Object Detection Evaluation 2012


The object detection and object orientation estimation benchmark consists of 7481 training images and 7518 test images, comprising a total of 80.256 labeled objects. All images are color and saved as png. For evaluation, we compute precision-recall curves for object detection and orientation-similarity-recall curves for joint object detection and orientation estimation. In the latter case not only the object 2D bounding box has to be located correctly, but also the orientation estimate in bird's eye view is evaluated. To rank the methods we compute average precision and average orientation similiarity. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate object detection performance using the PASCAL criteria and object detection and orientation estimation performance using the measure discussed in our CVPR 2012 publication. For cars we require an overlap of 70%, while for pedestrians and cyclists we require an overlap of 50% for a detection. Detections in don't care areas or detections which are smaller than the minimum size do not count as false positive. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results. Note that for the hard evaluation ~2 % of the provided bounding boxes have not been recognized by humans, thereby upper bounding recall at 98 %. Hence, the hard evaluation is only given for reference.
Note 1: On 25.04.2017, we have fixed a bug in the object detection evaluation script. As of now, the submitted detections are filtered based on the min. bounding box height for the respective category which we have been done before only for the ground truth detections, thus leading to false positives for the category "Easy" when bounding boxes of height 25-39 Px were submitted (and to false positives for all categories if bounding boxes smaller than 25 Px were submitted). We like to thank Amy Wu, Matt Wilder, Pekka Jänis and Philippe Vandermersch for their feedback. The last leaderboards right before the changes can be found here!

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 NFAF3D 96.20 % 96.78 % 93.26 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
2 VPFNet 96.15 % 96.64 % 91.14 % 0.06 s 2 cores @ 2.5 Ghz (Python)
3 ZEEWAIN-AI 96.14 % 95.22 % 88.94 % 0.3 s GPU @ 2.5 Ghz (Python)
4 Anonymous 96.12 % 98.74 % 91.12 % 0.1 s GPU @ 2.5 Ghz (Python)
5 SFD 96.12 % 99.07 % 91.12 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
6 CLOCs code 96.07 % 96.77 % 91.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
7 CLOCs_PVCas code 95.96 % 96.76 % 91.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
8 PE-RCVN 95.94 % 96.90 % 90.98 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
9 CityBrainLab 95.94 % 98.58 % 90.92 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
10 Anonymous 95.91 % 96.55 % 92.86 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
11 EA-M-RCNN(BorderAtt) 95.88 % 96.68 % 90.89 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
12 sfd 95.86 % 98.93 % 90.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
13 NFAF3D-light 95.79 % 96.69 % 92.75 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
14 SECOND 95.79 % 96.44 % 90.55 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
15 DFNet-V 95.77 % 96.60 % 90.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
16 Fast-CLOCs 95.75 % 96.69 % 90.95 % 0.1 s GPU @ 2.5 Ghz (Python)
17 BANet code 95.61 % 98.75 % 90.64 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: Boundary-Aware 3D Object Detection from Point Clouds. 2021.
18 SE-SSD
This method makes use of Velodyne laser scans.
code 95.60 % 96.69 % 90.53 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
19 JPVNet 95.52 % 96.41 % 90.72 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
20 Anonymous 95.50 % 98.36 % 90.63 % 0.1s 1 core @ 2.5 Ghz (C/C++)
21 DFNet-PV 95.49 % 96.42 % 92.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
22 SPANet 95.46 % 96.54 % 90.47 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
23 ISE-RCNN-PV 95.46 % 96.20 % 92.88 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
24 ISE-RCNN 95.43 % 96.38 % 92.82 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
25 PLNL-3DSSD
This method makes use of Velodyne laser scans.
95.38 % 96.37 % 90.31 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
26 SPG_mini
This method makes use of Velodyne laser scans.
95.32 % 96.23 % 92.68 % 0.09 s GPU @ 2.5 Ghz (Python)
27 TBD 95.29 % 96.17 % 90.56 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
28 PC-CNN-V2
This method makes use of Velodyne laser scans.
95.20 % 96.06 % 89.37 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
29 VPFNet code 95.17 % 96.06 % 92.66 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
30 F-PointNet
This method makes use of Velodyne laser scans.
code 95.17 % 95.85 % 85.42 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
31 EPNet++ 95.17 % 96.73 % 92.10 % 0.1 s GPU @ 2.5 Ghz (Python)
32 SA-SSD code 95.16 % 97.92 % 90.15 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
33 Pyramid R-CNN 95.13 % 95.88 % 92.62 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
34 Voxel R-CNN code 95.11 % 96.49 % 92.45 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
35 TBD 95.10 % 96.48 % 92.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
36 3DSSD code 95.10 % 97.69 % 92.18 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
37 3DIoU++ 95.06 % 96.37 % 90.52 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
38 PV-RCNN-v2 95.05 % 96.08 % 92.42 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
39 MVRA + I-FRCNN+ 94.98 % 95.87 % 82.52 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
40 SIENet code 94.97 % 96.02 % 92.40 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
41 VueronNet code 94.97 % 97.85 % 89.68 % 0.06 s 1 core @ 2.0 Ghz (Python)
42 DGDNH 94.95 % 96.11 % 92.35 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
43 VoTr-TSD 94.94 % 95.97 % 92.44 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
44 CSVoxel-RCNN 94.91 % 96.33 % 92.11 % 0.03 s GPU @ 1.0 Ghz (Python)
45 FrustumRCNN 94.90 % 95.98 % 92.39 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
46 M3DeTR code 94.83 % 97.39 % 92.10 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
47 StructuralIF 94.81 % 96.14 % 92.12 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
48 E^2-PV-RCNN 94.80 % 95.95 % 92.26 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
49 SRIF-RCNN 94.79 % 95.63 % 92.35 % 0.0947 s 1 core @ 2.5 Ghz (C/C++)
50 ST-RCNN
This method makes use of Velodyne laser scans.
94.79 % 98.06 % 92.12 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
51 ST-RCNN (SNLW-RCNN)
This method makes use of Velodyne laser scans.
code 94.79 % 98.06 % 92.12 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
52 TPCG 94.78 % 95.96 % 92.25 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
53 VCRCNN 94.77 % 96.06 % 92.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
54 XView 94.77 % 95.89 % 92.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
55 SCIR-Net
This method makes use of Velodyne laser scans.
94.76 % 96.15 % 91.99 % 0.03 s GPU @ 2.5 Ghz (Python + C/C++)
56 MSG-PGNN 94.75 % 95.86 % 92.16 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
57 P2V-RCNN 94.73 % 96.03 % 92.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
58 SARFE 94.73 % 95.94 % 92.12 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
59 FusionDetv2-v4 94.73 % 95.94 % 92.00 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
60 Generalized-SIENet 94.72 % 95.76 % 92.19 % 0.08 s 1 core @ 2.5 Ghz (Python)
61 SqueezeRCNN 94.72 % 96.02 % 92.12 % 0.08 s 1 core @ 2.5 Ghz (Python)
62 SPG
This method makes use of Velodyne laser scans.
code 94.71 % 97.80 % 92.19 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
63 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 94.70 % 98.17 % 92.04 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
64 3DIoU_v2 94.70 % 96.15 % 92.37 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
65 HyBrid Feature Det 94.69 % 95.89 % 92.11 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
66 PC-RGNN 94.68 % 95.80 % 92.20 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
67 DDet 94.66 % 95.82 % 92.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
68 LZY_RCNN 94.65 % 95.81 % 92.08 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
69 FusionDetv2-v3 94.64 % 96.16 % 91.94 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
70 TransCyclistNet 94.64 % 96.08 % 92.10 % 0.08 s 1 core @ 2.5 Ghz (Python)
71 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 94.64 % 95.86 % 92.10 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
72 FSA-PVRCNN
This method makes use of Velodyne laser scans.
94.63 % 95.81 % 92.06 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
73 Fast VP-RCNN code 94.62 % 98.00 % 91.91 % 0.05 s 1 core @ 3.5 Ghz (C/C++)
74 DD3D code 94.62 % 95.32 % 89.89 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
75 TransDet3D 94.61 % 95.83 % 92.07 % 0.08 s 1 core @ 2.5 Ghz (Python)
76 RangeIoUDet
This method makes use of Velodyne laser scans.
94.61 % 95.74 % 91.98 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
77 Point Image Fusion 94.61 % 95.70 % 92.11 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
78 MSL3D 94.60 % 95.76 % 92.16 % 0.03 s GPU @ 2.5 Ghz (Python)
79 Multi-Sensor3D 94.60 % 95.76 % 92.16 % 0.03 s GPU @ 2.5 Ghz (Python)
80 ReFineNet 94.59 % 95.75 % 92.12 % 0.08 s 1 core @ 2.5 Ghz (Python)
81 SA-voxel-centernet code 94.59 % 95.80 % 92.05 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
82 DVFENet 94.57 % 95.35 % 91.77 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
83 WHUT-iou_ssd code 94.54 % 95.77 % 91.91 % 0.045s 1 core @ 2.5 Ghz (C/C++)
84 sa-voxel-centernet code 94.53 % 95.88 % 92.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
85 anonymous code 94.53 % 97.51 % 91.80 % 0.05s 1 core @ >3.5 Ghz (python)
86 FPC3D
This method makes use of the epipolar geometry.
94.52 % 96.06 % 91.72 % 33 s 1 core @ 2.5 Ghz (C/C++)
87 FPC-RCNN 94.51 % 96.15 % 91.80 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
88 TuSimple code 94.47 % 95.12 % 86.45 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
89 EPNet code 94.44 % 96.15 % 89.99 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
90 GNN-RCNN 94.44 % 95.85 % 91.96 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
91 SERCNN
This method makes use of Velodyne laser scans.
94.42 % 96.33 % 89.96 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
92 SAA-SECOND 94.39 % 95.67 % 91.63 % 38m s 1 core @ 2.5 Ghz (C/C++)
93 SVGA-Net
This method makes use of Velodyne laser scans.
94.28 % 95.69 % 91.73 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
94 UberATG-MMF
This method makes use of Velodyne laser scans.
94.25 % 97.41 % 89.87 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
95 SRDL
This method uses stereo information.
This method makes use of Velodyne laser scans.
94.24 % 95.86 % 91.80 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
96 FusionDetv1 94.23 % 95.84 % 91.80 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
97 FusionDetv2-v2 94.21 % 95.75 % 89.89 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
98 TBD 94.21 % 95.51 % 91.69 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
99 FPCR-CNN 94.13 % 95.95 % 91.20 % 0.05 s 1 core @ 2.5 Ghz (Python)
100 SAA-PV-RCNN 94.11 % 95.01 % 92.50 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
101 NV2P-RCNN 94.07 % 97.82 % 91.20 % 0.1 s GPU @ 2.5 Ghz (Python)
102 RangeRCNN
This method makes use of Velodyne laser scans.
94.03 % 95.48 % 91.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
103 VueronNet 94.03 % 96.70 % 87.58 % 0.08 s GPU @ 2.5 Ghz (Python)
104 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 93.99 % 95.81 % 91.72 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion. arXiv preprint arXiv:2011.01404 2020.
105 SIF 93.95 % 95.51 % 91.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
106 MGAF-3DSSD code 93.87 % 94.45 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
107 LPCG-Monoflex 93.86 % 96.90 % 83.94 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
108 MMLAB LIGA-Stereo
This method uses stereo information.
code 93.82 % 96.43 % 86.19 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
109 LIGA-Stereo-old
This method uses stereo information.
93.77 % 96.66 % 83.97 % 0.375 s Titan Xp
110 Associate-3Ddet_v2 93.77 % 96.83 % 88.57 % 0.04 s 1 core @ 2.5 Ghz (Python)
111 Patches - EMP
This method makes use of Velodyne laser scans.
93.75 % 97.91 % 90.56 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
112 CIA-SSD
This method makes use of Velodyne laser scans.
code 93.72 % 96.87 % 86.20 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
113 XView-PartA^2 93.71 % 95.42 % 91.26 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
114 HIKVISION-ADLab-HZ 93.69 % 96.70 % 88.66 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
115 QD-3DT
This is an online method (no batch processing).
code 93.66 % 94.26 % 83.63 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
116 MVAF-Net code 93.66 % 95.37 % 90.90 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
117 TBD 93.64 % 95.31 % 91.21 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
118 FusionDetv2-v5 93.61 % 95.33 % 89.22 % 0.05 s 1 core @ 2.5 Ghz (Java + C/C++)
119 KpNet 93.60 % 96.76 % 85.98 % 0.42 s 1 core @ 2.5 Ghz (C/C++)
120 KpNet 93.60 % 96.74 % 85.97 % 42 s 1 core @ 2.5 Ghz (C/C++)
121 AM-SSD 93.58 % 96.78 % 90.61 % 0.04 s 1 core @ 2.5 Ghz (Python)
122 VPV 93.57 % 96.46 % 88.58 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
123 IA-SSD (multi) 93.56 % 96.10 % 90.68 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
124 MonoPair 93.55 % 96.61 % 83.55 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
125 IA-SSD (single) 93.54 % 96.26 % 88.49 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
126 EBM3DOD code 93.54 % 96.81 % 88.33 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
127 CM3DV 93.53 % 96.79 % 88.35 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
128 Deep MANTA 93.50 % 98.89 % 83.21 % 0.7 s GPU @ 2.5 Ghz (Python + C/C++)
F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau: Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. CVPR 2017.
129 Point-GNN
This method makes use of Velodyne laser scans.
code 93.50 % 96.58 % 88.35 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
130 Seg-RCNN code 93.49 % 96.74 % 88.10 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
131 BtcDet
This method makes use of Velodyne laser scans.
93.47 % 96.23 % 88.55 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
132 Struc info fusion II 93.45 % 96.72 % 88.31 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
133 EBM3DOD baseline code 93.45 % 96.72 % 88.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
134 PPAF
This method makes use of Velodyne laser scans.
93.43 % 96.52 % 90.71 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
135 RRC code 93.40 % 95.68 % 87.37 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
136 DGIST MT-CNN 93.39 % 95.16 % 85.50 % 0.09 s GPU @ 1.0 Ghz (Python)
137 Sem-Aug v1 code 93.39 % 96.39 % 90.70 % 0.04 s GPU @ 3.5 Ghz (Python)
138 TBD 93.38 % 94.17 % 88.39 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
139 3D-CVF at SPA
This method makes use of Velodyne laser scans.
93.36 % 96.78 % 86.11 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
140 TBD 93.33 % 96.02 % 90.50 % TBD GPU @ 2.5 Ghz (Python + C/C++)
141 Struc info fusion I 93.31 % 96.59 % 88.23 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
142 VPN 93.30 % 96.19 % 88.30 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
143 RoIFusion code 93.30 % 96.30 % 88.22 % 0.22 s 1 core @ 3.0 Ghz (Python)
144 CityBrainLab-CT3D code 93.30 % 96.28 % 90.58 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
145 STD code 93.22 % 96.14 % 90.53 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
146 SARPNET 93.21 % 96.07 % 88.09 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
147 demo 93.21 % 96.16 % 90.23 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
148 H^23D R-CNN code 93.20 % 96.20 % 90.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
149 Fast Point R-CNN
This method makes use of Velodyne laser scans.
