Optical Flow Evaluation 2015


The stereo 2015 / flow 2015 / scene flow 2015 benchmark consists of 200 training scenes and 200 test scenes (4 color images per scene, saved in loss less png format). Compared to the stereo 2012 and flow 2012 benchmarks, it comprises dynamic scenes for which the ground truth has been established in a semi-automatic process. Our evaluation server computes the percentage of bad pixels averaged over all ground truth pixels of all 200 test images. For this benchmark, we consider a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields. More details can be found in Object Scene Flow for Autonomous Vehicles (CVPR 2015).

Our evaluation table ranks all methods according to the number of erroneous pixels. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. Legend:

  • D1: Percentage of stereo disparity outliers in first frame
  • D2: Percentage of stereo disparity outliers in second frame
  • Fl: Percentage of optical flow outliers
  • SF: Percentage of scene flow outliers (=outliers in either D0, D1 or Fl)
  • bg: Percentage of outliers averaged only over background regions
  • fg: Percentage of outliers averaged only over foreground regions
  • all: Percentage of outliers averaged over all ground truth pixels


Note: On 13.03.2017 we have fixed several small errors in the flow (noc+occ) ground truth of the dynamic foreground objects and manually verified all images for correctness by warping them according to the ground truth. As a consequence, all error numbers have decreased slightly. Please download the devkit and the annotations with the improved ground truth for the training set again if you have downloaded the files prior to 13.03.2017 and consider reporting these new number in all future publications. The last leaderboards before these corrections can be found here (optical flow 2015) and here (scene flow 2015). The leaderboards for the KITTI 2015 stereo benchmarks did not change.

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Multiview: Method uses more than 2 temporally adjacent images
  • Motion stereo: Method uses epipolar geometry for computing optical flow
  • Additional training data: Use of additional data sources for training (see details)

Evaluation ground truth        Evaluation area

Method Setting Code Fl-bg Fl-fg Fl-all Density Runtime Environment
1 RigidMask+ISF
This method uses stereo information.
2.63 % 7.85 % 3.50 % 100.00 % 3.3 s GPU @ 2.5 Ghz (Python)
2 Dahua_SF
This method uses stereo information.
2.86 % 8.44 % 3.79 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (Python)
3 MaskRCNN+ISF
This method uses stereo information.
2.86 % 9.05 % 3.89 % 100.00 % 3.3 s GPU @ 2.5 Ghz (Python)
4 RME
This method uses stereo information.
3.39 % 8.79 % 4.29 % 100.00 % 2 s GPU @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
5 UberATG-DRISF
This method uses stereo information.
3.59 % 10.40 % 4.73 % 100.00 % 0.75 s CPU+GPU @ 2.5 Ghz (Python)
W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Rigid Instance Scene Flow. CVPR 2019.
6 RFPM code 4.50 % 6.20 % 4.79 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
7 MRFP_s 4.45 % 6.58 % 4.81 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
8 RAFTv2-OER 4.72 % 6.66 % 5.04 % 100.00 % 0.1541 s NVIDIA 2080Ti (Python)
9 RAFT+AOIR 4.68 % 6.99 % 5.07 % 100.00 % 10 s GPU @ 2.5 Ghz (Python + C/C++)
10 TBNO 4.73 % 6.89 % 5.09 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
11 RAFT code 4.74 % 6.87 % 5.10 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
Z. Teed and J. Deng: RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. ECCV 2020.
12 RAFT+NCUP 4.78 % 6.93 % 5.14 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
13 RAFTv1-OER 4.90 % 6.61 % 5.18 % 100.00 % 0.2475 s NVIDIA 2080Ti (Python)
14 IOWM_xsj 4.83 % 6.96 % 5.19 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
15 RAFTER 4.88 % 7.10 % 5.25 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
16 PRAFlow_RVC 5.08 % 7.21 % 5.43 % 100.00 % 0.5 s GPU @ NVIDIA RTX 2080Ti (Python)
Z. Wan, Y. Mao and Y. Dai: PRAFlow_RVC: Pyramid Recurrent All- Pairs Field Transforms for Optical Flow Estimation in Robust Vision Challenge 2020. 2020.
17 RAFT-TF_RVC 5.32 % 6.75 % 5.56 % 100.00 % 0.7 s GPU @ 2.5 Ghz (Python)
D. Sun, C. Herrmann, V. Jampani, M. Krainin, F. Cole, A. Stone, R. Jonschkowski, R. Zabih, W. Freeman and C. Liu: A TensorFlow implementation of RAFT. 2020.
18 ACOSF
This method uses stereo information.
4.56 % 12.00 % 5.79 % 100.00 % 5 min 1 core @ 3.0 Ghz (Matlab + C/C++)
C. Li, H. Ma and Q. Liao: Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model. International Conference on Pattern Recognition (ICPR) 2020.
19 f407HTJ 5.47 % 8.11 % 5.91 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (python) GPU
20 DistillFlow+ft 5.53 % 7.96 % 5.94 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
21 VCN+MSDRNet 5.57 % 7.78 % 5.94 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
22 PPAC-HD3 code 5.78 % 7.48 % 6.06 % 100.00 % 0.19 s NVIDIA GTX 1080 Ti
A. Wannenwetsch and S. Roth: Probabilistic Pixel-Adaptive Refinement Networks. CVPR 2020.
23 MaskFlownet code 5.79 % 7.70 % 6.11 % 100.00 % 0.06 s NVIDIA TITAN Xp
S. Zhao, Y. Sheng, Y. Dong, E. Chang and Y. Xu: MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
24 SCV 5.84 % 7.83 % 6.17 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
25 UnDAF-MaskFlownet 5.90 % 7.77 % 6.21 % 100.00 % 0.06 s GPU @ 2.5 Ghz (Python)
26 ISF
This method uses stereo information.
