & 4.53 \% & 2.61 \% & 100.00 \% & 0.36 s / \\
WaveletStereo: \cite{waveletstereo} & 2.24 \% & 4.62 \% & 2.63 \% & 100.00 \% & 0.27 s / 1 core \\
RLStereo \cite{RLStereo2021} & 2.09 \% & 5.38 \% & 2.64 \% & 100.00 \% & 0.03 s / 1 core \\
AANet\_RVC \cite{xu2020aanet} & 2.23 \% & 4.89 \% & 2.67 \% & 100.00 \% & 0.1 s / GPU \\
CRL \cite{pang2017cascade} & 2.48 \% & 3.59 \% & 2.67 \% & 100.00 \% & 0.47 s / \\
2D-MSNet / MSNet2D \cite{shamsafar2022mobilestereonet} & 2.49 \% & 4.53 \% & 2.83 \% & 100.00 \% & 0.4s / \\
GC-NET \cite{kendall2017end} & 2.21 \% & 6.16 \% & 2.87 \% & 100.00 \% & 0.9 s / \\
PVStereo \cite{wang2021pvstereo} & 2.29 \% & 6.50 \% & 2.99 \% & 100.00 \% & 0.10 s / GPU \\
LRCR \cite{Jie2018CVPR} & 2.55 \% & 5.42 \% & 3.03 \% & 100.00 \% & 49.2 s / \\
Fast DS-CS \cite{yee2019fast} & 2.83 \% & 4.31 \% & 3.08 \% & 100.00 \% & 0.02 s / GPU \\
AdaStereo \cite{song2020adastereo} & 2.59 \% & 5.55 \% & 3.08 \% & 100.00 \% & 0.41 s / GPU \\
RecResNet \cite{batsos2018recresnet} & 2.46 \% & 6.30 \% & 3.10 \% & 100.00 \% & 0.3 s / GPU \\
NVStereoNet \cite{smolyanskiy2018nvstereo} & 2.62 \% & 5.69 \% & 3.13 \% & 100.00 \% & 0.6 s / \\
DRR \cite{gidaris2016detect} & 2.58 \% & 6.04 \% & 3.16 \% & 100.00 \% & 0.4 s / \\
DWARF \cite{AleottiAAAI2020} & 3.20 \% & 3.94 \% & 3.33 \% & 100.00 \% & 0.14s - 1.43s / \\
SsSMnet \cite{SsSMnet2017} & 2.70 \% & 6.92 \% & 3.40 \% & 100.00 \% & 0.8 s / \\
L-ResMatch \cite{shaked2016stereo} & 2.72 \% & 6.95 \% & 3.42 \% & 100.00 \% & 48 s / 1 core \\
Displets v2 \cite{Guney2015CVPR} & 3.00 \% & 5.56 \% & 3.43 \% & 100.00 \% & 265 s / >8 cores \\
LBPS \cite{knoebelreitercvpr2020} & 2.85 \% & 6.35 \% & 3.44 \% & 100.00 \% & 0.39 s / GPU \\
ACOSF \cite{Cong2020ICPR} & 2.79 \% & 7.56 \% & 3.58 \% & 100.00 \% & 5 min / 1 core \\
CNNF+SGM \cite{PrincipleZhang} & 2.78 \% & 7.69 \% & 3.60 \% & 100.00 \% & 71 s / \\
PBCP \cite{Seki2016BMVC} & 2.58 \% & 8.74 \% & 3.61 \% & 100.00 \% & 68 s / \\
SGM-Net \cite{Seki2017CVPR} & 2.66 \% & 8.64 \% & 3.66 \% & 100.00 \% & 67 s / \\
DSMNet-synthetic \cite{zhang2019domaininvariant} & 3.11 \% & 6.72 \% & 3.71 \% & 100.00 \% & 1.6 s / 4 cores \\
CAS++ \cite{ERROR: Wrong syntax in BIBTEX file.} & 3.10 \% & 6.89 \% & 3.73 \% & 99.98 \% & .1 s / GPU \\
HSM-Net\_RVC \cite{yang2019hierarchical} & 2.74 \% & 8.73 \% & 3.74 \% & 100.00 \% & 0.97 s / GPU \\
MABNet\_tiny \cite{xingmabnet} & 3.04 \% & 8.07 \% & 3.88 \% & 100.00 \% & 0.11 s / \\
MC-CNN-acrt \cite{Zbontar2016JMLR} & 2.89 \% & 8.88 \% & 3.89 \% & 100.00 \% & 67 s / \\
FD-Fusion \cite{FerreraFDFusion2019} & 3.22 \% & 7.44 \% & 3.92 \% & 100.00 \% & 0.01 s / 1 core \\