93.18 % 96.13 % 87.68 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
150 ASCNet 93.17 % 96.09 % 90.43 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
151 VCT 93.17 % 96.31 % 90.52 % 0.2 s 1 core @ 2.5 Ghz (Python)
152 sensekitti code 93.17 % 94.79 % 84.38 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
153 Sem-Aug-PointRCNN code 93.17 % 95.78 % 88.35 % 0.1 s GPU @ 3.5 Ghz (C/C++)
154 MVOD 93.16 % 96.17 % 92.56 % 0.16 s 1 core @ 2.5 Ghz (C/C++)
155 MBDF-Net 93.15 % 96.26 % 90.25 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
156 SJTU-HW 93.11 % 96.30 % 82.21 % 0.85s GPU @ 1.5 Ghz (Python + C/C++)
S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION EMBEDDED DETECTOR. IEEE International Conference on Image Processing 2018.
L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications 2018.
157 KAIST-VDCLab 93.08 % 96.27 % 85.66 % 0.04 s 1 core @ 2.5 Ghz (Python)
158 SGNet 93.08 % 96.43 % 90.53 % 0.09 s GPU @ 2.5 Ghz (Python)
159 FromVoxelToPoint code 93.06 % 96.08 % 90.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
160 HVPR 93.04 % 95.91 % 87.88 % 0.02 s GPU @ 2.5 Ghz (Python)
161 CLOCs_SecCas 92.95 % 95.43 % 89.21 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
162 MBDF-Net-1 92.85 % 95.98 % 89.91 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
163 YF 92.85 % 96.04 % 89.96 % 0.04 s GPU @ 2.5 Ghz (C/C++)
164 FPGNN 92.83 % 96.26 % 87.69 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
165 HotSpotNet 92.81 % 96.21 % 89.80 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
166 DPointNet 92.77 % 95.55 % 89.63 % 0.07s 1 core @ 2.5 Ghz (C/C++)
167 SegVoxelNet 92.73 % 96.00 % 87.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
168 Patches
This method makes use of Velodyne laser scans.
92.72 % 96.34 % 87.63 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
169 CenterNet3D 92.69 % 95.76 % 89.81 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
170 R-GCN 92.67 % 96.19 % 87.66 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
171 TBD 92.66 % 95.60 % 90.55 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
172 PI-RCNN 92.66 % 96.17 % 87.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
173 PointPainting
This method makes use of Velodyne laser scans.
92.58 % 98.39 % 89.71 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
174 DASS 92.53 % 96.23 % 87.75 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
175 NV-RCNN 92.51 % 95.86 % 89.95 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
176 3D IoU-Net 92.47 % 96.31 % 87.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
177 Associate-3Ddet code 92.45 % 95.61 % 87.32 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
178 S-AT GCN 92.44 % 95.06 % 90.78 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
179 3D-VDNet 92.35 % 95.42 % 89.37 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
180 PointRGCN 92.33 % 97.51 % 87.07 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
181 CVFNet 92.27 % 95.61 % 88.75 % 28.1ms 1 core @ 2.5 Ghz (Python)
182 CCFNET 92.25 % 95.85 % 89.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
183 LSNet 92.23 % 96.06 % 87.35 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
184 F-ConvNet
This method makes use of Velodyne laser scans.
code 92.19 % 95.85 % 80.09 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
185 PFF3D
This method makes use of Velodyne laser scans.
code 92.15 % 95.37 % 87.54 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
186 SDP+RPN 92.03 % 95.16 % 79.16 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
187 RangeDet code 92.03 % 95.20 % 87.14 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
188 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 92.00 % 95.88 % 86.98 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
189 VGCN 91.97 % 94.91 % 89.34 % 0.09 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
190 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 91.90 % 95.92 % 87.11 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
191 MKFFNet 91.88 % 95.29 % 89.21 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
192 AutoAlign 91.87 % 95.15 % 89.21 % 0.1 s 1 core @ 2.5 Ghz (Python)
193 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 91.86 % 95.03 % 89.06 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
194 weakm3d 91.81 % 94.51 % 85.35 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
195 epBRM
This method makes use of Velodyne laser scans.
code 91.77 % 94.59 % 88.45 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
196 C-GCN 91.73 % 95.64 % 86.37 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
197 ITVD code 91.73 % 95.85 % 79.31 % 0.3 s GPU @ 2.5 Ghz (C/C++)
Y. Wei Liu: Improving Tiny Vehicle Detection in Complex Scenes. IEEE International Conference on Multimedia and Expo (ICME) 2018.
198 sscl-20p 91.71 % 97.14 % 88.72 % 0.02 s 1 core @ 2.5 Ghz (Python)
199 SINet+ code 91.67 % 94.17 % 78.60 % 0.3 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
200 HS3D code 91.62 % 95.51 % 86.94 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
201 VOXEL_3D 91.61 % 94.50 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
202 mono3d 91.60 % 94.60 % 84.86 % 0.03 s GPU @ 2.5 Ghz (Python)
203 Cascade MS-CNN code 91.60 % 94.26 % 78.84 % 0.25 s GPU @ 2.5 Ghz (C/C++)
Z. Cai and N. Vasconcelos: Cascade R-CNN: High Quality Object Detection and Instance Segmentation. arXiv preprint arXiv:1906.09756 2019.
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A unified multi-scale deep convolutional neural network for fast object detection. European conference on computer vision 2016.
204 MKFFNet 91.54 % 95.32 % 89.02 % 0.01s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
205 MKFFNet 91.51 % 95.19 % 89.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
206 CA3D 91.48 % 95.19 % 82.01 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
207 PointRGBNet 91.48 % 95.40 % 86.50 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
208 MAFF-Net(DAF-Pillar) 91.46 % 94.38 % 83.89 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
209 AIMC-RUC 91.45 % 96.94 % 86.28 % 0.11 s 1 core @ 2.5 Ghz (Python)
210 HRI-VoxelFPN 91.44 % 96.65 % 86.18 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
211 FPC3D_all
This method makes use of Velodyne laser scans.
91.42 % 95.52 % 86.76 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
212 EgoNet code 91.39 % 96.18 % 81.33 % 0.1 s GPU @ 1.5 Ghz (Python)
S. Li, Z. Yan, H. Li and K. Cheng: Exploring intermediate representation for monocular vehicle pose estimation. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
213 HNet-3DSSD
This method makes use of Velodyne laser scans.
code 91.35 % 94.91 % 87.47 % 0.05 s GPU @ 2.5 Ghz (Python)
214 SC(DLA34)
This method uses stereo information.
91.27 % 96.61 % 83.50 % 0.04 s GPU @ 2.5 Ghz (Python)
215 GAA 91.20 % 94.50 % 82.97 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
216 PointPillars
This method makes use of Velodyne laser scans.
code 91.19 % 94.00 % 88.17 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
217 LTN 91.18 % 94.68 % 81.51 % 0.4 s GPU @ >3.5 Ghz (Python)
T. Wang, X. He, Y. Cai and G. Xiao: Learning a Layout Transfer Network for Context Aware Object Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
218 WS3D
This method makes use of Velodyne laser scans.
91.15 % 95.13 % 86.52 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
219 KM3D code 91.07 % 96.44 % 81.19 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
220 Geo3D 91.04 % 94.28 % 78.91 % 0.04 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
221 FII-CenterNet 91.03 % 94.48 % 83.00 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
222 Aston-EAS 91.02 % 93.91 % 77.93 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.
223 MonoFlex 91.02 % 96.01 % 83.38 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
224 SCSTSV-MonoFlex 90.99 % 96.44 % 81.16 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
225 ARPNET 90.99 % 94.00 % 83.49 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
226 GA-Aug 90.92 % 93.93 % 83.03 % 0.04 s GPU @ 2.5 Ghz (Python)
227 MonoEF code 90.88 % 96.32 % 83.27 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
228 PatchNet code 90.87 % 93.82 % 79.62 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
229 MV3D
This method makes use of Velodyne laser scans.
90.83 % 96.47 % 78.63 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
230 monodle code 90.81 % 93.83 % 80.93 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
231 3D IoU Loss
This method makes use of Velodyne laser scans.
90.79 % 95.92 % 85.65 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
232 SINet_VGG code 90.79 % 93.59 % 77.53 % 0.2 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
233 APL-Second 90.70 % 95.82 % 85.51 % 0.05 s 1 core @ 2.5 Ghz (Python)
234 vadin-TBD 90.69 % 95.92 % 80.91 % 0.04 s 1 core @ 2.5 Ghz (Python)
235 TANet code 90.67 % 93.67 % 85.31 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
236 NF2 90.62 % 94.14 % 81.30 % 0.1 s GPU @ 2.5 Ghz (Python)
237 MonoCInIS 90.60 % 96.05 % 82.43 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
238 MonoFlex 90.52 % 95.59 % 83.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
239 FADNet code 90.49 % 96.15 % 80.71 % 0.04 s GPU @ >3.5 Ghz (Python)
240 CG-Stereo
This method uses stereo information.
90.38 % 96.31 % 82.80 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
241 SCNet
This method makes use of Velodyne laser scans.
90.30 % 95.59 % 85.09 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
242 Deep3DBox 90.19 % 94.71 % 76.82 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
243 FQNet 90.17 % 94.72 % 76.78 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
244 MonoGeo 90.14 % 95.11 % 80.19 % 0.05 s 1 core @ 2.5 Ghz (Python)
245 DeepStereoOP 90.06 % 95.15 % 79.91 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
246 SubCNN 89.98 % 94.26 % 79.78 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
247 MLOD
This method makes use of Velodyne laser scans.
code 89.97 % 94.88 % 84.98 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
248 GPP code 89.96 % 94.02 % 81.13 % 0.23 s GPU @ 1.5 Ghz (Python + C/C++)
A. Rangesh and M. Trivedi: Ground plane polling for 6dof pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles 2020.
249 LCA 89.94 % 93.40 % 82.76 % 0.05 s 1 core @ 2.5 Ghz (Python)
250 AVOD
This method makes use of Velodyne laser scans.
code 89.88 % 95.17 % 82.83 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
251 SINet_PVA code 89.86 % 92.72 % 76.47 % 0.11 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
252 Digging_M3D 89.77 % 93.73 % 79.68 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
253 3DOP
This method uses stereo information.
code 89.55 % 92.96 % 79.38 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
254 IAFA 89.46 % 93.08 % 79.83 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
255 Mono3D code 89.37 % 94.52 % 79.15 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
256 4d-MSCNN
This method uses stereo information.
code 89.37 % 92.40 % 77.00 % 0.3 min GPU @ 3.0 Ghz (Matlab + C/C++)
P. Ferraz, B. Oliveira, F. Ferreira, C. Silva Martins and others: Three-stage RGBD architecture for vehicle and pedestrian detection using convolutional neural networks and stereo vision. IET Intelligent Transport Systems 2020.
257 MonoDDE 89.19 % 96.76 % 81.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
258 PPTrans 89.17 % 95.17 % 81.77 % 0.2 s GPU @ 2.5 Ghz (Python)
259 FusionDetv2-v1 89.10 % 94.82 % 84.28 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
260 M3DSSD++ 89.06 % 94.94 % 77.17 % 0.16s 1 core @ 2.5 Ghz (C/C++)
261 GAC3D++ 88.93 % 94.23 % 79.09 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
262 AVOD-FPN
This method makes use of Velodyne laser scans.
code 88.92 % 94.70 % 84.13 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
263 Keypoint-3D 88.87 % 93.31 % 76.10 % 14 s 1 core @ 2.5 Ghz (C/C++)
264 PCT code 88.78 % 96.45 % 78.85 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
265 FusionDetv2-baseline 88.76 % 94.28 % 85.65 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
266 AM3D 88.71 % 92.55 % 77.78 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
267 EACV 88.70 % 94.51 % 81.15 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
268 MS-CNN code 88.68 % 93.87 % 76.11 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
269 MonoPSR code 88.50 % 93.63 % 73.36 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
270 BFF 88.49 % 90.84 % 78.84 % 8.4 s 4 cores @ 1.5 Ghz (Python)
271 Shift R-CNN (mono) code 88.48 % 94.07 % 78.34 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
272 RCD 88.46 % 92.52 % 83.73 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
273 MM-MRFC
This method uses optical flow information.
This method makes use of Velodyne laser scans.
88.46 % 95.54 % 78.14 % 0.05 s GPU @ 2.5 Ghz (C/C++)
A. Costea, R. Varga and S. Nedevschi: Fast Boosting based Detection using Scale Invariant Multimodal Multiresolution Filtered Features. CVPR 2017.
274 CMKD 88.41 % 95.28 % 81.68 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
275 deleted 88.38 % 96.52 % 81.01 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
276 MonoLCD 88.33 % 93.74 % 78.59 % 0.04 s 1 core @ 2.5 Ghz (Python)
277 3DBN
This method makes use of Velodyne laser scans.
88.29 % 93.74 % 80.74 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
278 MonoCon 88.22 % 93.59 % 76.18 % 0.02 s GPU @ 2.5 Ghz (Python)
279 MonoCInIS 88.16 % 96.22 % 75.72 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
280 MonoRUn code 87.91 % 95.48 % 78.10 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
281 Object Transformer 87.67 % 93.33 % 79.98 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
282 SMOKE code 87.51 % 93.21 % 77.66 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
283 CDN
This method uses stereo information.
code 87.19 % 95.85 % 79.43 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
284 EG_DETR 87.10 % 93.04 % 79.05 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
285 RTM3D code 86.93 % 91.82 % 77.41 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
286 MonoRCNN code 86.78 % 91.98 % 66.97 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
287 BirdNet+
This method makes use of Velodyne laser scans.
code 86.73 % 92.61 % 81.80 % 0.11 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
288 MP-Mono 86.54 % 90.66 % 65.72 % 0.16 s GPU @ 2.5 Ghz (Python)
289 GUPNet code 86.45 % 94.15 % 74.18 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
290 DSGN
This method uses stereo information.
code 86.43 % 95.53 % 78.75 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
291 Stereo R-CNN
This method uses stereo information.
code 85.98 % 93.98 % 71.25 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
292 StereoFENet
This method uses stereo information.
85.70 % 91.48 % 77.62 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
293 PLDet3d 85.51 % 88.65 % 77.30 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
294 ResNet-RRC_Car 85.33 % 91.45 % 74.27 % 0.06 s GPU @ 1.5 Ghz (Python + C/C++)
H. Jeon and others: High-Speed Car Detection Using ResNet- Based Recurrent Rolling Convolution. Proceedings of the IEEE conference on systems, man, and cybernetics 2018.
295 AEC3D 85.22 % 90.74 % 80.82 % 18 ms GPU @ 2.5 Ghz (Python)
296 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 85.15 % 94.95 % 77.78 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
297 M3D-RPN code 85.08 % 89.04 % 69.26 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
298 CDN-PL++
This method uses stereo information.
85.01 % 94.66 % 77.60 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
299 SDP+CRC (ft) 85.00 % 92.06 % 71.71 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
300 LPCG-M3D 84.95 % 87.35 % 77.05 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
301 SS3D 84.92 % 92.72 % 70.35 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
302 VN3D 84.80 % 90.73 % 78.41 % 0.02 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
303 ZongmuMono3d code 84.64 % 93.06 % 75.29 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
304 MonoFENet 84.63 % 91.68 % 76.71 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
305 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
84.39 % 93.08 % 79.27 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
306 Complexer-YOLO
This method makes use of Velodyne laser scans.