5.40 % 10.29 % 6.22 % 100.00 % 10 min 1 core @ 3 Ghz (C/C++)
A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. International Conference on Computer Vision (ICCV) 2017.
27 VCN+LCV 5.75 % 8.80 % 6.25 % 100.00 % 0.26 s 1 core @ 2.5 Ghz (Python)
T. Xiao, J. Yuan, D. Sun, Q. Wang, X. Zhang, K. Xu and M. Yang: Learnable Cost Volume using the Cayley Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
28 RAFT+LCV 5.73 % 8.90 % 6.26 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Xiao, J. Yuan, D. Sun, Q. Wang, X. Zhang, K. Xu and M. Yang: Learnable Cost Volume using the Cayley Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
29 PRichFlow 6.18 % 6.89 % 6.30 % 100.00 % 0.1 s TITAN X MAXWELL
30 VCN code 5.83 % 8.66 % 6.30 % 100.00 % 0.18 s Titan X Pascal
G. Yang and D. Ramanan: Volumetric Correspondence Networks for Optical Flow. NeurIPS 2019.
31 Stereo expansion
This method uses stereo information.
code 5.83 % 8.66 % 6.30 % 100.00 % 2 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Upgrading Optical Flow to 3D Scene Flow through Optical Expansion. CVPR 2020.
32 MonoComb
This method uses stereo information.
5.84 % 8.67 % 6.31 % 100.00 % 0.58 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow. ACM Computer Science in Cars Symposium (CSCS) 2020.
33 HD3F+MSDRNet 5.91 % 8.37 % 6.32 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
34 DICL-Flow 5.81 % 8.94 % 6.33 % 100.00 % 0.08 s 1 core @ 2.5 Ghz (Python)
35 IOFPL-CVr8-ft 6.01 % 8.09 % 6.35 % 100.00 % -1 s GPU @ 2.5 Ghz (Python + C/C++)
36 HD3-Flow-OER 6.09 % 7.90 % 6.39 % 100.00 % 0.0906 s NVIDIA 2080Ti (Python)
37 VCN-OER 6.25 % 7.21 % 6.41 % 100.00 % 0.1992 s NVIDIA 2080Ti (Python)
38 ra7_hd3 code 6.20 % 7.89 % 6.48 % 100.00 % tbd s 1 core @ 2.5 Ghz (C/C++)
39 GAP-Net 6.40 % 7.06 % 6.51 % 100.00 % 0.03 s NVIDIA GTX 1080 Ti
40 IOFPL-ft code 6.22 % 8.06 % 6.52 % 100.00 % 1- GPU @ 2.5 Ghz (Python)
41 ra7_vcn code 6.43 % 7.06 % 6.53 % 100.00 % tbd s 1 core @ 2.5 Ghz (C/C++)
42 HD^3-Flow code 6.05 % 9.02 % 6.55 % 100.00 % 0.10 s NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition for Match Density Estimation. CVPR 2019.
43 MPSD-ft 6.09 % 9.46 % 6.65 % 100.00 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
44 PRSM
This method uses stereo information.
This method makes use of multiple (>2) views.
code 5.33 % 13.40 % 6.68 % 100.00 % 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015.
45 F407NJJ-FLOW
This method uses stereo information.
5.02 % 15.23 % 6.72 % 100.00 % -1 s 1 core @ 2.5 Ghz (C/C++)
46 IRR-PWC-OER 6.68 % 6.92 % 6.72 % 100.00 % 0.2051 s NVIDIA 2080Ti (Python)
47 ra7_irr code 6.79 % 6.83 % 6.79 % 100.00 % tbd s 1 core @ 2.5 Ghz (C/C++)
48 MaskFlownet-S code 6.53 % 8.21 % 6.81 % 100.00 % 0.03 s NVIDIA TITAN Xp
S. Zhao, Y. Sheng, Y. Dong, E. Chang and Y. Xu: MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
49 ScopeFlow code 6.72 % 7.36 % 6.82 % 100.00 % -1 s Nvidia GPU
A. Bar-Haim and L. Wolf: ScopeFlow: Dynamic Scene Scoping for Optical Flow. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
50 SMURF 6.04 % 10.75 % 6.83 % 100.00 % .2 s 1 core @ 2.5 Ghz (C/C++)
51 UnDAF-SENSE
This method uses stereo information.
6.50 % 8.56 % 6.84 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
52 OSF+TC
This method uses stereo information.
This method makes use of multiple (>2) views.
5.76 % 13.31 % 7.02 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Neoral and J. Šochman: Object Scene Flow with Temporal Consistency. 22nd Computer Vision Winter Workshop (CVWW) 2017.
53 GCA-Net-ft+ 7.10 % 6.86 % 7.06 % 100.00 % 0.03 s NVIDIA GTX 1080 Ti
54 DPCTF-F 7.22 % 6.47 % 7.09 % 100.00 % 0.09 GPU @ 2.5 Ghz (Python + C/C++)
55 SSF
This method uses stereo information.
5.63 % 14.71 % 7.14 % 100.00 % 5 min 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Ren, D. Sun, J. Kautz and E. Sudderth: Cascaded Scene Flow Prediction using Semantic Segmentation. International Conference on 3D Vision (3DV) 2017.
56 MFF
This method makes use of multiple (>2) views.
7.15 % 7.25 % 7.17 % 100.00 % 0.05 s NVIDIA Pascal Titan X (Python)
Z. Ren, O. Gallo, D. Sun, M. Yang, E. Sudderth and J. Kautz: A Fusion Approach for Multi-Frame Optical Flow Estimation. IEEE Winter Conference on Applications of Computer Vision 2019.