ADCPNet \cite{9504486} & 3.27 \% & 7.58 \% & 3.98 \% & 100.00 \% & 0.007 s / GPU \\
Reversing-PSMNet \cite{AleottiECCV2020} & 3.13 \% & 8.70 \% & 4.06 \% & 100.00 \% & 0.41 s / 1 core \\
DGS \cite{chuah2021achieving} & 3.21 \% & 8.62 \% & 4.11 \% & 100.00 \% & 0.32 s / GPU \\
PRSM \cite{Vogel2015IJCV} & 3.02 \% & 10.52 \% & 4.27 \% & 99.99 \% & 300 s / 1 core \\
DispNetC \cite{Mayer2016CVPR} & 4.32 \% & 4.41 \% & 4.34 \% & 100.00 \% & 0.06 s / \\
SGM-Forest \cite{schoenberger2018sgm} & 3.11 \% & 10.74 \% & 4.38 \% & 99.92 \% & 6 seconds / 1 core \\
SSF \cite{Ren20173DV} & 3.55 \% & 8.75 \% & 4.42 \% & 100.00 \% & 5 min / 1 core \\
SMV \cite{confirosweihao21} & 3.45 \% & 9.32 \% & 4.43 \% & 100.00 \% & 0.5 s / GPU \\
ISF \cite{Behl2017ICCV} & 4.12 \% & 6.17 \% & 4.46 \% & 100.00 \% & 10 min / 1 core \\
Content-CNN \cite{Vogel2015IJCV} & 3.73 \% & 8.58 \% & 4.54 \% & 100.00 \% & 1 s / \\
MADnet \cite{Tonioni2019CVPR} & 3.75 \% & 9.20 \% & 4.66 \% & 100.00 \% & 0.02 s / GPU \\
Self-SuperFlow-ft \cite{bendig2022selfsuperflow} & 3.81 \% & 8.92 \% & 4.66 \% & 100.00 \% & 0.13 s / \\
DTF\_PWOC \cite{schuster2021dtf} & 3.91 \% & 8.57 \% & 4.68 \% & 100.00 \% & 0.38 s / \\
P3SNet+ \cite{10133885} & 4.15 \% & 7.59 \% & 4.72 \% & 100.00 \% & 0.01 s / 1 core \\
VN \cite{knoebelreitergcpr19} & 4.29 \% & 7.65 \% & 4.85 \% & 100.00 \% & 0.5 s / GPU \\
MC-CNN-WS \cite{Tulyakov2017} & 3.78 \% & 10.93 \% & 4.97 \% & 100.00 \% & 1.35 s / \\
3DMST \cite{li20173DMST} & 3.36 \% & 13.03 \% & 4.97 \% & 100.00 \% & 93 s / 1 core \\
CBMV\_ROB \cite{batsos2018cbmv} & 3.55 \% & 12.09 \% & 4.97 \% & 100.00 \% & 250 s / 6 core \\
OSF+TC \cite{Neoral2017CVWW} & 4.11 \% & 9.64 \% & 5.03 \% & 100.00 \% & 50 min / 1 core \\
P3SNet \cite{10133885} & 4.40 \% & 8.28 \% & 5.05 \% & 100.00 \% & 0.01 s / GPU \\
CBMV \cite{1804.01967} & 4.17 \% & 9.53 \% & 5.06 \% & 100.00 \% & 250 s / 6 cores \\
PWOC-3D \cite{saxena2019pwoc} & 4.19 \% & 9.82 \% & 5.13 \% & 100.00 \% & 0.13 s / \\
StereoVAE \cite{stereoVAE} & 4.25 \% & 10.18 \% & 5.23 \% & 100.00 \% & 0.03 s / \\
OSF 2018 \cite{Menze2018JPRS} & 4.11 \% & 11.12 \% & 5.28 \% & 100.00 \% & 390 s / 1 core \\
SPS-St \cite{Yamaguchi2014ECCV} & 3.84 \% & 12.67 \% & 5.31 \% & 100.00 \% & 2 s / 1 core \\
MDP \cite{Li2016CVPR} & 4.19 \% & 11.25 \% & 5.36 \% & 100.00 \% & 11.4 s / 4 cores \\
SFF++ \cite{schuster2019sffpp} & 4.27 \% & 12.38 \% & 5.62 \% & 100.00 \% & 78 s / 4 cores \\
TinyStereo \cite{chang2024tinystereo} & 4.99 \% & 9.33 \% & 5.71 \% & 100.00 \% & 0.02 s / \\
OSF \cite{Menze2015CVPR} & 4.54 \% & 12.03 \% & 5.79 \% & 100.00 \% & 50 min / 1 core \\