84.16 % 91.92 % 79.62 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
307 ZoomNet
This method uses stereo information.
code 83.92 % 94.22 % 69.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
308 OSE+ 83.92 % 95.20 % 76.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
309 D4LCN code 83.67 % 90.34 % 65.33 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
310 Deprecated 83.39 % 89.00 % 64.29 % Deprecated Deprecated
311 DA-Mono3D 83.36 % 88.94 % 64.23 % 0.09s 1 core @ 2.5 Ghz (C/C++)
312 Faster R-CNN code 83.16 % 88.97 % 72.62 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
313 MM 82.99 % 93.44 % 73.29 % 1 s 1 core @ 2.5 Ghz (C/C++)
314 Pseudo-LiDAR++
This method uses stereo information.
code 82.90 % 94.46 % 75.45 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
315 Disp R-CNN
This method uses stereo information.
code 82.86 % 93.64 % 68.33 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
316 BS3D 82.72 % 95.35 % 70.01 % 22 ms Titan Xp
N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler: Beyond Bounding Boxes: Using Bounding Shapes for Real-Time 3D Vehicle Detection from Monocular RGB Images. 2019 IEEE Intelligent Vehicles Symposium (IV) 2019.
317 Disp R-CNN (velo)
This method uses stereo information.
code 82.64 % 93.45 % 70.45 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
318 vadin-TBD2 code 82.54 % 92.81 % 72.80 % 0.20 s 1 core @ 2.5 Ghz (Python)
319 YOLOStereo3D
This method uses stereo information.
code 82.15 % 94.81 % 62.17 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
320 Ground-Aware code 82.05 % 92.33 % 62.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
321 FRCNN+Or code 82.00 % 92.91 % 68.79 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
322 SwinMono3D 81.71 % 91.99 % 61.78 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
323 DDMP-3D 81.70 % 91.15 % 63.12 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
324 ITS-MDPL 81.56 % 92.61 % 74.23 % 0.16 s GPU @ 2.5 Ghz (Python)
325 A3DODWTDA (image) code 81.25 % 78.96 % 70.56 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
326 SOD 81.18 % 94.24 % 66.44 % 0.1 s 1 core @ 2.5 Ghz (Python)
327 none 81.07 % 91.14 % 68.85 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
328 RefineNet 81.01 % 91.91 % 65.67 % 0.20 s GPU @ 2.5 Ghz (Matlab + C++)
R. Rajaram, E. Bar and M. Trivedi: RefineNet: Refining Object Detectors for Autonomous Driving. IEEE Transactions on Intelligent Vehicles 2016.
R. Rajaram, E. Bar and M. Trivedi: RefineNet: Iterative Refinement for Accurate Object Localization. Intelligent Transportation Systems Conference 2016.
329 K3D 80.86 % 93.58 % 71.18 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
330 CaDDN code 80.73 % 93.61 % 71.09 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
331 PGD-FCOS3D code 80.58 % 92.04 % 69.67 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning 2021.
332 GrooMeD-NMS code 80.28 % 90.14 % 63.78 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
333 3D-GCK 80.19 % 89.55 % 68.08 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
334 COF3D 80.16 % 87.85 % 61.97 % 200 s 1 core @ 2.5 Ghz (Python + C/C++)
335 KMC code 79.99 % 89.71 % 73.33 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
336 RelationNet3D_dla34 code 79.78 % 83.69 % 69.35 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
337 Lite-FPN 79.65 % 87.04 % 65.56 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
338 YoloMono3D code 79.63 % 92.37 % 59.69 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
339 E2E-DA 79.40 % 92.12 % 69.52 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
340 A3DODWTDA
This method makes use of Velodyne laser scans.
code 79.15 % 82.98 % 68.30 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
341 ImVoxelNet code 79.09 % 89.80 % 69.45 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
342 DFR-Net 78.81 % 90.13 % 60.40 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
343 spLBP 78.66 % 81.66 % 61.69 % 1.5 s 8 cores @ 2.5 Ghz (Matlab + C/C++)
Q. Hu, S. Paisitkriangkrai, C. Shen, A. Hengel and F. Porikli: Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework. IEEE Trans. Intelligent Transportation Systems 2016.
344 MonoHMOO 78.21 % 92.33 % 61.58 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
345 E2E-DA-Lite (Res18) 78.21 % 90.79 % 66.16 % 0.01 s GPU @ 2.5 Ghz (Python)
346 3D-SSMFCNN code 78.19 % 77.92 % 69.19 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
347 MonoGRNet code 77.94 % 88.65 % 63.31 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
348 Aug3D-RPN 77.88 % 85.57 % 61.16 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
349 AutoShape code 77.66 % 86.51 % 64.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
350 Reinspect code 77.48 % 90.27 % 66.73 % 2s 1 core @ 2.5 Ghz (C/C++)
R. Stewart, M. Andriluka and A. Ng: End-to-End People Detection in Crowded Scenes. CVPR 2016.
351 multi-task CNN 77.18 % 86.12 % 68.09 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
352 Regionlets 76.99 % 88.75 % 60.49 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
353 3DVP code 76.98 % 84.95 % 65.78 % 40 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Data-Driven 3D Voxel Patterns for Object Category Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2015.
354 RelationNet3D_res18 code 76.96 % 87.14 % 67.49 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
355 AutoShape 76.82 % 83.75 % 63.71 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
356 Mobile Stereo R-CNN
This method uses stereo information.
76.73 % 90.08 % 62.23 % 1.8 s NVIDIA Jetson TX2
357 RelationNet3D 76.62 % 81.36 % 68.48 % 0.04 s GPU @ 2.5 Ghz (Python)
358 ICCV 76.45 % 85.48 % 65.52 % 0.04 s GPU @ 2.5 Ghz (Python)
359 SubCat code 76.36 % 84.10 % 60.56 % 0.7 s 6 cores @ 3.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
360 GS3D 76.35 % 86.23 % 62.67 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
361 AOG code 76.24 % 86.08 % 61.51 % 3 s 4 cores @ 2.5 Ghz (Matlab)
T. Wu, B. Li and S. Zhu: Learning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation. TPAMI 2016.
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
362 Pose-RCNN 75.83 % 89.59 % 64.06 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
363 3D FCN
This method makes use of Velodyne laser scans.
74.65 % 86.74 % 67.85 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
364 OC Stereo
This method uses stereo information.
code 74.60 % 87.39 % 62.56 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
365 MAOLoss code 73.79 % 89.31 % 63.59 % 0.05 s 1 core @ 2.5 Ghz (Python)
366 NCL code 71.91 % 64.71 % 71.78 % NA s 1 core @ 2.5 Ghz (Python)
367 Kinematic3D code 71.73 % 89.67 % 54.97 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
368 AOG-View 71.26 % 85.01 % 55.73 % 3 s 1 core @ 2.5 Ghz (Matlab, C/C++)
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
369 BEVC 70.93 % 79.97 % 64.46 % 35ms GPU @ 1.5 Ghz (Python)
370 GAC3D 70.73 % 83.30 % 52.23 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
371 MV-RGBD-RF
This method makes use of Velodyne laser scans.
70.70 % 77.89 % 57.41 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
372 Vote3Deep
This method makes use of Velodyne laser scans.
70.30 % 78.95 % 63.12 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
373 ROI-10D 70.16 % 76.56 % 61.15 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
374 RetinaMono 69.83 % 74.54 % 60.95 % 0.02 s 1 core @ 2.5 Ghz (Python)
375 RetinaMono code 69.01 % 75.18 % 58.98 % 0.02 s 1 core @ 2.5 Ghz (Python)
376 TBD 68.30 % 88.62 % 59.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
377 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 68.05 % 92.10 % 65.61 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
378 Decoupled-3D 67.92 % 87.78 % 54.53 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
379 SparVox3D 67.88 % 83.76 % 52.56 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
380 MDSNet 67.79 % 90.97 % 53.39 % 0.07 s 1 core @ 2.5 Ghz (Python)
381 Pseudo-Lidar
This method uses stereo information.
code 67.79 % 85.40 % 58.50 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
382 OC-DPM 67.06 % 79.07 % 52.61 % 10 s 8 cores @ 2.5 Ghz (Matlab)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
383 DPM-VOC+VP 66.72 % 82.15 % 49.01 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
384 BdCost48LDCF code 66.63 % 81.38 % 52.20 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
385 RefinedMPL 65.24 % 88.29 % 53.20 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
386 MDPM-un-BB 64.06 % 79.74 % 49.07 % 60 s 4 core @ 2.5 Ghz (MATLAB)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
387 Y4 code 63.60 % 81.79 % 56.20 % 0.03 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
388 TLNet (Stereo)
This method uses stereo information.
code 63.53 % 76.92 % 54.58 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
389 PDV-Subcat 63.24 % 78.27 % 47.67 % 7 s 1 core @ 2.5 Ghz (C/C++)
J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential statistic feature for pedestrian and face detection . Pattern Recognition 2017.
390 MODet
This method makes use of Velodyne laser scans.
62.54 % 66.06 % 60.04 % 0.05 s GTX1080Ti
Y. Zhang, Z. Xiang, C. Qiao and S. Chen: Accurate and Real-Time Object Detection Based on Bird's Eye View on 3D Point Clouds. 2019 International Conference on 3D Vision (3DV) 2019.
391 Graph-NMS 61.93 % 78.55 % 53.72 % 36 ms GPU @ 2.5 Ghz (Python)
392 SubCat48LDCF code 61.16 % 78.86 % 44.69 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
393 DPM-C8B1
This method uses stereo information.
60.21 % 75.24 % 44.73 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
394 FPIOD
This method makes use of Velodyne laser scans.
code 60.04 % 78.81 % 50.13 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
395 SAMME48LDCF code 58.38 % 77.47 % 44.43 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
396 LSVM-MDPM-sv 58.36 % 71.11 % 43.22 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
397 BirdNet
This method makes use of Velodyne laser scans.
57.12 % 79.30 % 55.16 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
398 ACF-SC 56.60 % 69.90 % 43.61 % <0.3 s 1 core @ >3.5 Ghz (Matlab + C/C++)
C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding System using Context-Aware Object Detection. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2015.
399 LSVM-MDPM-us code 55.95 % 68.94 % 41.45 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
400 ACF 54.09 % 63.05 % 41.81 % 0.2 s 1 core @ >3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
P. Doll\'ar: Piotr's Image and Video Matlab Toolbox (PMT). .
401 Mono3D_PLiDAR code 53.36 % 80.85 % 44.80 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
402 Graph-NMS-baseline 52.92 % 76.21 % 43.38 % 47 ms GPU @ 2.5 Ghz (Python)
403 RT3D-GMP
This method uses stereo information.
51.95 % 62.41 % 39.14 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
404 VeloFCN
This method makes use of Velodyne laser scans.
51.82 % 70.53 % 45.70 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
405 Vote3D
This method makes use of Velodyne laser scans.
45.94 % 54.38 % 40.48 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
406 TopNet-HighRes
This method makes use of Velodyne laser scans.
45.85 % 58.04 % 41.11 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
407 RT3DStereo
This method uses stereo information.
45.81 % 56.53 % 37.63 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
408 Multimodal Detection
This method makes use of Velodyne laser scans.
code 45.46 % 63.91 % 37.25 % 0.06 s GPU @ 3.5 Ghz (Matlab + C/C++)
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes: Multimodal vehicle detection: fusing 3D- LIDAR and color camera data. Pattern Recognition Letters 2017.
409 RT3D
This method makes use of Velodyne laser scans.
39.69 % 50.33 % 40.04 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
410 R-AGNO-Net 36.55 % 49.87 % 35.20 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
411 VoxelJones code 36.31 % 43.89 % 34.16 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
412 CSoR
This method makes use of Velodyne laser scans.
code 21.66 % 31.52 % 17.99 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
413 mBoW
This method makes use of Velodyne laser scans.
21.59 % 35.22 % 16.89 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
414 DepthCN
This method makes use of Velodyne laser scans.
code 21.18 % 37.45 % 16.08 % 2.3 s GPU @ 3.5 Ghz (Matlab)
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes: DepthCN: vehicle detection using 3D- LIDAR and convnet. IEEE ITSC 2017.
415 YOLOv2 code 14.31 % 26.74 % 10.94 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
416 TopNet-UncEst
This method makes use of Velodyne laser scans.
6.24 % 7.24 % 5.42 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
417 TopNet-Retina
This method makes use of Velodyne laser scans.
5.00 % 6.82 % 4.52 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
418 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.01 % 0.00 % 0.01 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
419 LaserNet 0.00 % 0.00 % 0.00 % 12 ms GPU @ 2.5 Ghz (C/C++)
G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington: LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
420 TBD 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
421 TBD 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
422 Neighbor-Vote 0.00 % 0.00 % 0.00 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 VueronNet 80.75 % 89.91 % 76.56 % 0.08 s GPU @ 2.5 Ghz (Python)
2 F-PointNet
This method makes use of Velodyne laser scans.
code 80.13 % 89.83 % 75.05 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
3 NF2 79.59 % 88.28 % 75.47 % 0.1 s GPU @ 2.5 Ghz (Python)
4 DGIST MT-CNN 79.38 % 88.58 % 74.83 % 0.09 s GPU @ 1.0 Ghz (Python)
5 TuSimple code 78.40 % 88.87 % 73.66 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
6 ZEEWAIN-AI 78.20 % 88.46 % 73.35 % 0.3 s GPU @ 2.5 Ghz (Python)
7 RRC code 76.61 % 85.98 % 71.47 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
8 WSSN
This method makes use of Velodyne laser scans.
76.42 % 84.91 % 71.86 % 0.37 s GPU @ >3.5 Ghz (Python + C/C++)
Z. Guo, W. Liao, Y. Xiao, P. Veelaert and W. Philips: Weak Segmentation Supervised Deep Neural Networks for Pedestrian Detection. Pattern Recognition 2021.
9 ECP Faster R-CNN 76.25 % 85.96 % 70.55 % 0.25 s GPU @ 2.5 Ghz (Python)
M. Braun, S. Krebs, F. Flohr and D. Gavrila: The EuroCity Persons Dataset: A Novel Benchmark for Object Detection. CoRR 2018.
10 Aston-EAS 76.07 % 86.71 % 70.02 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.
11 MHN 75.99 % 87.21 % 69.50 % 0.39 s GPU @ 2.5 Ghz (Python)
J. Cao, Y. Pang, S. Zhao and X. Li: High-Level Semantic Networks for Multi- Scale Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2019.
12 FFNet code 75.81 % 87.17 % 69.86 % 1.07 s GPU @ 1.5 Ghz (Python)
C. Zhao, Y. Qian and M. Yang: Monocular Pedestrian Orientation Estimation Based on Deep 2D-3D Feedforward. Pattern Recognition 2019.
13 SJTU-HW 75.81 % 87.17 % 69.86 % 0.85s GPU @ 1.5 Ghz (Python + C/C++)
S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION EMBEDDED DETECTOR. IEEE International Conference on Image Processing 2018.
L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications 2018.
14 MS-CNN code 74.89 % 85.71 % 68.99 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
15 F-ConvNet
This method makes use of Velodyne laser scans.
code 72.91 % 83.63 % 67.18 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
16 GN 72.29 % 82.93 % 65.56 % 1 s GPU @ 2.5 Ghz (Matlab + C/C++)
S. Jung and K. Hong: Deep network aided by guiding network for pedestrian detection. Pattern Recognition Letters 2017.
17 SubCNN 72.27 % 84.88 % 66.82 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
18 VMVS
This method makes use of Velodyne laser scans.
71.82 % 82.80 % 66.85 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
19 IVA code 71.37 % 84.61 % 64.90 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection. ACCV 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015.