57 LiteFlowNet3-S code 7.27 % 6.96 % 7.22 % 100.00 % 0.07s GTX 1080 (slower than Pascal Titan X)
T. Hui and C. Loy: LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate Optical Flow Estimation. European Conference on Computer Vision (ECCV) 2020.
58 SwiftFlow 6.85 % 9.11 % 7.23 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Wang, Y. Liu, H. Huang, Y. Pan, W. Yu, J. Jiang, D. Lyu, M. Bocus J., M. Liu, I. Pitas and R. Fan: ATG-PVD: Ticketing Parking Violations on A Drone. Proceedings of the European Conference on Computer Vision (ECCV) Workshops 2020.
59 GCA-Net 7.17 % 8.15 % 7.33 % 100.00 % 0.03 s NVIDIA GTX 1080 Ti
60 LiteFlowNet3 code 7.26 % 7.75 % 7.34 % 100.00 % 0.07s GTX 1080 (slower than Pascal Titan X)
T. Hui and C. Loy: LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate Optical Flow Estimation. European Conference on Computer Vision (ECCV) 2020.
61 HD3+_Flow
This method uses stereo information.
6.83 % 10.00 % 7.36 % 100.00 % 0.04 s GPU @ 2.5 Ghz (Python)
62 OSF 2018
This method uses stereo information.
code 5.38 % 17.61 % 7.41 % 100.00 % 390 s 1 core @ 2.5 Ghz (Matlab + C/C++)
M. Menze, C. Heipke and A. Geiger: Object Scene Flow. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018.
63 CVPR-1235 6.35 % 13.16 % 7.49 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
64 StAw-UNet 7.63 % 6.96 % 7.52 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
65 FPCR-Net 7.70 % 7.16 % 7.61 % 100.00 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
66 LiteFlowNet2 code 7.62 % 7.64 % 7.62 % 100.00 % 0.0486 s GTX 1080 (slower than Pascal Titan X)
T. Hui, X. Tang and C. Loy: A Lightweight Optical Flow CNN - Revisiting Data Fidelity and Regularization. TPAMI 2020.
67 SENSE
This method uses stereo information.
code 7.30 % 9.33 % 7.64 % 100.00 % 0.32s GPU, GTX 2080Ti
H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz: SENSE: A Shared Encoder Network for Scene-Flow Estimation. The IEEE International Conference on Computer Vision (ICCV) 2019.
68 IRR-PWC code 7.68 % 7.52 % 7.65 % 100.00 % 0.18 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Iterative Residual Refinement for Joint Optical Flow and Occlusion Estimation. CVPR 2019.
69 STaRFlow 7.51 % 8.35 % 7.65 % 100.00 % 0.24 s GPU @ 2.0 Ghz (Python)
P. Godet, A. Boulch, A. Plyer and G. Besnerais: STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation. 2020.
70 DTF_SENSE
This method uses stereo information.
This method makes use of multiple (>2) views.
7.31 % 9.48 % 7.67 % 100.00 % 0.76 s 1 core @ 2.5 Ghz (C/C++)
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
71 SJTU_PAMI418 7.57 % 8.38 % 7.71 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
72 PWC-Net+ code 7.69 % 7.88 % 7.72 % 100.00 % 0.03 s NVIDIA Pascal Titan X
D. Sun, X. Yang, M. Liu and J. Kautz: Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation. arXiv preprint arXiv:1809.05571 2018.
73 OSF
This method uses stereo information.
code 5.62 % 18.92 % 7.83 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
74 SMURF-NM 7.07 % 12.21 % 7.93 % 100.00 % .2 s 1 core @ 2.5 Ghz (C/C++)
75 StAw-Simple 8.11 % 7.38 % 7.99 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
76 LSM_FLOW_RVC code 7.33 % 13.06 % 8.28 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Tang, L. Yuan and P. Tan: LSM: Learning Subspace Minimization for Low-Level Vision. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
77 IRR-PWC_RVC code 7.61 % 12.22 % 8.38 % 100.00 % 0.18 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Iterative Residual Refinement for Joint Optical Flow and Occlusion Estimation. CVPR 2019.
78 SelFlow
This method makes use of multiple (>2) views.
7.61 % 12.48 % 8.42 % 100.00 % 0.09 s GPU @ 2.5 Ghz (Python)
P. Liu, M. Lyu, I. King and J. Xu: SelFlow: Self-Supervised Learning of Optical Flow. CVPR 2019.
79 C-RAFT_RVC 8.26 % 11.22 % 8.75 % 100.00 % 0.6 s GPU @ 2.5 Ghz (Python)
80 FDFlowNet 9.31 % 9.71 % 9.38 % 100.00 % 0.02 s NVIDIA GTX 1080 Ti
L. Kong and J. Yang: FDFlowNet: Fast Optical Flow Estimation using a Deep Lightweight Network. IEEE International Conference on Image Processing (ICIP) 2020.
81 LiteFlowNet code 9.66 % 7.99 % 9.38 % 100.00 % 0.0885 s GTX 1080 (slower than Pascal Titan X)
T. Hui, X. Tang and C. Loy: LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
82 UPFlow 8.14 % 15.59 % 9.38 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
83 PWC-Net code 9.66 % 9.31 % 9.60 % 100.00 % 0.03 s NVIDIA Pascal Titan X
D. Sun, X. Yang, M. Liu and J. Kautz: PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. CVPR 2018.
84 FCU-Net
This method uses stereo information.