pSGM \cite{lee2018memory} & 4.84 \% & 11.64 \% & 5.97 \% & 100.00 \% & 7.77 s / 4 cores \\
CSF \cite{Lv2016ECCV} & 4.57 \% & 13.04 \% & 5.98 \% & 99.99 \% & 80 s / 1 core \\
MBM \cite{Einecke2014IV} & 4.69 \% & 13.05 \% & 6.08 \% & 100.00 \% & 0.13 s / 1 core \\
CRD-Fusion \cite{crdfusion} & 4.59 \% & 13.68 \% & 6.11 \% & 100.00 \% & 0.02 s / GPU \\
PR-Sceneflow \cite{Vogel2013ICCV} & 4.74 \% & 13.74 \% & 6.24 \% & 100.00 \% & 150 s / 4 core \\
DispSegNet \cite{dissegnet} & 4.20 \% & 16.97 \% & 6.33 \% & 100.00 \% & 0.9 s / GPU \\
DeepCostAggr \cite{kuzmin2017end} & 5.34 \% & 11.35 \% & 6.34 \% & 99.98 \% & 0.03 s / GPU \\
SGM\_RVC \cite{Hirschmueller2008} & 5.06 \% & 13.00 \% & 6.38 \% & 100.00 \% & 0.11 s / \\
UHP \cite{yang2024unsupervised} & 5.00 \% & 13.70 \% & 6.45 \% & 100.00 \% & 0.02 s / GPU \\
SceneFFields \cite{schuster2018sceneflowfields} & 5.12 \% & 13.83 \% & 6.57 \% & 100.00 \% & 65 s / 4 cores \\
SPS+FF++ \cite{schuster2018dense} & 5.47 \% & 12.19 \% & 6.59 \% & 100.00 \% & 36 s / 1 core \\
Flow2Stereo \cite{Liu2020Flow2Stereo} & 5.01 \% & 14.62 \% & 6.61 \% & 99.97 \% & 0.05 s / GPU \\
FSF+MS \cite{Taniai2017} & 5.72 \% & 11.84 \% & 6.74 \% & 100.00 \% & 2.7 s / 4 cores \\
AABM \cite{Einecke2013IV} & 4.88 \% & 16.07 \% & 6.74 \% & 100.00 \% & 0.08 s / 1 core \\
SGM+C+NL \cite{Hirschmueller2008PAMI} & 5.15 \% & 15.29 \% & 6.84 \% & 100.00 \% & 4.5 min / 1 core \\
SGM+LDOF \cite{Hirschmueller2008PAMI} & 5.15 \% & 15.29 \% & 6.84 \% & 100.00 \% & 86 s / 1 core \\
SGM+SF \cite{Hirschmueller2008PAMI} & 5.15 \% & 15.29 \% & 6.84 \% & 100.00 \% & 45 min / 16 core \\
SNCC \cite{Einecke2010DICTA} & 5.36 \% & 16.05 \% & 7.14 \% & 100.00 \% & 0.08 s / 1 core \\
Permutation Stereo \cite{brousseau2022permutation} & 5.53 \% & 15.47 \% & 7.18 \% & 99.93 \% & 30 s / GPU \\
PASMnet \cite{PAM} & 5.41 \% & 16.36 \% & 7.23 \% & 100.00 \% & 0.5 s / GPU \\
AAFS \cite{chang2020attention} & 6.27 \% & 13.95 \% & 7.54 \% & 100.00 \% & 0.01 s / 1 core \\
Z2ZNCC \cite{CHANG2022102366} & 6.55 \% & 13.19 \% & 7.65 \% & 99.93 \% & 0.035s / Jetson TX2 GPU \\
ReS2tAC \cite{Ruf2021restac} & 6.27 \% & 16.07 \% & 7.90 \% & 86.03 \% & 0.06 s / Jetson AGX GPU \\
Self-SuperFlow \cite{bendig2022selfsuperflow} & 5.78 \% & 19.76 \% & 8.11 \% & 100.00 \% & 0.13 s / \\
CSCT+SGM+MF \cite{chacon2013n} & 6.91 \% & 14.87 \% & 8.24 \% & 100.00 \% & 0.0064 s / Nvidia GTX Titan X \\
MBMGPU \cite{DBLPjournalsaccessChangM18} & 6.61 \% & 16.70 \% & 8.29 \% & 100.00 \% & 0.0019 s / GPU \\
MeshStereo \cite{Zhang2015ICCV} & 5.82 \% & 21.21 \% & 8.38 \% & 100.00 \% & 87 s / 1 core \\
PCOF + ACTF \cite{Derome2016GCPR} & 6.31 \% & 19.24 \% & 8.46 \% & 100.00 \% & 0.08 s / GPU \\