20 DD3D code 70.79 % 84.61 % 65.69 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
21 MM-MRFC
This method uses optical flow information.
This method makes use of Velodyne laser scans.
70.76 % 83.79 % 64.81 % 0.05 s GPU @ 2.5 Ghz (C/C++)
A. Costea, R. Varga and S. Nedevschi: Fast Boosting based Detection using Scale Invariant Multimodal Multiresolution Filtered Features. CVPR 2017.
22 SDP+RPN 70.42 % 82.07 % 65.09 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
23 3DOP
This method uses stereo information.
code 69.57 % 83.17 % 63.48 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
24 MonoPSR code 68.56 % 85.60 % 63.34 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
25 DeepStereoOP 68.46 % 83.00 % 63.35 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
26 sensekitti code 68.41 % 82.72 % 62.72 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
27 Frustum-PointPillars 67.51 % 76.80 % 63.81 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
28 FII-CenterNet 67.31 % 81.32 % 61.29 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
29 Mono3D code 67.29 % 80.30 % 62.23 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
30 Faster R-CNN code 66.24 % 79.97 % 61.09 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
31 VPFNet code 65.68 % 75.03 % 61.95 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
32 SDP+CRC (ft) 64.36 % 79.22 % 59.16 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
33 Pose-RCNN 63.54 % 80.07 % 57.02 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
34 ADLAB 63.25 % 70.86 % 60.52 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
35 CFM 62.84 % 74.76 % 56.06 % <2 s GPU @ 2.5 Ghz (Matlab + C/C++)
Q. Hu, P. Wang, C. Shen, A. Hengel and F. Porikli: Pushing the Limits of Deep CNNs for Pedestrian Detection. IEEE Transactions on Circuits and Systems for Video Technology 2017.
36 HIKVISION-AFree 62.78 % 73.95 % 60.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
37 PiFeNet 62.68 % 71.97 % 59.77 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
38 Fast-CLOCs 62.57 % 76.22 % 60.13 % 0.1 s GPU @ 2.5 Ghz (Python)
39 KAIST-VDCLab 62.35 % 79.37 % 57.42 % 0.04 s 1 core @ 2.5 Ghz (Python)
40 HotSpotNet 62.31 % 71.43 % 59.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
41 EACV 62.29 % 79.38 % 57.16 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
42 VCT 62.00 % 71.19 % 58.52 % 0.2 s 1 core @ 2.5 Ghz (Python)
43 GAA 61.92 % 77.67 % 56.56 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
44 P2V-RCNN 61.83 % 71.76 % 59.29 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
45 TBD 61.74 % 70.58 % 59.45 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
46 PE-RCVN 61.64 % 69.49 % 59.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
47 MonoPair 61.57 % 78.81 % 56.51 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
48 H^23D R-CNN 61.50 % 72.21 % 57.50 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
49 SAA-PV-RCNN 61.41 % 70.35 % 58.18 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
50 HIKVISION-ADLab-HZ 61.40 % 71.43 % 57.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
51 monodle code 61.29 % 78.66 % 56.18 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
52 RPN+BF code 61.22 % 77.06 % 55.22 % 0.6 s GPU @ 2.5 Ghz (Matlab + C/C++)
L. Zhang, L. Lin, X. Liang and K. He: Is Faster R-CNN Doing Well for Pedestrian Detection?. ECCV 2016.
53 EA-M-RCNN(BorderAtt) 61.06 % 73.07 % 56.86 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
54 ISE-RCNN-PV 61.06 % 70.59 % 57.26 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
55 Regionlets 60.83 % 73.79 % 54.72 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
56 GA-Aug 60.78 % 76.78 % 55.00 % 0.04 s GPU @ 2.5 Ghz (Python)
57 ISE-RCNN 60.70 % 69.41 % 58.49 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
58 3DSSD code 60.51 % 72.33 % 56.28 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
59 TBD 60.30 % 70.50 % 57.06 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
60 Generalized-SIENet 59.54 % 69.16 % 57.33 % 0.08 s 1 core @ 2.5 Ghz (Python)
61 VPN 59.48 % 70.97 % 55.29 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
62 AutoAlign 59.48 % 70.17 % 55.37 % 0.1 s 1 core @ 2.5 Ghz (Python)
63 Fast VP-RCNN code 59.32 % 69.51 % 56.66 % 0.05 s 1 core @ 3.5 Ghz (C/C++)
64 QD-3DT
This is an online method (no batch processing).
code 59.26 % 78.41 % 54.37 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
65 TANet code 59.07 % 69.90 % 56.44 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
66 anonymous code 59.04 % 69.62 % 56.45 % 0.05s 1 core @ >3.5 Ghz (python)
67 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 58.81 % 66.93 % 56.57 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
68 BFF 58.72 % 76.95 % 53.70 % 8.4 s 4 cores @ 1.5 Ghz (Python)
69 SRDL
This method uses stereo information.
This method makes use of Velodyne laser scans.
58.70 % 68.45 % 56.23 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
70 FusionDetv1 58.68 % 68.44 % 56.22 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
71 P2V_PCV1 58.59 % 68.62 % 56.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
72 EG_DETR 58.58 % 74.53 % 53.76 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
73 MSL3D 58.57 % 69.07 % 55.86 % 0.03 s GPU @ 2.5 Ghz (Python)
74 SA-voxel-centernet code 58.50 % 66.89 % 56.25 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
75 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 58.37 % 68.88 % 55.38 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
76 SCIR-Net
This method makes use of Velodyne laser scans.
58.37 % 68.18 % 55.78 % 0.03 s GPU @ 2.5 Ghz (Python + C/C++)
77 Point-GNN
This method makes use of Velodyne laser scans.
code 58.20 % 71.59 % 54.06 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
78 TPCG 58.17 % 67.39 % 55.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
79 XView-PartA^2 58.17 % 67.12 % 55.81 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
80 DeepParts 58.15 % 71.47 % 51.92 % ~1 s GPU @ 2.5 Ghz (Matlab)
Y. Tian, P. Luo, X. Wang and X. Tang: Deep Learning Strong Parts for Pedestrian Detection. ICCV 2015.
81 CompACT-Deep 58.14 % 70.93 % 52.29 % 1 s 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Cai, M. Saberian and N. Vasconcelos: Learning Complexity-Aware Cascades for Deep Pedestrian Detection. ICCV 2015.
82 EPNet++ 58.10 % 68.58 % 55.58 % 0.1 s GPU @ 2.5 Ghz (Python)
83 WHUT-iou_ssd code 58.03 % 66.60 % 55.82 % 0.045s 1 core @ 2.5 Ghz (C/C++)
84 E^2-PV-RCNN 58.01 % 67.39 % 55.77 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
85 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 57.96 % 68.78 % 54.01 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
86 Point Image Fusion 57.91 % 66.47 % 55.48 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
87 AVOD-FPN
This method makes use of Velodyne laser scans.
code 57.87 % 67.95 % 55.23 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
88 PPAF
This method makes use of Velodyne laser scans.
57.81 % 67.54 % 54.30 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
89 sa-voxel-centernet code 57.79 % 66.03 % 55.61 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
90 FSA-PVRCNN
This method makes use of Velodyne laser scans.
57.67 % 65.80 % 55.34 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
91 SVGA-Net
This method makes use of Velodyne laser scans.
57.57 % 67.48 % 55.11 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
92 TBD 57.56 % 66.43 % 55.21 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
93 FPC-RCNN 57.46 % 66.88 % 55.09 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
94 SGNet 57.36 % 65.93 % 53.82 % 0.09 s GPU @ 2.5 Ghz (Python)
95 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 57.35 % 67.88 % 54.42 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion. arXiv preprint arXiv:2011.01404 2020.
96 MVOD 57.33 % 66.72 % 54.31 % 0.16 s 1 core @ 2.5 Ghz (C/C++)
97 SIF 57.32 % 67.78 % 54.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
98 GNN-RCNN 57.32 % 66.78 % 55.77 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
99 FromVoxelToPoint code 57.26 % 68.26 % 54.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
100 SemanticVoxels 57.22 % 67.62 % 54.90 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
101 FPCR-CNN 57.14 % 66.59 % 54.43 % 0.05 s 1 core @ 2.5 Ghz (Python)
102 FusionDetv2-v3 56.93 % 65.96 % 54.73 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
103 IA-SSD (single) 56.87 % 66.69 % 54.68 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
104 DDet 56.81 % 65.02 % 54.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
105 FRCNN+Or code 56.68 % 71.64 % 51.53 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
106 FusionDetv2-v4 56.60 % 65.80 % 54.55 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
107 SARFE 56.56 % 66.10 % 54.15 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
108 FilteredICF 56.53 % 69.79 % 50.32 % ~ 2 s >8 cores @ 2.5 Ghz (Matlab + C/C++)
S. Zhang, R. Benenson and B. Schiele: Filtered Channel Features for Pedestrian Detection. CVPR 2015.
109 ARPNET 56.42 % 69.08 % 52.69 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
110 TBD 56.42 % 65.60 % 53.61 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
111 TBD 56.42 % 65.60 % 53.61 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
112 FusionDetv2-v5 56.40 % 65.17 % 53.89 % 0.05 s 1 core @ 2.5 Ghz (Java + C/C++)
113 MonoRUn code 56.40 % 73.05 % 51.40 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
114 MV-RGBD-RF
This method makes use of Velodyne laser scans.
56.18 % 72.99 % 49.72 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
115 TBD_IOU1 56.02 % 66.44 % 53.62 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
116 SAA-SECOND 55.95 % 65.50 % 52.88 % 38m s 1 core @ 2.5 Ghz (C/C++)
117 TBD_IOU 55.90 % 64.94 % 53.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
118 MGAF-3DSSD code 55.80 % 66.31 % 52.02 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
119 VCRCNN 55.66 % 64.59 % 53.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
120 GUPNet code 55.65 % 74.95 % 48.44 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
121 MLOD
This method makes use of Velodyne laser scans.
code 55.62 % 68.42 % 51.45 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
122 ST-RCNN
This method makes use of Velodyne laser scans.
55.46 % 64.50 % 52.89 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
123 TBD 55.43 % 65.62 % 51.97 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
124 FusionDetv2-v2 55.32 % 62.74 % 52.43 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
125 PointPillars
This method makes use of Velodyne laser scans.
code 55.10 % 65.29 % 52.39 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
126 FPC3D_all
This method makes use of Velodyne laser scans.
55.08 % 64.74 % 52.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
127 STD code 55.04 % 68.33 % 50.85 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
128 NV-RCNN 54.98 % 64.78 % 51.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
129 GAC3D++ 54.96 % 74.08 % 50.06 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
130 Vote3Deep
This method makes use of Velodyne laser scans.
54.80 % 67.99 % 51.17 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
131 M3DeTR code 54.78 % 63.15 % 52.49 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
132 tbd 54.44 % 64.96 % 50.57 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
133 epBRM
This method makes use of Velodyne laser scans.
code 54.13 % 62.90 % 51.95 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
134 DVFENet 54.13 % 63.54 % 51.79 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
135 OSE+ 54.12 % 68.48 % 49.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
136 XView 53.83 % 62.27 % 51.61 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
137 PointPainting
This method makes use of Velodyne laser scans.
53.76 % 61.86 % 50.61 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
138 MKFFNet 53.64 % 63.25 % 51.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
139 MKFFNet 53.55 % 62.18 % 50.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
140 PDV2 53.54 % 65.59 % 47.65 % 3.7 s 1 core @ 3.0 Ghz Matlab (C/C++)
J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential statistic feature for pedestrian and face detection . Pattern Recognition 2017.
141 TBD 53.34 % 64.17 % 51.00 % TBD GPU @ 2.5 Ghz (Python + C/C++)
142 ASCNet 53.28 % 62.40 % 50.88 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
143 TAFT 53.15 % 67.62 % 47.08 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Shen, X. Zuo, W. Yang, D. Prokhorov, X. Mei and H. Ling: Differential Features for Pedestrian Detection: A Taylor Series Perspective. IEEE Transactions on Intelligent Transportation Systems 2018.
144 Disp R-CNN
This method uses stereo information.
code 52.98 % 71.79 % 48.20 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
145 FusionDetv2-baseline 52.96 % 58.96 % 50.94 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
146 Disp R-CNN (velo)
This method uses stereo information.
code 52.90 % 71.63 % 48.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
147 demo 52.90 % 63.79 % 49.54 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
148 pAUCEnsT 52.88 % 65.84 % 46.97 % 60 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.
149 SparVox3D 52.84 % 69.33 % 48.49 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
150 VGCN 52.80 % 61.86 % 50.66 % 0.09 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
151 tbd 52.78 % 63.45 % 50.79 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
152 PFF3D
This method makes use of Velodyne laser scans.
code 52.53 % 62.12 % 50.27 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
153 NV2P-RCNN 52.52 % 61.80 % 50.24 % 0.1 s GPU @ 2.5 Ghz (Python)
154 HS3D code 52.50 % 63.73 % 49.78 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
155 IA-SSD (multi) 52.45 % 65.07 % 50.20 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
156 S-AT GCN 52.30 % 62.01 % 50.10 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
157 MMLAB LIGA-Stereo
This method uses stereo information.
code 52.18 % 65.59 % 49.29 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
158 SCSTSV-MonoFlex 52.18 % 67.51 % 45.90 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
159 MKFFNet 51.96 % 60.31 % 49.70 % 0.01s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
160 YF 51.82 % 61.37 % 48.59 % 0.04 s GPU @ 2.5 Ghz (C/C++)
161 Shift R-CNN (mono) code 51.30 % 70.86 % 46.37 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
162 AF_MCLS 49.95 % 62.85 % 45.78 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
163 SCNet
This method makes use of Velodyne laser scans.
49.61 % 60.95 % 46.91 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
164 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 49.41 % 58.93 % 46.44 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
165 Y4 code 49.24 % 68.07 % 44.42 % 0.03 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
166 vadin-TBD 48.97 % 63.77 % 44.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
167 MonoFlex 48.64 % 61.96 % 44.17 % 0.03 s 1 core @ 2.5 Ghz (Python)
168 ACFD
This method makes use of Velodyne laser scans.
code 48.63 % 61.62 % 44.15 % 0.2 s 4 cores @ >3.5 Ghz (C/C++)
M. Dimitrievski, P. Veelaert and W. Philips: Semantically aware multilateral filter for depth upsampling in automotive LiDAR point clouds. IEEE Intelligent Vehicles Symposium, IV 2017, Los Angeles, CA, USA, June 11-14, 2017 2017.
169 R-CNN 48.57 % 62.88 % 43.05 % 4 s GPU @ 3.3 Ghz (C/C++)
J. Hosang, M. Omran, R. Benenson and B. Schiele: Taking a Deeper Look at Pedestrians. arXiv 2015.
170 RelationNet3D_dla34 code 47.93 % 63.34 % 43.42 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
171 LIGA-Stereo-old
This method uses stereo information.