8.10 % 17.72 % 9.70 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
85 OIFlow code 8.63 % 15.74 % 9.81 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (Python)
86 ContinualFlow_ROB
This method makes use of multiple (>2) views.
8.54 % 17.48 % 10.03 % 100.00 % 0.15 s GPU - NVidia 1080Ti
M. Neoral, J. Šochman and J. Matas: Continual Occlusions and Optical Flow Estimation. 14th Asian Conference on Computer Vision (ACCV) 2018.
87 VCN_RVC code 8.53 % 18.30 % 10.15 % 100.00 % 0.36 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Volumetric Correspondence Networks for Optical Flow. NeurIPS 2019.
88 MirrorFlow code 8.93 % 17.07 % 10.29 % 100.00 % 11 min 4 core @ 2.2 Ghz (C/C++)
J. Hur and S. Roth: MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation. ICCV 2017.
89 CoT-AMFlow 10.02 % 11.95 % 10.34 % 100.00 % 0.06 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: CoT-AMFlow: Adaptive Modulation Network with Co-Teaching Strategy for Unsupervised Optical Flow Estimation. Conference on Robot Learning (CoRL) 2020.
90 UUF-Net
This method uses stereo information.
8.14 % 21.47 % 10.36 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
91 DWARF
This method uses stereo information.
9.80 % 13.37 % 10.39 % 100.00 % 0.14s - 1.43s TitanXP - JetsonTX2
F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia: Learning end-to-end scene flow by distilling single tasks knowledge. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) 2020.
92 FlowNet2 code 10.75 % 8.75 % 10.41 % 100.00 % 0.1 s GPU @ 2.5 Ghz (C/C++)
E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox: FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.
93 STaRFlow_woref 10.19 % 11.93 % 10.48 % 100.00 % 0.89 s GPU @ 2.0 Ghz (Python)
94 DistillFlow
This method uses stereo information.
9.26 % 16.98 % 10.54 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
95 CostUnrolling 10.10 % 14.40 % 10.81 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
96 SDF 8.61 % 23.01 % 11.01 % 100.00 % TBA 1 core @ 2.5 Ghz (C/C++)
M. Bai*, W. Luo*, K. Kundu and R. Urtasun: Exploiting Semantic Information and Deep Matching for Optical Flow. ECCV 2016.
97 Flow2Stereo 9.99 % 16.67 % 11.10 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching. CVPR 2020.
98 UnFlow code 10.15 % 15.93 % 11.11 % 100.00 % 0.12 s GPU @ 1.5 Ghz (Python + C/C++)
S. Meister, J. Hur and S. Roth: UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss. AAAI 2018.
99 UFlow code 9.78 % 17.87 % 11.13 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
R. Jonschkowski, A. Stone, J. Barron, A. Gordon, K. Konolige and A. Angelova: What Matters in Unsupervised Optical Flow. ECCV 2020.
100 FastFlowNet 11.20 % 11.30 % 11.22 % 100.00 % 0.01 s NVIDIA GTX 1080 Ti
101 FSF+MS
This method uses stereo information.
This method makes use of the epipolar geometry.
This method makes use of multiple (>2) views.
8.48 % 25.43 % 11.30 % 100.00 % 2.7 s 4 cores @ 3.5 Ghz (C/C++)
T. Taniai, S. Sinha and Y. Sato: Fast Multi-frame Stereo Scene Flow with Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) 2017.
102 CNNF+PMBP 10.08 % 18.56 % 11.49 % 100.00 % 45 min 1 cores @ 3.5 Ghz (C/C++)
F. Zhang and B. Wah: Fundamental Principles on Learning New Features for Effective Dense Matching. IEEE Transactions on Image Processing 2018.
103 stflow-ft 11.67 % 10.74 % 11.51 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
104 PWC-Net_RVC code 11.22 % 13.69 % 11.63 % 100.00 % 0.03 s NVIDIA Pascal Titan X
D. Sun, X. Yang, M. Liu and J. Kautz: PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. CVPR 2018.
105 SFF++
This method uses stereo information.
This method makes use of multiple (>2) views.
10.63 % 17.48 % 11.77 % 100.00 % 78 s 4 cores @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker: SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation. International Journal of Computer Vision (IJCV) 2019.
106 SfM-PM
This method makes use of multiple (>2) views.
9.66 % 22.73 % 11.83 % 100.00 % 69 s 3 cores @ 3.6 Ghz (C/C++)
D. Maurer, N. Marniok, B. Goldluecke and A. Bruhn: Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimation. ECCV 2018.
107 MR-Flow
This method makes use of multiple (>2) views.
code 10.13 % 22.51 % 12.19 % 100.00 % 8 min 1 core @ 2.5 Ghz (Python + C/C++)
J. Wulff, L. Sevilla-Lara and M. Black: Optical Flow in Mostly Rigid Scenes. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2017.
108 DTF_PWOC
This method uses stereo information.
This method makes use of multiple (>2) views.
10.78 % 19.99 % 12.31 % 100.00 % 0.38 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
109 Mono-SF
This method uses stereo information.
11.40 % 19.64 % 12.77 % 100.00 % 41 s 1 core @ 3.5 Ghz (Matlab + C/C++)
F. Brickwedde, S. Abraham and R. Mester: Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes. Proc. of International Conference on Computer Vision (ICCV) 2019.
110 SceneFFields
This method uses stereo information.
10.58 % 24.41 % 12.88 % 100.00 % 65 s 4 cores @ 3.7 Ghz (C/C++)
R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker: SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences. IEEE Winter Conference on Applications of Computer Vision (WACV) 2018.
111 CSF
This method uses stereo information.