PCOF-LDOF \cite{Derome2016GCPR} & 6.31 \% & 19.24 \% & 8.46 \% & 100.00 \% & 50 s / 1 core \\
OASM-Net \cite{OASMaccv18} & 6.89 \% & 19.42 \% & 8.98 \% & 100.00 \% & 0.73 s / GPU \\
ELAS\_RVC \cite{Geiger2010ACCV} & 7.38 \% & 21.15 \% & 9.67 \% & 100.00 \% & 0.19 s / 4 cores \\
EMR-MSF \cite{jiang2023emr} & 8.61 \% & 15.15 \% & 9.70 \% & 100.00 \% & 0.25 s / GPU \\
ELAS \cite{Geiger2010ACCV} & 7.86 \% & 19.04 \% & 9.72 \% & 92.35 \% & 0.3 s / 1 core \\
REAF \cite{Cigla2015CVPRWorkshops} & 8.43 \% & 18.51 \% & 10.11 \% & 100.00 \% & 1.1 s / 1 core \\
iGF \cite{hamzah2016stereo} & 8.64 \% & 21.85 \% & 10.84 \% & 100.00 \% & 220 s / 1 core \\
OCV-SGBM \cite{Hirschmueller08} & 8.92 \% & 20.59 \% & 10.86 \% & 90.41 \% & 1.1 s / 1 core \\
TW-SMNet \cite{mostafa2019TWSMNet} & 11.92 \% & 12.16 \% & 11.96 \% & 100.00 \% & 0.7 s / GPU \\
SDM \cite{Kostkova2003BMVC} & 9.41 \% & 24.75 \% & 11.96 \% & 62.56 \% & 1 min / 1 core \\
SGM&FlowFie+ \cite{Schuster2018Combining} & 11.93 \% & 20.57 \% & 13.37 \% & 81.24 \% & 29 s / 1 core \\
GCSF \cite{Cech2011CVPR} & 11.64 \% & 27.11 \% & 14.21 \% & 100.00 \% & 2.4 s / 1 core \\
MT-TW-SMNet \cite{Elkhamy2019} & 15.47 \% & 16.25 \% & 15.60 \% & 100.00 \% & 0.4s / GPU \\
Mono-SF \cite{brickwedde2019monosf} & 14.21 \% & 26.94 \% & 16.32 \% & 100.00 \% & 41 s / 1 core \\
CostFilter \cite{Rhemann2011CVPR} & 17.53 \% & 22.88 \% & 18.42 \% & 100.00 \% & 4 min / 1 core \\
MonoComb \cite{schuster2020mono} & 17.89 \% & 21.16 \% & 18.44 \% & 100.00 \% & 0.58 s / \\
DWBSF \cite{Richardt2016THREEDV} & 19.61 \% & 22.69 \% & 20.12 \% & 100.00 \% & 7 min / 4 cores \\
monoResMatch \cite{Tosi2019CVPR} & 22.10 \% & 19.81 \% & 21.72 \% & 100.00 \% & 0.16 s / \\
Self-Mono-SF-ft \cite{Hur2020CVPR} & 20.72 \% & 29.41 \% & 22.16 \% & 100.00 \% & 0.09 s / \\
Multi-Mono-SF-ft \cite{Hur2021CVPR} & 21.60 \% & 28.22 \% & 22.71 \% & 100.00 \% & 0.06 s / \\
OCV-BM \cite{Bradski2000} & 24.29 \% & 30.13 \% & 25.27 \% & 58.54 \% & 0.1 s / 1 core \\
VSF \cite{Huguet2007ICCV} & 27.31 \% & 21.72 \% & 26.38 \% & 100.00 \% & 125 min / 1 core \\
SED \cite{Peña2017} & 25.01 \% & 40.43 \% & 27.58 \% & 4.02 \% & 0.68 s / 1 core \\
Multi-Mono-SF \cite{Hur2021CVPR} & 27.48 \% & 47.30 \% & 30.78 \% & 100.00 \% & 0.06 s / \\
mts1 \cite{BRANDT2020} & 28.03 \% & 46.55 \% & 31.11 \% & 2.52 \% & 0.18 s / 4 cores \\
Self-Mono-SF \cite{Hur2020CVPR} & 31.22 \% & 48.04 \% & 34.02 \% & 100.00 \% & 0.09 s / \\
MST \cite{Yang2012CVPR} & 45.83 \% & 38.22 \% & 44.57 \% & 100.00 \% & 7 s / 1 core \\
Stereo-RSSF \cite{salehi2023stereo} & 56.60 \% & 73.05 \% & 59.34 \% & 9.26 \% & 2.5 s / 8 core
\end{tabular}