47.75 % 58.61 % 44.39 % 0.375 s Titan Xp
172 MonoFlex 47.58 % 62.64 % 43.15 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
173 BirdNet+
This method makes use of Velodyne laser scans.
code 47.50 % 54.78 % 45.53 % 0.11 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
174 RoIFusion code 46.81 % 56.26 % 44.58 % 0.22 s 1 core @ 3.0 Ghz (Python)
175 mono3d 46.73 % 58.34 % 41.92 % 0.03 s GPU @ 2.5 Ghz (Python)
176 deleted 46.14 % 58.97 % 42.48 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
177 SS3D 45.79 % 61.58 % 41.14 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
178 ACF 45.67 % 59.81 % 40.88 % 1 s 1 core @ 3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
179 Fusion-DPM
This method makes use of Velodyne laser scans.
code 44.99 % 58.93 % 40.19 % ~ 30 s 1 core @ 3.5 Ghz (Matlab + C/C++)
C. Premebida, J. Carreira, J. Batista and U. Nunes: Pedestrian Detection Combining RGB and Dense LIDAR Data. IROS 2014.
180 M3DSSD++ 44.89 % 58.54 % 40.66 % 0.16s 1 core @ 2.5 Ghz (C/C++)
181 CBi-GNN-persons 44.88 % 58.17 % 40.50 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
182 ACF-MR 44.79 % 58.29 % 39.94 % 0.6 s 1 core @ 3.5 Ghz (C/C++)
R. Rajaram, E. Ohn-Bar and M. Trivedi: Looking at Pedestrians at Different Scales: A Multi-resolution Approach and Evaluations. T-ITS 2016.
183 Deprecated 44.65 % 60.33 % 38.51 % Deprecated Deprecated
184 MonoGeo 44.63 % 58.49 % 40.41 % 0.05 s 1 core @ 2.5 Ghz (Python)
185 Geo3D 44.42 % 58.74 % 40.13 % 0.04 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
186 LPCG-Monoflex 44.13 % 62.44 % 39.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
187 HA-SSVM 43.87 % 58.76 % 38.81 % 21 s 1 core @ >3.5 Ghz (Matlab + C/C++)
J. Xu, S. Ramos, D. Vázquez and A. López: Hierarchical Adaptive Structural SVM for Domain Adaptation. IJCV 2016.
188 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 43.86 % 54.55 % 40.99 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
189 MonoEF code 43.73 % 58.79 % 39.45 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
190 MonoLCD 43.71 % 57.69 % 39.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
191 DA-Mono3D 43.57 % 59.80 % 39.23 % 0.09s 1 core @ 2.5 Ghz (C/C++)
192 D4LCN code 43.50 % 59.55 % 37.12 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
193 MonoDDE 43.36 % 57.80 % 39.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
194 DPM-VOC+VP 43.26 % 59.21 % 38.12 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
195 ACF-SC 42.97 % 53.30 % 38.12 % <0.3 s 1 core @ >3.5 Ghz (Matlab + C/C++)
C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding System using Context-Aware Object Detection. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2015.
196 SquaresICF code 42.61 % 57.08 % 37.85 % 1 s GPU @ >3.5 Ghz (C/C++)
R. Benenson, M. Mathias, T. Tuytelaars and L. Gool: Seeking the strongest rigid detector. CVPR 2013.
197 CG-Stereo
This method uses stereo information.
42.54 % 54.64 % 38.45 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
198 MonoCon 42.44 % 56.57 % 36.34 % 0.02 s GPU @ 2.5 Ghz (Python)
199 RelationNet3D_res18 code 42.25 % 57.61 % 37.93 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
200 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 41.97 % 51.38 % 40.15 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
201 ICCV 41.88 % 55.14 % 37.55 % 0.04 s GPU @ 2.5 Ghz (Python)
202 PLDet3d 41.86 % 55.94 % 37.64 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
203 DDMP-3D 41.54 % 56.73 % 35.52 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
204 CSW3D
This method makes use of Velodyne laser scans.
41.50 % 53.76 % 37.25 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
205 M3D-RPN(S-R) 41.46 % 56.64 % 37.31 % 0.16 s GPU @ 1.5 Ghz (Python)
206 M3D-RPN code 41.46 % 56.64 % 37.31 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
207 YOLOStereo3D
This method uses stereo information.
code 41.46 % 56.20 % 37.07 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
208 MP-Mono 40.87 % 55.79 % 36.81 % 0.16 s GPU @ 2.5 Ghz (Python)
209 SwinMono3D 40.54 % 56.73 % 36.18 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
210 SubCat 40.50 % 53.75 % 35.66 % 1.2 s 6 cores @ 2.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mobile Vision 2014.
211 DSGN
This method uses stereo information.
code 39.93 % 49.28 % 38.13 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
212 RT3D-GMP
This method uses stereo information.
39.83 % 55.56 % 35.18 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
213 FusionDetv2-v1 39.60 % 46.77 % 38.75 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
214 SparsePool code 39.59 % 50.81 % 35.91 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
215 Graph-NMS-baseline 39.46 % 52.32 % 35.60 % 47 ms GPU @ 2.5 Ghz (Python)
216 SparsePool code 39.43 % 50.94 % 35.78 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
217 AVOD
This method makes use of Velodyne laser scans.
code 39.43 % 50.90 % 35.75 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
218 ACF 39.12 % 48.42 % 35.03 % 0.2 s 1 core @ >3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
P. Doll\'ar: Piotr's Image and Video Matlab Toolbox (PMT). .
219 Graph-NMS 38.40 % 51.24 % 35.24 % 36 ms GPU @ 2.5 Ghz (Python)
220 LSVM-MDPM-sv 37.26 % 50.74 % 33.13 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
221 multi-task CNN 37.00 % 49.38 % 33.46 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
222 Lite-FPN 36.93 % 50.63 % 32.88 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
223 NCL code 36.89 % 42.81 % 34.76 % NA s 1 core @ 2.5 Ghz (Python)
224 Complexer-YOLO
This method makes use of Velodyne laser scans.
36.45 % 42.16 % 32.91 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
225 LSVM-MDPM-us code 35.92 % 48.73 % 31.70 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
226 COF3D 35.34 % 50.45 % 31.28 % 200 s 1 core @ 2.5 Ghz (Python + C/C++)
227 Aug3D-RPN 34.95 % 47.22 % 30.64 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
228 MonoHMOO 34.74 % 49.26 % 30.37 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
229 PPTrans 34.45 % 45.02 % 30.94 % 0.2 s GPU @ 2.5 Ghz (Python)
230 CMKD 34.41 % 47.09 % 30.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
231 PointRGBNet 33.92 % 44.35 % 30.43 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
232 PGD-FCOS3D code 33.67 % 48.30 % 29.76 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning 2021.
233 ZongmuMono3d code 33.47 % 45.86 % 29.84 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
234 Vote3D
This method makes use of Velodyne laser scans.
33.04 % 42.66 % 30.59 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
235 FADNet code 32.64 % 42.43 % 29.13 % 0.04 s GPU @ >3.5 Ghz (Python)
236 MM 32.48 % 45.03 % 28.58 % 1 s 1 core @ 2.5 Ghz (C/C++)
237 CaDDN code 32.42 % 46.35 % 29.98 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
238 DFR-Net 31.84 % 45.20 % 27.94 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
239 K3D 31.71 % 44.40 % 27.90 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
240 FPIOD
This method makes use of Velodyne laser scans.
code 30.96 % 45.07 % 28.48 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
241 OC Stereo
This method uses stereo information.
code 30.79 % 43.50 % 28.40 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
242 mBoW
This method makes use of Velodyne laser scans.
30.26 % 41.52 % 26.34 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
243 BirdNet
This method makes use of Velodyne laser scans.
30.07 % 36.82 % 28.40 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
244 SOD 29.47 % 46.61 % 26.97 % 0.1 s 1 core @ 2.5 Ghz (Python)
245 RT3DStereo
This method uses stereo information.
29.30 % 41.12 % 25.25 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
246 AEC3D 28.32 % 37.26 % 24.98 % 18 ms GPU @ 2.5 Ghz (Python)
247 BEVC 26.52 % 35.31 % 24.72 % 35ms GPU @ 1.5 Ghz (Python)
248 DPM-C8B1
This method uses stereo information.
25.34 % 36.40 % 22.00 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
249 VN3D 23.61 % 30.51 % 21.97 % 0.02 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
250 MAOLoss code 23.60 % 32.07 % 21.55 % 0.05 s 1 core @ 2.5 Ghz (Python)
251 RefinedMPL 20.81 % 30.41 % 18.72 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
252 E2E-DA 19.96 % 29.93 % 17.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
253 E2E-DA-Lite (Res18) 19.87 % 32.25 % 17.37 % 0.01 s GPU @ 2.5 Ghz (Python)
254 TopNet-Retina
This method makes use of Velodyne laser scans.
16.45 % 22.37 % 15.43 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
255 TopNet-HighRes
This method makes use of Velodyne laser scans.
15.28 % 21.22 % 13.89 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
256 YOLOv2 code 11.46 % 15.37 % 9.67 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
257 TopNet-UncEst
This method makes use of Velodyne laser scans.
8.58 % 13.00 % 7.38 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
258 BIP-HETERO 7.05 % 8.51 % 6.30 % ~2 s 1 core @ 2.5 Ghz (C/C++)
A. Mekonnen, F. Lerasle, A. Herbulot and C. Briand: People Detection with Heterogeneous Features and Explicit Optimization on Computation Time. Pattern Recognition (ICPR), 2014 22nd International Conference on 2014.
259 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.01 % 0.01 % 0.01 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 ISE-RCNN-PV 82.78 % 88.08 % 75.96 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
2 HIKVISION-AFree 82.54 % 91.47 % 75.88 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
3 SGNet 82.00 % 91.55 % 75.30 % 0.09 s GPU @ 2.5 Ghz (Python)
4 ISE-RCNN 81.95 % 87.68 % 75.17 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
5 NF2 81.75 % 89.67 % 71.43 % 0.1 s GPU @ 2.5 Ghz (Python)
6 RangeIoUDet
This method makes use of Velodyne laser scans.
81.67 % 90.43 % 74.90 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
7 anonymous code 81.52 % 89.31 % 74.71 % 0.05s 1 core @ >3.5 Ghz (python)
8 Fast VP-RCNN code 81.41 % 89.29 % 74.88 % 0.05 s 1 core @ 3.5 Ghz (C/C++)
9 Point Image Fusion 80.73 % 87.99 % 74.32 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
10 TPCG 80.71 % 87.73 % 74.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
11 SAA-PV-RCNN 80.71 % 88.94 % 73.79 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
12 SPG_mini
This method makes use of Velodyne laser scans.
80.58 % 87.77 % 74.86 % 0.09 s GPU @ 2.5 Ghz (Python)
13 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 80.57 % 88.65 % 74.81 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
14 BtcDet
This method makes use of Velodyne laser scans.
80.46 % 88.41 % 74.59 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
15 VCRCNN 80.46 % 87.34 % 73.68 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
16 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 80.42 % 86.62 % 73.64 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
17 HIKVISION-ADLab-HZ 80.36 % 89.70 % 73.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
18 GNN-RCNN 80.35 % 89.53 % 73.85 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
19 XView-PartA^2 80.16 % 88.15 % 73.92 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
20 Generalized-SIENet 80.07 % 89.23 % 73.76 % 0.08 s 1 core @ 2.5 Ghz (Python)
21 WHUT-iou_ssd code 79.98 % 87.31 % 74.30 % 0.045s 1 core @ 2.5 Ghz (C/C++)
22 sa-voxel-centernet code 79.98 % 88.08 % 73.61 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
23 E^2-PV-RCNN 79.94 % 87.22 % 73.58 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
24 SA-voxel-centernet code 79.92 % 86.43 % 73.47 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
25 FPC-RCNN 79.89 % 88.62 % 73.18 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
26 SARFE 79.86 % 87.53 % 73.19 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
27 DDet 79.47 % 88.65 % 72.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
28 M3DeTR code 79.29 % 87.38 % 72.46 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
29 PV-RCNN-v2 79.22 % 85.76 % 72.35 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
30 HotSpotNet 78.81 % 86.06 % 71.74 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
31 JPVNet 78.73 % 87.42 % 72.45 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
32 TBD 78.73 % 88.55 % 71.87 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
33 IA-SSD (single) 78.71 % 88.99 % 72.03 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
34 PE-RCVN 78.71 % 90.77 % 71.83 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
35 PPAF
This method makes use of Velodyne laser scans.
78.59 % 86.51 % 73.55 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
36 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 78.29 % 88.90 % 71.19 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
37 F-ConvNet
This method makes use of Velodyne laser scans.
code 78.05 % 86.75 % 68.12 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
38 PointPainting
This method makes use of Velodyne laser scans.
78.04 % 87.70 % 69.27 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
39 AutoAlign 77.96 % 89.63 % 71.27 % 0.1 s 1 core @ 2.5 Ghz (Python)
40 MVOD 77.92 % 85.92 % 71.24 % 0.16 s 1 core @ 2.5 Ghz (C/C++)
41 CBi-GNN-persons 77.89 % 88.05 % 69.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
42 ST-RCNN
This method makes use of Velodyne laser scans.
77.57 % 85.84 % 70.92 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
43 SAA-SECOND 77.47 % 88.50 % 70.23 % 38m s 1 core @ 2.5 Ghz (C/C++)
44 TBD 77.31 % 87.22 % 70.53 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
45 TBD 77.06 % 90.28 % 70.46 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
46 MSL3D 76.96 % 85.93 % 70.41 % 0.03 s GPU @ 2.5 Ghz (Python)
47 FSA-PVRCNN
This method makes use of Velodyne laser scans.
76.95 % 84.41 % 71.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
48 ASCNet 76.95 % 83.81 % 70.84 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
49 P2V-RCNN 76.93 % 88.40 % 70.35 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
50 SVGA-Net
This method makes use of Velodyne laser scans.
76.83 % 86.14 % 70.98 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
51 RRC code 76.81 % 86.81 % 66.59 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
52 FusionDetv2-v5 76.60 % 85.95 % 69.75 % 0.05 s 1 core @ 2.5 Ghz (Java + C/C++)
53 FusionDetv2-v3 76.48 % 86.15 % 69.64 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
54 MKFFNet 76.34 % 86.90 % 69.83 % 0.01s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
55 NV2P-RCNN 76.29 % 83.53 % 69.57 % 0.1 s GPU @ 2.5 Ghz (Python)
56 VCT 76.08 % 86.69 % 69.91 % 0.2 s 1 core @ 2.5 Ghz (Python)
57 FusionDetv2-v4 75.92 % 87.66 % 70.06 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
58 FPCR-CNN 75.83 % 87.74 % 68.98 % 0.05 s 1 core @ 2.5 Ghz (Python)
59 MS-CNN code 75.30 % 84.88 % 65.27 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
60 TuSimple code 75.22 % 83.68 % 65.22 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
61 Point-GNN
This method makes use of Velodyne laser scans.
code 75.08 % 85.75 % 68.69 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
62 Fast-CLOCs 75.07 % 89.73 % 67.93 % 0.1 s GPU @ 2.5 Ghz (Python)
63 SCIR-Net
This method makes use of Velodyne laser scans.
74.88 % 84.92 % 68.13 % 0.03 s GPU @ 2.5 Ghz (Python + C/C++)
64 EA-M-RCNN(BorderAtt) 74.85 % 88.69 % 68.01 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
65 Deep3DBox 74.78 % 84.36 % 64.05 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
66 MKFFNet 74.69 % 84.92 % 68.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
67 P2V_PCV1 74.57 % 85.38 % 68.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
68 VPFNet code 74.52 % 82.60 % 66.04 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
69 MKFFNet 74.39 % 85.89 % 68.02 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
70 FusionDetv2-v2 74.38 % 86.62 % 67.96 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
71 RoIFusion code 74.27 % 85.15 % 68.29 % 0.22 s 1 core @ 3.0 Ghz (Python)
72 3DSSD code 74.12 % 87.09 % 67.67 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
73 VPN 73.99 % 89.56 % 66.86 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
74 SDP+RPN 73.85 % 82.59 % 64.87 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
75 TBD_IOU 73.84 % 87.97 % 66.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
76 FusionDetv1 73.69 % 85.39 % 66.94 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
77 SRDL
This method uses stereo information.