10.40 % 25.78 % 12.96 % 100.00 % 80 s 1 core @ 2.5 Ghz (C/C++)
Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert: A Continuous Optimization Approach for Efficient and Accurate Scene Flow. European Conf. on Computer Vision (ECCV) 2016.
112 PWOC-3D
This method uses stereo information.
code 12.40 % 15.78 % 12.96 % 100.00 % 0.13 s GTX 1080 Ti
R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker: PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation. Intelligent Vehicles Symposium (IV) 2019.
113 Multi-Mono-SF-ft
This method uses stereo information.
This method makes use of multiple (>2) views.
12.41 % 18.20 % 13.37 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
114 UnsupSimFlow code 12.60 % 17.27 % 13.38 % 100.00 % 0.03 s 8 cores @ 3.0 Ghz (Python + C/C++)
W. Im, T. Kim and S. Yoon: Unsupervised Learning of Optical Flow with Deep Feature Similarity. The European Conference on Computer Vision (ECCV) 2020.
115 PR-Sceneflow
This method uses stereo information.
code 11.73 % 24.33 % 13.83 % 100.00 % 150 s 4 core @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. ICCV 2013.
116 stflow_r 12.30 % 21.49 % 13.83 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
117 DDFlow+LCV 12.98 % 19.83 % 14.12 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
T. Xiao, J. Yuan, D. Sun, Q. Wang, X. Zhang, K. Xu and M. Yang: Learnable Cost Volume using the Cayley Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
118 MPSD-noft 7.72 % 46.40 % 14.16 % 100.00 % .1 s 1 core @ 2.5 Ghz (Python + C/C++)
119 SelFlow
This method makes use of multiple (>2) views.
12.68 % 21.74 % 14.19 % 100.00 % 0.09 s GPU @ 2.5 Ghz (Python)
P. Liu, M. Lyu, I. King and J. Xu: SelFlow: Self-Supervised Learning of Optical Flow. CVPR 2019.
120 DDFlow 13.08 % 20.40 % 14.29 % 100.00 % 0.06 s GPU @ >3.5 Ghz (Python + C/C++)
P. Liu, I. King, M. Lyu and J. Xu: DDFlow: Learning Optical Flow with Unlabeled Data Distillation. AAAI 2019.
121 DCFlow code 13.10 % 23.70 % 14.86 % 100.00 % 8.6 s GPU @ 3.0 Ghz (Matlab + C/C++)
J. Xu, R. Ranftl and V. Koltun: Accurate Optical Flow via Direct Cost Volume Processing. CVPR 2017.
122 ProFlow
This method makes use of multiple (>2) views.
13.86 % 20.91 % 15.04 % 100.00 % 112 s GPU+CPU @ 3.6 Ghz (Python + C/C++)
D. Maurer and A. Bruhn: ProFlow: Learning to Predict Optical Flow. BMVC 2018.
123 FlowFields++ code 14.82 % 17.77 % 15.31 % 100.00 % 29 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation. International Conference on Image Processing (ICIP) 2018.
124 ProFlow_ROB
This method makes use of multiple (>2) views.
14.15 % 21.82 % 15.42 % 100.00 % 112 s GPU+CPU @ 3.6 Ghz (Python + C/C++)
D. Maurer and A. Bruhn: ProFlow: Learning to Predict Optical Flow. BMVC 2018.
125 Self-Mono-SF-ft
This method uses stereo information.
code 15.51 % 17.96 % 15.91 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
126 FF++_ROB 15.32 % 19.27 % 15.97 % 100.00 % 29 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation. International Conference on Image Processing (ICIP) 2018.
127 SOF code 14.63 % 22.83 % 15.99 % 100.00 % 6 min 1 core @ 2.5 Ghz (Matlab)
L. Sevilla-Lara, D. Sun, V. Jampani and M. Black: Optical Flow with Semantic Segmentation and Localized Layers. CVPR 2016.
128 DIP-Flow-DF
This method makes use of multiple (>2) views.
14.93 % 23.37 % 16.33 % 100.00 % 104s 2 cores @ 3.6 Ghz (C/C++)
D. Maurer, M. Stoll and A. Bruhn: Directional Priors for Multi-Frame Optical Flow. BMVC 2018.
129 JFS
This method makes use of the epipolar geometry.
15.90 % 19.31 % 16.47 % 100.00 % 13 min 1 core @ 3.2 Ghz (C/C++)
J. Hur and S. Roth: Joint Optical Flow and Temporally Consistent Semantic Segmentation. ECCV Workshops 2016.
130 DF+OIR 15.11 % 23.45 % 16.50 % 100.00 % 3 min 1 core @ 3.5 Ghz (Matlab + C/C++)
D. Maurer, M. Stoll and A. Bruhn: Order-Adaptive and Illumination Aware Variational Optical Flow Refinement. BMVC 2017.
131 SPS+FF++
This method uses stereo information.
code 15.91 % 20.27 % 16.64 % 100.00 % 36 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller and D. Stricker: Dense Scene Flow from Stereo Disparity and Optical Flow. ACM Computer Science in Cars Symposium (CSCS) 2018.
132 ricom 17.11 % 15.00 % 16.76 % 100.00 % 15 s 1 core @ 2.5 Ghz (C/C++)
133 DIP-Flow-CPM
This method makes use of multiple (>2) views.
15.57 % 23.84 % 16.95 % 100.00 % 52 s 2 core @ 3.6 Ghz (C/C++)
D. Maurer, M. Stoll and A. Bruhn: Directional Priors for Multi-Frame Optical Flow. BMVC 2018.
134 ricom 16.89 % 18.13 % 17.10 % 100.00 % 15 s 1 core @ 2.5 Ghz (C/C++)
135 FastFlow 16.47 % 21.81 % 17.36 % 100.00 % 0.01 s GPU @ 2.5 Ghz (Python)
136 ImpPB+SPCI code 17.25 % 20.44 % 17.78 % 100.00 % 60 s GPU @ 2.5 Ghz (Python)
T. Schuster, L. Wolf and D. Gadot: Optical Flow Requires Multiple Strategies (but only one network). CVPR 2017.
137 PCOF-LDOF
This method uses stereo information.
14.34 % 38.32 % 18.33 % 100.00 % 50 s 1 core @ 3.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
138 FlowFieldCNN 18.33 % 20.42 % 18.68 % 100.00 % 23 s GPU/CPU 4 core @ 3.5 Ghz (C/C++)
C. Bailer, K. Varanasi and D. Stricker: CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss. CVPR 2017.
139 RicFlow 18.73 % 19.09 % 18.79 % 100.00 % 5 s 1 core @ 3.5 Ghz (C/C++)
Y. Hu, Y. Li and R. Song: Robust Interpolation of Correspondences for Large Displacement Optical Flow. CVPR 2017.
140 MBSF
This method uses stereo information.
17.21 % 28.58 % 19.10 % 100.00 % 1 min GPU @ 2.5 Ghz (C/C++)
141 HCSH 18.05 % 26.23 % 19.41 % 100.00 % 3.5 s 1 core @ 3.0 Ghz (C/C++)
J. Fan, Y. Wang and L. Guo: Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. Computer Vision and Image Understanding 2018.
142 OmegaNet 17.43 % 29.69 % 19.47 % 100.00 % 0.01 s GPU @ 1.5 Ghz (Python)
F. Tosi, F. Aleotti, P. Ramirez, M. Poggi, S. Salti, L. Di Stefano and S. Mattoccia: Distilled semantics for comprehensive scene understanding from videos. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2020.
143 Multi-Mono-SF
This method uses stereo information.
This method makes use of multiple (>2) views.
18.13 % 26.59 % 19.54 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
144 PGM-G 18.90 % 23.43 % 19.66 % 100.00 % 5.05 s 1 core @ 3.1 Ghz (C/C++)
Y. Li: Pyramidal Gradient Matching for Optical Flow Estimation. CoRR 2017.
145 FlowFields+ 19.51 % 21.26 % 19.80 % 100.00 % 28s 1 core @ 3.5 Ghz (C/C++)
C. Bailer, B. Taetz and D. Stricker: Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation. .
146 EPC++ (stereo)
This method uses stereo information.
19.24 % 26.93 % 20.52 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia and A. Yuille: Every Pixel Counts ++: Joint Learning of Geometry and Motion with 3D Holistic Understanding. IEEE transactions on pattern analysis and machine intelligence 2019.
147 PatchBatch code 19.98 % 26.50 % 21.07 % 100.00 % 50 s GPU @ 2.5 Ghz (Python)
D. Gadot and L. Wolf: PatchBatch: a Batch Augmented Loss for Optical Flow. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016.
148 DDF code 20.36 % 25.19 % 21.17 % 100.00 % ~1 min GPU @ 2.5 Ghz (C/C++)
F. G\"uney and A. Geiger: Deep Discrete Flow. Asian Conference on Computer Vision (ACCV) 2016.
149 SODA-Flow 20.01 % 29.14 % 21.53 % 100.00 % 96 s 2 cores @ 3.5 Ghz (C/C++)
D. Maurer, M. Stoll, S. Volz, P. Gairing and A. Bruhn: A Comparison of Isotropic and Anisotropic Second Order Regularisers for Optical Flow. SSVM 2017.
150 DiscreteFlow code 21.53 % 21.76 % 21.57 % 100.00 % 3 min 1 core @ 2.5 Ghz (Matlab + C/C++)
M. Menze, C. Heipke and A. Geiger: Discrete Optimization for Optical Flow. German Conference on Pattern Recognition (GCPR) 2015.
151 SGM+SF
This method uses stereo information.
20.91 % 25.50 % 21.67 % 100.00 % 45 min 16 core @ 3.2 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
M. Hornacek, A. Fitzgibbon and C. Rother: SphereFlow: 6 DoF Scene Flow from RGB-D Pairs. CVPR 2014.
152 OAR-Flow 20.62 % 27.67 % 21.79 % 100.00 % 100 s 2 cores @ 3.5 Ghz (C/C++)
D. Maurer, M. Stoll and A. Bruhn: Order-Adaptive Regularisation for Variational Optical Flow: Global, Local and in Between. SSVM 2017.
153 DOPlearning 20.80 % 30.18 % 22.36 % 100.00 % 0.12 s GPU @ 2.5 Ghz (Python)
154 CPM-Flow code 22.32 % 22.81 % 22.40 % 100.00 % 4.2 s 1 core @ 3.5 Ghz (C/C++)
Y. Hu, R. Song and Y. Li: Efficient Coarse-to-Fine PatchMatch for Large Displacement Optical Flow. CVPR 2016.
155 PCOF + ACTF
This method uses stereo information.
14.89 % 60.15 % 22.43 % 100.00 % 0.08 s GPU @ 2.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
156 SegFlow(d0=3) 22.21 % 23.72 % 22.46 % 100.00 % 6.6 s 1 core @ >3.5 Ghz (C/C++)
J. Chen, Z. Cai, J. Lai and X. Xie: Efficient Segmentation-based PatchMatch for Large displacement Optical Flow Estimation. IEEE TCSVT 2018.