This method makes use of Velodyne laser scans.
73.68 % 85.44 % 66.94 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
78 DVFENet 73.66 % 85.45 % 67.10 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
79 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 73.63 % 85.43 % 66.64 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion. arXiv preprint arXiv:2011.01404 2020.
80 sensekitti code 73.48 % 82.90 % 64.03 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
81 TBD_IOU1 73.46 % 87.05 % 66.14 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
82 tbd 73.43 % 84.88 % 65.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
83 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 73.42 % 86.21 % 66.45 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
84 FPC3D_all
This method makes use of Velodyne laser scans.
73.25 % 84.12 % 66.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
85 SIF 73.19 % 85.18 % 65.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
86 F-PointNet
This method makes use of Velodyne laser scans.
code 73.16 % 86.86 % 65.21 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
87 FromVoxelToPoint code 73.16 % 87.07 % 65.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
88 XView 73.16 % 88.02 % 65.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
89 NV-RCNN 73.07 % 85.64 % 66.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
90 HS3D code 73.02 % 84.59 % 67.13 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
91 demo 72.90 % 87.20 % 66.56 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
92 S-AT GCN 72.81 % 82.79 % 66.72 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
93 H^23D R-CNN code 72.73 % 85.50 % 65.81 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
94 FusionDetv2-baseline 72.68 % 82.09 % 66.42 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
95 DGIST MT-CNN 72.57 % 86.82 % 63.47 % 0.09 s GPU @ 1.0 Ghz (Python)
96 VGCN 72.28 % 86.81 % 65.68 % 0.09 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
97 ZEEWAIN-AI 72.25 % 83.84 % 63.80 % 0.3 s GPU @ 2.5 Ghz (Python)
98 MonoPSR code 72.08 % 82.06 % 62.43 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
99 ARPNET 71.95 % 84.96 % 65.21 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
100 SubCNN 71.72 % 79.36 % 62.74 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
101 STD code 71.63 % 83.99 % 64.92 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
102 IA-SSD (multi) 70.46 % 84.98 % 65.55 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
103 MGAF-3DSSD code 70.41 % 86.42 % 63.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
104 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 70.18 % 82.86 % 63.55 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
105 TBD 70.12 % 81.15 % 63.79 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
106 YF 70.10 % 80.50 % 64.21 % 0.04 s GPU @ 2.5 Ghz (C/C++)
107 TBD 69.99 % 85.54 % 65.02 % TBD GPU @ 2.5 Ghz (Python + C/C++)
108 CCFNET 69.17 % 83.76 % 62.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
109 PointPillars
This method makes use of Velodyne laser scans.
code 68.98 % 83.97 % 62.17 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
110 Vote3Deep
This method makes use of Velodyne laser scans.
68.82 % 78.41 % 62.50 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
111 3DOP
This method uses stereo information.
code 68.71 % 80.52 % 61.07 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
112 Pose-RCNN 68.40 % 81.53 % 59.43 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
113 EPNet++ 68.30 % 80.27 % 63.00 % 0.1 s GPU @ 2.5 Ghz (Python)
114 TANet code 68.20 % 82.24 % 62.13 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
115 AF_MCLS 67.97 % 85.45 % 60.95 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
116 IVA code 67.57 % 78.48 % 58.83 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection. ACCV 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015.
117 DeepStereoOP 67.22 % 79.35 % 58.60 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
118 TBD 67.15 % 82.44 % 60.87 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
119 TBD 67.15 % 82.44 % 60.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
120 VueronNet 66.92 % 82.71 % 59.01 % 0.08 s GPU @ 2.5 Ghz (Python)
121 FII-CenterNet 66.54 % 79.04 % 57.76 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
122 epBRM
This method makes use of Velodyne laser scans.
code 66.51 % 79.65 % 60.31 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
123 PFF3D
This method makes use of Velodyne laser scans.
code 66.25 % 79.44 % 60.11 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
124 PointRGBNet 65.98 % 79.87 % 59.75 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
125 BirdNet+
This method makes use of Velodyne laser scans.
code 65.40 % 72.96 % 60.23 % 0.11 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
126 Mono3D code 65.15 % 77.19 % 57.88 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
127 PiFeNet 64.39 % 80.02 % 57.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
128 tbd 64.31 % 79.83 % 58.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
129 Faster R-CNN code 62.86 % 72.40 % 54.97 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
130 SCNet
This method makes use of Velodyne laser scans.
62.50 % 78.48 % 56.34 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
131 DD3D code 62.21 % 79.98 % 54.91 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
132 AVOD-FPN
This method makes use of Velodyne laser scans.
code 60.79 % 70.38 % 55.37 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
133 SDP+CRC (ft) 60.72 % 75.63 % 53.00 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
134 Complexer-YOLO
This method makes use of Velodyne laser scans.
59.78 % 66.94 % 55.63 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
135 Regionlets 58.52 % 71.12 % 50.83 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
136 FRCNN+Or code 57.01 % 70.99 % 50.14 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
137 QD-3DT
This is an online method (no batch processing).
code 56.51 % 75.55 % 49.70 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
138 MonoPair 56.37 % 74.77 % 48.37 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
139 FusionDetv2-v1 56.30 % 66.22 % 52.29 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
140 MLOD
This method makes use of Velodyne laser scans.
code 56.04 % 75.35 % 49.11 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
141 LIGA-Stereo-old
This method uses stereo information.
55.77 % 74.25 % 49.68 % 0.375 s Titan Xp
142 EACV 55.01 % 73.41 % 48.75 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
143 mono3d 54.82 % 70.77 % 47.55 % 0.03 s GPU @ 2.5 Ghz (Python)
144 MonoFlex 54.76 % 72.41 % 46.21 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
145 M3DSSD++ 54.62 % 69.35 % 46.25 % 0.16s 1 core @ 2.5 Ghz (C/C++)
146 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 54.61 % 74.97 % 50.29 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
147 MMLAB LIGA-Stereo
This method uses stereo information.
code 54.57 % 74.40 % 48.11 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
148 SCSTSV-MonoFlex 54.42 % 75.37 % 46.25 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
149 GAA 54.24 % 71.23 % 47.41 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
150 vadin-TBD 54.12 % 70.14 % 46.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
151 monodle code 53.29 % 70.78 % 45.01 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
152 LPCG-Monoflex 53.04 % 72.36 % 46.11 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
153 GA-Aug 52.71 % 67.62 % 46.37 % 0.04 s GPU @ 2.5 Ghz (Python)
154 AVOD
This method makes use of Velodyne laser scans.
code 52.60 % 66.45 % 46.39 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
155 Geo3D 51.26 % 71.75 % 44.44 % 0.04 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
156 MonoFlex 51.23 % 66.73 % 44.57 % 0.03 s 1 core @ 2.5 Ghz (Python)
157 MonoDDE 51.10 % 70.85 % 44.02 % 0.04 s 1 core @ 2.5 Ghz (Python)
158 MonoGeo 50.48 % 65.42 % 42.48 % 0.05 s 1 core @ 2.5 Ghz (Python)
159 deleted 50.22 % 68.25 % 44.84 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
160 MonoRUn code 49.13 % 67.47 % 43.41 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
161 MP-Mono 48.54 % 69.48 % 41.58 % 0.16 s GPU @ 2.5 Ghz (Python)
162 CG-Stereo
This method uses stereo information.
48.46 % 69.98 % 42.41 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
163 EG_DETR 48.42 % 67.71 % 42.99 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
164 BirdNet
This method makes use of Velodyne laser scans.
47.64 % 64.91 % 44.59 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
165 CMKD 47.21 % 66.52 % 41.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
166 KAIST-VDCLab 46.65 % 68.60 % 41.79 % 0.04 s 1 core @ 2.5 Ghz (Python)
167 Disp R-CNN (velo)
This method uses stereo information.
code 46.37 % 63.22 % 40.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
168 Disp R-CNN
This method uses stereo information.
code 46.37 % 63.24 % 40.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
169 SwinMono3D 45.72 % 67.95 % 38.55 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
170 SparsePool code 44.57 % 60.53 % 40.37 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
171 MonoLCD 44.57 % 65.17 % 39.96 % 0.04 s 1 core @ 2.5 Ghz (Python)
172 Deprecated 44.26 % 63.15 % 37.38 % Deprecated Deprecated
173 DA-Mono3D 43.98 % 63.35 % 39.14 % 0.09s 1 core @ 2.5 Ghz (C/C++)
174 FADNet code 43.40 % 59.77 % 37.28 % 0.04 s GPU @ >3.5 Ghz (Python)
175 Shift R-CNN (mono) code 42.96 % 63.24 % 38.22 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
176 D4LCN code 42.86 % 65.29 % 36.29 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
177 GUPNet code 42.78 % 67.11 % 37.94 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
178 MonoCon 42.49 % 59.39 % 35.94 % 0.02 s GPU @ 2.5 Ghz (Python)
179 GAC3D++ 41.87 % 61.03 % 35.78 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
180 PLDet3d 41.84 % 60.16 % 37.65 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
181 M3D-RPN code 41.54 % 61.54 % 35.23 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
182 MonoEF code 41.19 % 51.06 % 35.70 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
183 SOD 40.95 % 60.07 % 34.02 % 0.1 s 1 core @ 2.5 Ghz (Python)
184 MV-RGBD-RF
This method makes use of Velodyne laser scans.
40.94 % 51.10 % 34.83 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
185 PPTrans 39.55 % 48.93 % 33.74 % 0.2 s GPU @ 2.5 Ghz (Python)
186 RelationNet3D_dla34 code 39.52 % 59.56 % 34.51 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
187 OSE+ 39.26 % 58.13 % 34.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
188 DDMP-3D 38.62 % 58.70 % 34.10 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
189 RelationNet3D_res18 code 37.41 % 56.22 % 32.56 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
190 AEC3D 37.15 % 48.48 % 34.86 % 18 ms GPU @ 2.5 Ghz (Python)
191 ICCV 36.70 % 53.31 % 31.94 % 0.04 s GPU @ 2.5 Ghz (Python)
192 Aug3D-RPN 36.69 % 51.49 % 30.04 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
193 SparsePool code 36.26 % 44.21 % 32.57 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
194 Y4 code 35.92 % 53.50 % 31.89 % 0.03 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
195 SS3D 35.48 % 52.97 % 31.07 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
196 DSGN
This method uses stereo information.
code 35.15 % 49.10 % 31.41 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
197 pAUCEnsT 34.90 % 50.51 % 30.35 % 60 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.
198 COF3D 32.97 % 51.77 % 28.26 % 200 s 1 core @ 2.5 Ghz (Python + C/C++)
199 TopNet-Retina
This method makes use of Velodyne laser scans.
31.98 % 47.51 % 29.84 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
200 DFR-Net 31.93 % 48.34 % 27.95 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
201 VN3D 31.81 % 42.58 % 29.09 % 0.02 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
202 ZongmuMono3d code 31.56 % 44.68 % 27.48 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
203 BEVC 30.39 % 43.61 % 27.46 % 35ms GPU @ 1.5 Ghz (Python)
204 OC Stereo
This method uses stereo information.
code 28.76 % 43.18 % 24.80 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
205 Vote3D
This method makes use of Velodyne laser scans.
27.99 % 39.81 % 25.19 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
206 MM 27.89 % 42.15 % 24.73 % 1 s 1 core @ 2.5 Ghz (C/C++)
207 LSVM-MDPM-us code 27.81 % 37.66 % 24.83 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
208 DPM-VOC+VP 27.73 % 41.58 % 24.61 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
209 K3D 27.29 % 38.82 % 23.86 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
210 RefinedMPL 27.17 % 44.47 % 22.84 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
211 CaDDN code 27.13 % 40.03 % 23.23 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
212 PGD-FCOS3D code 26.48 % 44.28 % 23.03 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning 2021.
213 LSVM-MDPM-sv 26.05 % 35.70 % 23.56 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
214 E2E-DA-Lite (Res18) 25.82 % 42.48 % 21.16 % 0.01 s GPU @ 2.5 Ghz (Python)
215 DPM-C8B1
This method uses stereo information.
25.57 % 41.47 % 21.93 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
216 E2E-DA 24.46 % 39.34 % 19.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
217 MonoHMOO 23.59 % 37.41 % 21.20 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
218 FPIOD
This method makes use of Velodyne laser scans.
code 23.10 % 37.02 % 19.66 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
219 Graph-NMS-baseline 23.07 % 35.72 % 20.54 % 47 ms GPU @ 2.5 Ghz (Python)
220 RT3D-GMP
This method uses stereo information.
22.90 % 33.64 % 19.87 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
221 MAOLoss code 22.58 % 34.37 % 20.49 % 0.05 s 1 core @ 2.5 Ghz (Python)
222 Graph-NMS 22.43 % 34.13 % 19.65 % 36 ms GPU @ 2.5 Ghz (Python)
223 Lite-FPN 19.17 % 24.40 % 15.68 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
224 mBoW
This method makes use of Velodyne laser scans.
17.63 % 26.66 % 16.02 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
225 TopNet-HighRes
This method makes use of Velodyne laser scans.
13.98 % 22.86 % 14.52 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
226 RT3DStereo
This method uses stereo information.
12.96 % 19.58 % 11.47 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
227 TopNet-UncEst
This method makes use of Velodyne laser scans.
12.00 % 18.14 % 11.85 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
228 YOLOv2 code 0.06 % 0.15 % 0.07 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
229 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.04 % 0.00 % 0.04 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
Table as LaTeX | Only published Methods

Object Detection and Orientation Estimation Evaluation

Cars


Method Setting Code Moderate Easy Hard Runtime Environment
1 NFAF3D 96.12 % 96.76 % 93.12 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
2 VPFNet 96.04 % 96.63 % 90.99 % 0.06 s 2 cores @ 2.5 Ghz (Python)
3 SFD 96.01 % 99.06 % 90.97 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
4 Anonymous 96.00 % 98.72 % 90.97 % 0.1 s GPU @ 2.5 Ghz (Python)
5 CLOCs code 95.93 % 96.77 % 90.93 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
6 PE-RCVN 95.85 % 96.89 % 90.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
7 CityBrainLab 95.83 % 98.56 % 90.79 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
8 Anonymous 95.81 % 96.53 % 92.69 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
9 CLOCs_PVCas code 95.79 % 96.74 % 90.81 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
10 sfd 95.75 % 98.92 % 90.83 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
11 SECOND 95.67 % 96.42 % 90.37 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
12 DFNet-V 95.63 % 96.59 % 90.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
13 NFAF3D-light 95.62 % 96.66 % 92.48 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
14 Fast-CLOCs 95.57 % 96.66 % 90.70 % 0.1 s GPU @ 2.5 Ghz (Python)
15 EA-M-RCNN(BorderAtt) 95.44 % 96.37 % 90.31 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
16 JPVNet 95.38 % 96.40 % 90.52 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
17 DFNet-PV 95.35 % 96.40 % 92.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
18 ISE-RCNN-PV 95.34 % 96.18 % 92.70 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
19 BANet code 95.34 % 98.65 % 90.28 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: Boundary-Aware 3D Object Detection from Point Clouds. 2021.