157 SegPM+Interpolation code 21.98 % 25.42 % 22.55 % 100.00 % 5.7 s 1 core @ >3.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
158 IntrpNt-df code 22.15 % 26.03 % 22.80 % 100.00 % 3 min GPU @ 2.5 Ghz (Python)
S. Zweig and L. Wolf: InterpoNet, a Brain Inspired Neural Network for Optical Flow Dense Interpolation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.
159 SGM&FlowFie+
This method uses stereo information.
22.83 % 22.75 % 22.82 % 81.24 % 29 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: Combining Stereo Disparity and Optical Flow for Basic Scene Flow. Commercial Vehicle Technology Symposium (CVTS) 2018.
160 Back2FutureFlow(UFO)
This method makes use of multiple (>2) views.
code 22.67 % 24.27 % 22.94 % 100.00 % 0.12 s GPU @ 2.5 Ghz (LUA/Torch)
J. Janai, F. Güney, A. Ranjan, M. Black and A. Geiger: Unsupervised Learning of Multi-Frame Optical Flow with Occlusions. Proc. of the European Conf. on Computer Vision (ECCV) 2018.
161 MotionSLIC
This method makes use of the epipolar geometry.
code 14.86 % 64.44 % 23.11 % 100.00 % 30 s 4 cores @ 2.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
162 IntrpNt-cpm code 22.51 % 26.54 % 23.18 % 100.00 % 5.6 s GPU @ 2.5 Ghz (Python)
S. Zweig and L. Wolf: InterpoNet, a Brain Inspired Neural Network for Optical Flow Dense Interpolation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.
163 FullFlow 23.09 % 24.79 % 23.37 % 100.00 % 4 min 4 cores @ >3.5 Ghz (Matlab and C++)
Q. Chen and V. Koltun: Full Flow: Optical Flow Estimation By Global Optimization over Regular Grids. CVPR 2016.
164 HiLM code 23.73 % 21.79 % 23.41 % 100.00 % 8 sec P6000 (C/C++)
M. Fathy, Q. Tran, M. Zia, P. Vernaza and M. Chandraker: Hierarchical Metric Learning and Matching for 2D and 3D Geometric Correspondences. European Conference on Computer Vision (ECCV) 2018.
165 Self-Mono-SF
This method uses stereo information.
code 23.26 % 24.93 % 23.54 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
166 IntrpNt-dm code 23.46 % 26.27 % 23.93 % 100.00 % 15 s GPU @ 2.5 Ghz (Python)
S. Zweig and L. Wolf: InterpoNet, a Brain Inspired Neural Network for Optical Flow Dense Interpolation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.
167 SPM-BP 24.06 % 24.97 % 24.21 % 100.00 % 10 s 2 cores @ 2.5 Ghz (C/C++)
Y. Li, D. Min, M. Brown, M. Do and J. Lu: SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Proceedings of the IEEE International Conference on Computer Vision 2015.
168 DDCNet-Stacked-ft-ki 23.43 % 30.82 % 24.66 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
169 TV-Wa code 24.21 % 27.09 % 24.69 % 100.00 % 116 s 1 core @ 3.5 Ghz (C/C++)
170 TVW code 24.33 % 27.28 % 24.82 % 100.00 % 167 s 1 core @ >3.5 Ghz (C/C++)
171 PPM code 25.87 % 23.67 % 25.50 % 100.00 % 17.3 s 1 core @ 2.5 Ghz (C/Chttps://github.c++)
F. Kuang: PatchMatch algorithms for motion estimation and stereo reconstruction. 2017.
172 3DFlow 25.56 % 29.33 % 26.19 % 100.00 % 448s Matlab with embedded C++ code
J. Chen, Z. Cai, J. Lai and X. Xie: A Filtering Based Framework for Optical Flow Estimation. IEEE TCSVT 2018.
173 EpicFlow code 25.81 % 28.69 % 26.29 % 100.00 % 15 s 1 core @ >3.5 Ghz (C/C++)
J. Revaud, P. Weinzaepfel, Z. Harchaoui and C. Schmid: EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. CVPR 2015 - IEEE Conference on Computer Vision \& Pattern Recognition 2015.
174 SegFlow(d0=11) 28.97 % 22.64 % 27.91 % 100.00 % 4.5 s 1 core @ 3.5 Ghz (C/C++)
J. Chen, Z. Cai, J. Lai and X. Xie: Efficient Segmentation-based PatchMatch for Large displacement Optical Flow Estimation. IEEE TCSVT 2018.
175 DeepFlow code 27.96 % 31.06 % 28.48 % 100.00 % 17 s 1 core @ >3.5 Ghz (Python + C/C++)
P. Weinzaepfel, J. Revaud, Z. Harchaoui and C. Schmid: DeepFlow: Large displacement optical flow with deep matching. IEEE Intenational Conference on Computer Vision (ICCV) 2013.
176 CPNFlow 31.05 % 27.16 % 30.40 % 100.00 % 0.1 s GPU @ 1.5 Ghz (Python)
Y. Yang and S. Soatto: Conditional prior networks for optical flow. Proceedings of the European Conference on Computer Vision (ECCV) 2018.
177 IIOF-NLDP 30.23 % 32.44 % 30.60 % 100.00 % 350 s 4 cores @ 3.5 Ghz (Matlab + C/C++)
D. Trinh, W. Blondel and C. Daul: A General Form of Illumination- Invariant Descriptors in Variational Optical Flow Estimation. IEEE Int. Conf. on Image Processing (ICIP) 2017.
178 DMF_ROB code 30.74 % 30.07 % 30.63 % 100.00 % 150 s 1 core @ 2.5 Ghz (C/C++)
P. Weinzaepfel, J. Revaud, Z. Harchaoui and C. Schmid: DeepFlow: Large displacement optical flow with deep matching. ICCV - IEEE International Conference on Computer Vision 2013.
179 SPyNet code 33.36 % 43.62 % 35.07 % 100.00 % 0.16 s 1 core @ 2.5 Ghz (C/C++)
A. Ranjan and M. Black: Optical Flow Estimation using a Spatial Pyramid Network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
180 SGM+C+NL
This method uses stereo information.
code 34.24 % 42.46 % 35.61 % 93.83 % 4.5 min 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
D. Sun, S. Roth and M. Black: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them. IJCV 2013.
181 DWBSF
This method uses stereo information.
40.74 % 31.16 % 39.14 % 100.00 % 7 min 4 cores @ 3.5 Ghz (C/C++)
C. Richardt, H. Kim, L. Valgaerts and C. Theobalt: Dense Wide-Baseline Scene Flow From Two Handheld Video Cameras. 3DV 2016.
182 SGM+LDOF
This method uses stereo information.
code 40.81 % 31.92 % 39.33 % 95.89 % 86 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
T. Brox and J. Malik: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. PAMI 2011.
183 C2F-Flow 41.89 % 34.63 % 40.68 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
184 HS code 39.90 % 51.39 % 41.81 % 100.00 % 2.6 min 1 core @ 3.0 Ghz (Matlab)
D. Sun, S. Roth and M. Black: A Quantitative Analysis of Current Practices in Optical Flow Estimation and The Principles Behind Them. 2014.
185 GCSF
This method uses stereo information.
code 47.38 % 41.50 % 46.40 % 100.00 % 2.4 s 1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by growing Correspondence Seeds. CVPR 2011.
186 DB-TV-L1 code 47.52 % 48.27 % 47.64 % 100.00 % 16 s 1 core @ 2.5 Ghz (Matlab)
C. Zach, T. Pock and H. Bischof: A Duality Based Approach for Realtime TV- L1 Optical Flow. DAGM 2007.
187 VSF
This method uses stereo information.
code 50.06 % 45.40 % 49.28 % 100.00 % 125 min 1 core @ 2.5 Ghz (C/C++)
F. Huguet and F. Devernay: A Variational Method for Scene Flow Estimation from Stereo Sequences. ICCV 2007.
188 HAOF code 49.89 % 50.74 % 50.04 % 100.00 % 16.2 s 1 core @ 2.5 Ghz (C/C++)
T. Brox, A. Bruhn, N. Papenberg and J. Weickert: High accuracy optical flow estimation based on a theory for warping. ECCV 2004.
189 TVL1_ROB code 51.15 % 51.12 % 51.14 % 100.00 % 3 s 4 cores @ 2.5 Ghz (C/C++)
J. Sánchez Pérez, E. Meinhardt-Llopis and G. Facciolo: TV-L1 Optical Flow Estimation. Image Processing On Line 2013.
190 TVL1_RVC code 51.80 % 53.17 % 52.03 % 100.00 % 1 s 2 cores @ 2.5 Ghz (C/C++)
191 PolyExpand 52.00 % 58.56 % 53.09 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
G. Farneback: Two-Frame Motion Estimation Based on Polynomial Expansion. SCIA 2003.
192 H+S_RVC code 58.29 % 63.66 % 59.18 % 100.00 % 4 s 2 cores @ 2.5 Ghz (C/C++)
193 H+S_ROB code 68.22 % 76.49 % 69.60 % 100.00 % 8 s 4 cores @ 2.5 Ghz (C/C++)
E. Meinhardt-Llopis, J. Sánchez Pérez and D. Kondermann: Horn-Schunck Optical Flow with a Multi-Scale Strategy. Image Processing On Line 2013.
194 Pyramid-LK code 71.84 % 76.82 % 72.67 % 100.00 % 1.5 min 1 core @ 2.5 Ghz (Matlab)
J. Bouguet: Pyramidal implementation of the Lucas Kanade feature tracker. Intel 2000.
195 MEDIAN 87.37 % 92.80 % 88.27 % 99.86 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
196 AVERAGE 88.47 % 92.08 % 89.07 % 99.86 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Table as LaTeX | Only published Methods




Related Datasets

  • HCI/Bosch Robust Vision Challenge: Optical flow and stereo vision challenge on high resolution imagery recorded at a high frame rate under diverse weather conditions (e.g., sunny, cloudy, rainy). The Robert Bosch AG provides a prize for the best performing method.
  • Image Sequence Analysis Test Site (EISATS): Synthetic image sequences with ground truth information provided by UoA and Daimler AG. Some of the images come with 3D range sensor information.
  • Middlebury Stereo Evaluation: The classic stereo evaluation benchmark, featuring four test images in version 2 of the benchmark, with very accurate ground truth from a structured light system. 38 image pairs are provided in total.
  • Daimler Stereo Dataset: Stereo bad weather highway scenes with partial ground truth for freespace
  • Make3D Range Image Data: Images with small-resolution ground truth used to learn and evaluate depth from single monocular images.
  • Lubor Ladicky's Stereo Dataset: Stereo Images with manually labeled ground truth based on polygonal areas.
  • Middlebury Optical Flow Evaluation: The classic optical flow evaluation benchmark, featuring eight test images, with very accurate ground truth from a shape from UV light pattern system. 24 image pairs are provided in total.

Citation

When using this dataset in your research, we will be happy if you cite us:
@ARTICLE{Menze2018JPRS,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Object Scene Flow},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing (JPRS)},
  year = {2018}
}
@INPROCEEDINGS{Menze2015ISA,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Joint 3D Estimation of Vehicles and Scene Flow},
  booktitle = {ISPRS Workshop on Image Sequence Analysis (ISA)},
  year = {2015}
}



eXTReMe Tracker