20 Anonymous 95.32 % 98.34 % 90.36 % 0.1s 1 core @ 2.5 Ghz (C/C++)
21 ISE-RCNN 95.30 % 96.36 % 92.63 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
22 TBD 95.20 % 96.16 % 90.42 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
23 SE-SSD
This method makes use of Velodyne laser scans.
code 95.17 % 96.55 % 90.00 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
24 SPANet 95.03 % 96.31 % 89.99 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
25 TBD 95.03 % 96.47 % 92.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
26 Pyramid R-CNN 95.03 % 95.87 % 92.46 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
27 VPFNet code 95.01 % 96.03 % 92.41 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
28 EPNet++ 95.00 % 96.70 % 91.82 % 0.1 s GPU @ 2.5 Ghz (Python)
29 3DIoU++ 94.97 % 96.36 % 90.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
30 Voxel R-CNN code 94.96 % 96.47 % 92.24 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
31 PV-RCNN-v2 94.90 % 96.07 % 92.22 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
32 SIENet code 94.85 % 96.01 % 92.23 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
33 DGDNH 94.85 % 96.09 % 92.20 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
34 VoTr-TSD 94.81 % 95.95 % 92.24 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
35 FrustumRCNN 94.79 % 95.97 % 92.23 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
36 CSVoxel-RCNN 94.74 % 96.31 % 91.84 % 0.03 s GPU @ 1.0 Ghz (Python)
37 SRIF-RCNN 94.70 % 95.62 % 92.21 % 0.0947 s 1 core @ 2.5 Ghz (C/C++)
38 M3DeTR code 94.70 % 97.37 % 91.89 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
39 E^2-PV-RCNN 94.69 % 95.94 % 92.09 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
40 ST-RCNN
This method makes use of Velodyne laser scans.
94.69 % 98.05 % 91.97 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
41 ST-RCNN (SNLW-RCNN)
This method makes use of Velodyne laser scans.
code 94.69 % 98.05 % 91.97 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
42 TPCG 94.66 % 95.95 % 92.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
43 XView 94.66 % 95.88 % 92.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
44 MSG-PGNN 94.65 % 95.85 % 92.01 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
45 StructuralIF 94.64 % 96.12 % 91.85 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
46 VCRCNN 94.64 % 96.05 % 92.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
47 SqueezeRCNN 94.61 % 96.02 % 91.97 % 0.08 s 1 core @ 2.5 Ghz (Python)
48 FusionDetv2-v4 94.60 % 95.92 % 91.79 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
49 SARFE 94.60 % 95.92 % 91.92 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
50 Generalized-SIENet 94.59 % 95.74 % 91.99 % 0.08 s 1 core @ 2.5 Ghz (Python)
51 HyBrid Feature Det 94.59 % 95.87 % 91.97 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
52 P2V-RCNN 94.59 % 96.01 % 92.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
53 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 94.57 % 98.15 % 91.85 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
54 3DIoU_v2 94.57 % 96.14 % 92.18 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
55 LZY_RCNN 94.56 % 95.80 % 91.94 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
56 PC-RGNN 94.55 % 95.79 % 92.03 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
57 SCIR-Net
This method makes use of Velodyne laser scans.
94.55 % 96.11 % 91.68 % 0.03 s GPU @ 2.5 Ghz (Python + C/C++)
58 DDet 94.54 % 95.80 % 91.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
59 TransCyclistNet 94.52 % 96.07 % 91.94 % 0.08 s 1 core @ 2.5 Ghz (Python)
60 Fast VP-RCNN code 94.52 % 97.99 % 91.74 % 0.05 s 1 core @ 3.5 Ghz (C/C++)
61 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 94.52 % 95.84 % 91.93 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
62 FusionDetv2-v3 94.51 % 96.14 % 91.73 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
63 TransDet3D 94.50 % 95.82 % 91.89 % 0.08 s 1 core @ 2.5 Ghz (Python)
64 ReFineNet 94.49 % 95.74 % 91.97 % 0.08 s 1 core @ 2.5 Ghz (Python)
65 Point Image Fusion 94.49 % 95.69 % 91.92 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
66 MSL3D 94.46 % 95.74 % 91.94 % 0.03 s GPU @ 2.5 Ghz (Python)
67 Multi-Sensor3D 94.46 % 95.74 % 91.94 % 0.03 s GPU @ 2.5 Ghz (Python)
68 MVRA + I-FRCNN+ 94.46 % 95.66 % 81.74 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
69 SA-voxel-centernet code 94.45 % 95.78 % 91.84 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
70 WHUT-iou_ssd code 94.45 % 95.76 % 91.75 % 0.045s 1 core @ 2.5 Ghz (C/C++)
71 DVFENet 94.44 % 95.33 % 91.55 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
72 anonymous code 94.43 % 97.50 % 91.66 % 0.05s 1 core @ >3.5 Ghz (python)
73 FSA-PVRCNN
This method makes use of Velodyne laser scans.
94.43 % 95.76 % 91.77 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
74 RangeIoUDet
This method makes use of Velodyne laser scans.
94.42 % 95.69 % 91.70 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
75 FPC-RCNN 94.40 % 96.13 % 91.63 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
76 sa-voxel-centernet code 94.39 % 95.86 % 91.80 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
77 FPC3D
This method makes use of the epipolar geometry.
94.39 % 96.04 % 91.51 % 33 s 1 core @ 2.5 Ghz (C/C++)
78 DD3D code 94.39 % 95.25 % 89.47 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
79 GNN-RCNN 94.32 % 95.84 % 91.79 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
80 SAA-SECOND 94.24 % 95.64 % 91.40 % 38m s 1 core @ 2.5 Ghz (C/C++)
81 SERCNN
This method makes use of Velodyne laser scans.
94.24 % 96.31 % 89.71 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
82 EPNet code 94.22 % 96.13 % 89.68 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
83 SVGA-Net
This method makes use of Velodyne laser scans.
94.13 % 95.68 % 91.48 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
84 SRDL
This method uses stereo information.
This method makes use of Velodyne laser scans.
94.08 % 95.83 % 91.55 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
85 TBD 94.07 % 95.49 % 91.44 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
86 FusionDetv1 94.07 % 95.82 % 91.54 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
87 FusionDetv2-v2 94.05 % 95.73 % 89.66 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
88 SAA-PV-RCNN 94.02 % 95.00 % 92.34 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
89 FPCR-CNN 93.99 % 95.94 % 90.99 % 0.05 s 1 core @ 2.5 Ghz (Python)
90 NV2P-RCNN 93.91 % 97.80 % 90.96 % 0.1 s GPU @ 2.5 Ghz (Python)
91 RangeRCNN
This method makes use of Velodyne laser scans.
93.90 % 95.47 % 91.53 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
92 SIF 93.79 % 95.48 % 91.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
93 MGAF-3DSSD code 93.77 % 94.45 % 86.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
94 MMLAB LIGA-Stereo
This method uses stereo information.
code 93.71 % 96.40 % 86.00 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
95 XView-PartA^2 93.59 % 95.41 % 91.09 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
96 HIKVISION-ADLab-HZ 93.58 % 96.68 % 88.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
97 Patches - EMP
This method makes use of Velodyne laser scans.
93.58 % 97.88 % 90.31 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
98 LIGA-Stereo-old
This method uses stereo information.
93.54 % 96.63 % 83.68 % 0.375 s Titan Xp
99 MVAF-Net code 93.54 % 95.35 % 90.70 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
100 TBD 93.53 % 95.30 % 91.03 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
101 IA-SSD (multi) 93.47 % 96.07 % 90.51 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
102 Associate-3Ddet_v2 93.46 % 96.66 % 88.20 % 0.04 s 1 core @ 2.5 Ghz (Python)
103 FusionDetv2-v5 93.44 % 95.31 % 88.96 % 0.05 s 1 core @ 2.5 Ghz (Java + C/C++)
104 IA-SSD (single) 93.41 % 96.23 % 88.34 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
105 VPV 93.39 % 96.44 % 88.32 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
106 PPAF
This method makes use of Velodyne laser scans.
93.34 % 96.51 % 90.56 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
107 CIA-SSD
This method makes use of Velodyne laser scans.
code 93.34 % 96.65 % 85.76 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
108 TBD 93.31 % 94.17 % 88.30 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
109 Deep MANTA 93.31 % 98.83 % 82.95 % 0.7 s GPU @ 2.5 Ghz (Python + C/C++)
F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau: Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. CVPR 2017.
110 Sem-Aug v1 code 93.26 % 96.36 % 90.51 % 0.04 s GPU @ 3.5 Ghz (Python)
111 LPCG-Monoflex 93.26 % 96.68 % 83.34 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
112 CityBrainLab-CT3D code 93.20 % 96.26 % 90.44 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
113 TBD 93.20 % 95.96 % 90.30 % TBD GPU @ 2.5 Ghz (Python + C/C++)
114 AM-SSD 93.18 % 96.56 % 90.13 % 0.04 s 1 core @ 2.5 Ghz (Python)
115 demo 93.15 % 96.15 % 90.08 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
116 VCT 93.09 % 96.30 % 90.38 % 0.2 s 1 core @ 2.5 Ghz (Python)
117 VPN 93.08 % 96.16 % 88.01 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
118 MVOD 93.07 % 96.15 % 92.39 % 0.16 s 1 core @ 2.5 Ghz (C/C++)
119 KpNet 93.06 % 96.63 % 85.39 % 0.42 s 1 core @ 2.5 Ghz (C/C++)
120 KpNet 93.05 % 96.63 % 85.38 % 42 s 1 core @ 2.5 Ghz (C/C++)
121 H^23D R-CNN code 93.03 % 96.13 % 90.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
122 ASCNet 93.01 % 96.05 % 90.21 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
123 Seg-RCNN code 92.99 % 96.50 % 87.54 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
124 FromVoxelToPoint code 92.98 % 96.07 % 90.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
125 CM3DV 92.98 % 96.47 % 87.68 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
126 SGNet 92.95 % 96.41 % 90.35 % 0.09 s GPU @ 2.5 Ghz (Python)
127 Sem-Aug-PointRCNN code 92.92 % 95.66 % 88.07 % 0.1 s GPU @ 3.5 Ghz (C/C++)
128 HVPR 92.89 % 95.89 % 87.65 % 0.02 s GPU @ 2.5 Ghz (Python)
129 EBM3DOD code 92.88 % 96.39 % 87.58 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
130 Struc info fusion II 92.88 % 96.44 % 87.67 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
131 MBDF-Net 92.77 % 96.19 % 89.70 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
132 YF 92.74 % 96.02 % 89.76 % 0.04 s GPU @ 2.5 Ghz (C/C++)
133 HotSpotNet 92.74 % 96.20 % 89.68 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
134 Struc info fusion I 92.71 % 96.24 % 87.55 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
135 EBM3DOD baseline code 92.70 % 96.31 % 87.44 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
136 SARPNET 92.58 % 95.82 % 87.33 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
137 Patches
This method makes use of Velodyne laser scans.
92.57 % 96.31 % 87.41 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
138 R-GCN 92.53 % 96.16 % 87.45 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
139 PI-RCNN 92.52 % 96.15 % 87.47 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
140 CenterNet3D 92.48 % 95.71 % 89.54 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
141 PointPainting
This method makes use of Velodyne laser scans.
92.43 % 98.36 % 89.49 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
142 3D IoU-Net 92.42 % 96.31 % 87.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
143 MBDF-Net-1 92.37 % 95.87 % 89.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
144 CLOCs_SecCas 92.37 % 95.16 % 88.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
145 NV-RCNN 92.34 % 95.83 % 89.70 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
146 DASS 92.25 % 96.20 % 87.26 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
147 S-AT GCN 92.24 % 95.02 % 90.46 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
148 3D-VDNet 92.19 % 95.39 % 89.10 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
149 SegVoxelNet 92.16 % 95.86 % 86.90 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
150 PointRGCN 92.15 % 97.48 % 86.83 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
151 F-ConvNet
This method makes use of Velodyne laser scans.
code 91.98 % 95.81 % 79.83 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
152 RangeDet code 91.92 % 95.16 % 86.98 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
153 CCFNET 91.90 % 95.79 % 88.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
154 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 91.87 % 95.86 % 86.78 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
155 VGCN 91.80 % 94.88 % 89.06 % 0.09 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
156 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 91.77 % 95.90 % 86.92 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
157 KAIST-VDCLab 91.74 % 95.40 % 84.25 % 0.04 s 1 core @ 2.5 Ghz (Python)
158 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 91.73 % 95.00 % 88.86 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
159 MKFFNet 91.72 % 95.26 % 88.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
160 AutoAlign 91.60 % 95.07 % 88.86 % 0.1 s 1 core @ 2.5 Ghz (Python)
161 C-GCN 91.57 % 95.63 % 86.13 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
162 CVFNet 91.55 % 95.20 % 87.80 % 28.1ms 1 core @ 2.5 Ghz (Python)
163 VOXEL_3D 91.52 % 94.49 % 86.23 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
164 MKFFNet 91.38 % 95.30 % 88.77 % 0.01s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
165 PointRGBNet 91.33 % 95.39 % 86.29 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
166 MKFFNet 91.29 % 95.17 % 88.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
167 EgoNet code 91.23 % 96.11 % 80.96 % 0.1 s GPU @ 1.5 Ghz (Python)
S. Li, Z. Yan, H. Li and K. Cheng: Exploring intermediate representation for monocular vehicle pose estimation. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
168 AIMC-RUC 91.18 % 96.84 % 85.94 % 0.11 s 1 core @ 2.5 Ghz (Python)
169 CA3D 91.08 % 95.05 % 81.53 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
170 PFF3D
This method makes use of Velodyne laser scans.
code 91.06 % 94.86 % 86.28 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
171 SC(DLA34)
This method uses stereo information.
91.02 % 96.54 % 83.15 % 0.04 s GPU @ 2.5 Ghz (Python)
172 sscl-20p 90.94 % 96.89 % 87.60 % 0.02 s 1 core @ 2.5 Ghz (Python)
173 MonoFlex 90.82 % 95.95 % 83.11 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
174 SCSTSV-MonoFlex 90.81 % 96.36 % 80.90 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
175 MAFF-Net(DAF-Pillar) 90.78 % 94.17 % 83.17 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
176 HRI-VoxelFPN 90.76 % 96.35 % 85.37 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
177 KM3D code 90.70 % 96.34 % 80.72 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
178 PointPillars
This method makes use of Velodyne laser scans.
code 90.70 % 93.84 % 87.47 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
179 WS3D
This method makes use of Velodyne laser scans.
90.69 % 94.85 % 85.94 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
180 MonoEF code 90.65 % 96.19 % 82.95 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
181 FPC3D_all
This method makes use of Velodyne laser scans.
90.60 % 95.35 % 85.79 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
182 QD-3DT
This is an online method (no batch processing).
code 90.49 % 92.61 % 80.32 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
183 vadin-TBD 90.49 % 95.86 % 80.66 % 0.04 s 1 core @ 2.5 Ghz (Python)
184 DPointNet 90.38 % 93.61 % 87.34 % 0.07s 1 core @ 2.5 Ghz (C/C++)
185 MonoFlex 90.29 % 95.51 % 82.68 % 0.03 s 1 core @ 2.5 Ghz (Python)
186 monodle code 90.23 % 93.46 % 80.11 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
187 3D IoU Loss
This method makes use of Velodyne laser scans.
90.21 % 95.60 % 84.96 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
188 MonoCInIS 90.20 % 95.80 % 82.00 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
189 ARPNET 90.11 % 93.42 % 82.56 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
190 TANet code 90.11 % 93.52 % 84.61 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
191 mono3d 90.02 % 93.54 % 83.19 % 0.03 s GPU @ 2.5 Ghz (Python)
192 CG-Stereo
This method uses stereo information.
89.98 % 96.28 % 82.21 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
193 Deep3DBox 89.88 % 94.62 % 76.40 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
194 FADNet code 89.84 % 95.89 % 79.98 % 0.04 s GPU @ >3.5 Ghz (Python)
195 GPP code 89.68 % 93.94 % 80.60 % 0.23 s GPU @ 1.5 Ghz (Python + C/C++)
A. Rangesh and M. Trivedi: Ground plane polling for 6dof pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles 2020.
196 SubCNN 89.53 % 94.11 % 79.14 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
197 MonoGeo 89.44 % 94.67 % 79.27 % 0.05 s 1 core @ 2.5 Ghz (Python)
198 SCNet
This method makes use of Velodyne laser scans.
89.36 % 95.23 % 84.03 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
199 Geo3D 89.28 % 93.60 % 77.21 % 0.04 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
200 GA-Aug 89.24 % 92.66 % 81.31 % 0.04 s GPU @ 2.5 Ghz (Python)
201 Digging_M3D 89.23 % 93.54 % 79.15 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
202 AVOD
This method makes use of Velodyne laser scans.
code 89.22 % 94.98 % 82.14 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
203 GAA 89.21 % 93.59 % 80.80 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
204 IAFA 89.14 % 92.96 % 79.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
205 MonoDDE 89.07 % 96.72 % 81.42 % 0.04 s 1 core @ 2.5 Ghz (Python)
206 FusionDetv2-v1 89.00 % 94.78 % 84.10 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
207 PPTrans 88.70 % 95.04 % 81.15 % 0.2 s GPU @ 2.5 Ghz (Python)
208 GAC3D++ 88.69 % 94.16 % 78.74 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
209 AVOD-FPN
This method makes use of Velodyne laser scans.
code 88.61 % 94.65 % 83.71 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
210 FusionDetv2-baseline 88.58 % 94.20 % 85.36 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
211 deleted 88.13 % 96.48 % 80.66 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
212 M3DSSD++ 88.04 % 94.75 % 76.03 % 0.16s 1 core @ 2.5 Ghz (C/C++)
213 MonoCon 87.92 % 93.52 % 75.83 % 0.02 s GPU @ 2.5 Ghz (Python)
214 MonoLCD 87.86 % 93.62 % 78.09 % 0.04 s 1 core @ 2.5 Ghz (Python)
215 DeepStereoOP 87.81 % 93.68 % 77.60 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
216 CMKD 87.79 % 95.17 % 80.92 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
217 MonoRUn code 87.64 % 95.44 % 77.75 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
218 3DBN
This method makes use of Velodyne laser scans.
87.59 % 93.34 % 79.91 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
219 FQNet 87.49 % 93.66 % 73.61 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
220 Shift R-CNN (mono) code 87.47 % 93.75 % 77.19 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
221 MonoPSR code 87.45 % 93.29 % 72.26 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
222 Mono3D code 87.28 % 93.13 % 77.00 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
223 Object Transformer 87.23 % 93.00 % 79.42 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
224 SMOKE code 87.02 % 92.94 % 77.12 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
225 3DOP
This method uses stereo information.
code 86.93 % 91.31 % 76.72 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
226 CDN
This method uses stereo information.
code 86.90 % 95.79 % 79.05 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
227 RTM3D code 86.73 % 91.75 % 77.18 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
228 MonoRCNN code 86.48 % 91.90 % 66.71 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
229 BirdNet+
This method makes use of Velodyne laser scans.
code 86.13 % 92.39 % 81.11 % 0.11 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
230 MonoPair 86.11 % 91.65 % 76.45 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
231 DSGN
This method uses stereo information.
code 86.03 % 95.42 % 78.27 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
232 GUPNet code 85.90 % 93.92 % 73.55 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
233 StereoFENet
This method uses stereo information.
85.14 % 91.28 % 76.80 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
234 MP-Mono 84.72 % 90.17 % 64.19 % 0.16 s GPU @ 2.5 Ghz (Python)
235 AEC3D 84.59 % 90.38 % 80.13 % 18 ms GPU @ 2.5 Ghz (Python)
236 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 84.42 % 94.83 % 76.95 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
237 SS3D 84.38 % 92.57 % 69.82 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
238 CDN-PL++
This method uses stereo information.
84.21 % 94.45 % 76.69 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
239 ZongmuMono3d code 84.21 % 92.95 % 74.77 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
240 VN3D 84.12 % 90.42 % 77.70 % 0.02 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
241 MonoFENet 84.09 % 91.42 % 75.93 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
242 Complexer-YOLO
This method makes use of Velodyne laser scans.
83.89 % 91.77 % 79.24 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
243 ZoomNet
This method uses stereo information.
code 83.79 % 94.14 % 68.78 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
244 PLDet3d 83.76 % 88.25 % 75.11 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
245 LPCG-M3D 83.39 % 86.97 % 75.09 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
246 Deprecated 83.08 % 88.95 % 64.00 % Deprecated Deprecated
247 DA-Mono3D 83.00 % 88.87 % 63.87 % 0.09s 1 core @ 2.5 Ghz (C/C++)
248 M3D-RPN code 82.81 % 88.38 % 67.08 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
249 OSE+ 82.44 % 94.33 % 75.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
250 MM 82.35 % 93.17 % 72.50 % 1 s 1 core @ 2.5 Ghz (C/C++)
251 Disp R-CNN (velo)
This method uses stereo information.
code 82.09 % 93.31 % 69.78 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
252 D4LCN code 82.08 % 90.01 % 63.98 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
253 Disp R-CNN
This method uses stereo information.
code 81.96 % 93.49 % 67.35 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
254 Pseudo-LiDAR++
This method uses stereo information.
code 81.87 % 94.14 % 74.29 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
255 BS3D 81.22 % 94.66 % 68.39 % 22 ms Titan Xp
N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler: Beyond Bounding Boxes: Using Bounding Shapes for Real-Time 3D Vehicle Detection from Monocular RGB Images. 2019 IEEE Intelligent Vehicles Symposium (IV) 2019.
256 YOLOStereo3D
This method uses stereo information.
code 80.88 % 93.65 % 61.17 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
257 vadin-TBD2 code 80.67 % 91.94 % 70.64 % 0.20 s 1 core @ 2.5 Ghz (Python)
258 SOD 80.62 % 94.15 % 65.94 % 0.1 s 1 core @ 2.5 Ghz (Python)
259 FRCNN+Or code 80.57 % 91.50 % 67.49 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
260 ITS-MDPL 80.56 % 92.45 % 73.05 % 0.16 s GPU @ 2.5 Ghz (Python)
261 SwinMono3D 80.47 % 91.08 % 60.77 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
262 DDMP-3D 80.20 % 90.73 % 61.82 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
263 none 80.17 % 90.64 % 67.96 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
264 K3D 80.16 % 93.38 % 70.41 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
265 Ground-Aware code 80.05 % 90.98 % 60.51 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
266 GrooMeD-NMS code 79.93 % 90.05 % 63.43 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
267 RelationNet3D_dla34 code 79.59 % 83.64 % 69.13 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
268 PGD-FCOS3D code 79.46 % 91.51 % 68.48 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning 2021.
269 E2E-DA 79.33 % 92.09 % 69.45 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
270 Lite-FPN 79.13 % 86.85 % 65.03 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
271 KMC code 79.09 % 89.31 % 72.31 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
272 YoloMono3D code 78.50 % 91.43 % 58.80 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
273 3D-GCK 78.44 % 88.59 % 66.28 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
274 COF3D 77.98 % 87.17 % 60.10 % 200 s 1 core @ 2.5 Ghz (Python + C/C++)
275 E2E-DA-Lite (Res18) 77.94 % 90.63 % 65.85 % 0.01 s GPU @ 2.5 Ghz (Python)
276 3D-SSMFCNN code 77.82 % 77.84 % 68.67 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
277 DFR-Net 77.41 % 89.79 % 59.20 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
278 AutoShape code 77.31 % 86.41 % 64.06 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
279 ImVoxelNet code 77.18 % 89.07 % 67.35 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
280 Aug3D-RPN 76.89 % 84.89 % 60.21 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
281 AutoShape 76.61 % 83.71 % 63.47 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
282 RelationNet3D_res18 code 76.45 % 86.98 % 66.83 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
283 RelationNet3D 76.44 % 81.31 % 68.25 % 0.04 s GPU @ 2.5 Ghz (Python)
284 MonoHMOO 75.95 % 91.51 % 59.55 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
285 ICCV 75.90 % 85.36 % 64.93 % 0.04 s GPU @ 2.5 Ghz (Python)
286 3DVP code 75.71 % 84.44 % 64.41 % 40 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Data-Driven 3D Voxel Patterns for Object Category Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2015.
287 GS3D 75.63 % 85.79 % 61.85 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
288 Pose-RCNN 75.41 % 89.49 % 63.57 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
289 SubCat code 75.26 % 83.31 % 59.55 % 0.7 s 6 cores @ 3.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
290 3D FCN
This method makes use of Velodyne laser scans.
74.54 % 86.65 % 67.73 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
291 Mobile Stereo R-CNN
This method uses stereo information.
74.13 % 88.80 % 59.84 % 1.8 s NVIDIA Jetson TX2
292 MAOLoss code 73.51 % 89.22 % 63.24 % 0.05 s 1 core @ 2.5 Ghz (Python)
293 OC Stereo
This method uses stereo information.
code 73.34 % 86.86 % 61.37 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
294 GAC3D 70.49 % 83.27 % 52.04 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
295 ROI-10D 68.14 % 75.32 % 58.98 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
296 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 67.65 % 91.82 % 65.11 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
297 multi-task CNN 67.51 % 79.00 % 58.80 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
298 CaDDN code 67.31 % 78.28 % 59.52 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
299 Decoupled-3D 67.23 % 87.34 % 53.84 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
300 BdCost48LDCF code 65.50 % 80.44 % 51.24 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
301 OC-DPM 65.32 % 77.35 % 51.00 % 10 s 8 cores @ 2.5 Ghz (Matlab)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
302 RefinedMPL 64.02 % 87.95 % 52.06 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
303 TBD 63.75 % 85.52 % 54.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
304 DPM-VOC+VP 63.58 % 79.09 % 46.59 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
305 AOG-View 62.62 % 77.62 % 48.27 % 3 s 1 core @ 2.5 Ghz (Matlab, C/C++)
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
306 LSVM-MDPM-sv 57.48 % 70.23 % 42.54 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
307 SAMME48LDCF code 57.26 % 76.28 % 43.55 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
308 BirdNet
This method makes use of Velodyne laser scans.
56.94 % 79.20 % 54.88 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
309 VeloFCN
This method makes use of Velodyne laser scans.
51.05 % 70.03 % 44.82 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
310 Mono3D_PLiDAR code 49.39 % 76.90 % 41.13 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
311 DPM-C8B1
This method uses stereo information.
48.00 % 57.76 % 35.52 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
312 LTN 46.54 % 48.96 % 41.58 % 0.4 s GPU @ >3.5 Ghz (Python)
T. Wang, X. He, Y. Cai and G. Xiao: Learning a Layout Transfer Network for Context Aware Object Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
313 sensekitti code 46.12 % 49.16 % 42.79 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
314 Kinematic3D code 45.50 % 58.33 % 34.81 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
315 weakm3d 41.50 % 41.21 % 38.11 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
316 MonoCInIS 40.75 % 45.00 % 34.48 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
317 3D-CVF at SPA
This method makes use of Velodyne laser scans.
39.79 % 40.44 % 36.10 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
318 SPG_mini
This method makes use of Velodyne laser scans.
38.75 % 39.26 % 38.57 % 0.09 s GPU @ 2.5 Ghz (Python)
319 SPG
This method makes use of Velodyne laser scans.
code 38.73 % 40.02 % 38.52 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
320 DGIST MT-CNN 38.47 % 39.69 % 35.22 % 0.09 s GPU @ 1.0 Ghz (Python)
321 SA-SSD code 38.30 % 39.40 % 37.07 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
322 BtcDet
This method makes use of Velodyne laser scans.
38.00 % 39.26 % 36.82 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
323 VueronNet code 37.99 % 39.17 % 36.47 % 0.06 s 1 core @ 2.0 Ghz (Python)
324 NF2 37.91 % 38.81 % 34.27 % 0.1 s GPU @ 2.5 Ghz (Python)
325 VueronNet 37.86 % 39.24 % 35.49 % 0.08 s GPU @ 2.5 Ghz (Python)
326 HS3D code 37.35 % 39.43 % 33.26 % 0.12 s 1 core @ 2.5 Ghz (Python + C/C++)
327 Point-GNN
This method makes use of Velodyne laser scans.
code 37.20 % 38.66 % 36.29 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
328 FPGNN 36.87 % 38.36 % 36.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
329 RT3D-GMP
This method uses stereo information.
36.31 % 44.06 % 27.32 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
330 Graph-NMS 32.53 % 41.35 % 28.13 % 36 ms GPU @ 2.5 Ghz (Python)
331 AOG code 29.81 % 33.28 % 23.91 % 3 s 4 cores @ 2.5 Ghz (Matlab)
T. Wu, B. Li and S. Zhu: Learning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation. TPAMI 2016.
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
332 NCL code 29.49 % 26.49 % 29.89 % NA s 1 core @ 2.5 Ghz (Python)
333 RetinaMono 28.87 % 30.96 % 25.60 % 0.02 s 1 core @ 2.5 Ghz (Python)
334 RetinaMono code 28.68 % 31.39 % 24.70 % 0.02 s 1 core @ 2.5 Ghz (Python)
335 Graph-NMS-baseline 26.84 % 38.30 % 22.04 % 47 ms GPU @ 2.5 Ghz (Python)
336 SubCat48LDCF code 26.68 % 34.33 % 19.44 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
337 Y4 code 25.53 % 32.98 % 22.95 % 0.03 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
338 RT3DStereo
This method uses stereo information.
21.41 % 25.58 % 17.52 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
339 CSoR
This method makes use of Velodyne laser scans.
code 20.82 % 30.65 % 17.14 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
340 R-AGNO-Net 19.00 % 24.71 % 18.36 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
341 RT3D
This method makes use of Velodyne laser scans.
18.96 % 24.41 % 19.85 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
342 VoxelJones code 15.41 % 17.83 % 14.13 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
343 Associate-3Ddet code 1.20 % 0.52 % 1.38 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
344 APL-Second 1.16 % 0.50 % 1.50 % 0.05 s 1 core @ 2.5 Ghz (Python)
345 HNet-3DSSD
This method makes use of Velodyne laser scans.
code 0.47 % 0.01 % 0.63 % 0.05 s GPU @ 2.5 Ghz (Python)
Table as LaTeX | Only published Methods


Pedestrians


Method Setting Code Moderate Easy Hard Runtime Environment
1 VMVS
This method makes use of Velodyne laser scans.
68.19 % 79.98 % 63.18 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: