Stereo Evaluation 2015


The stereo 2015 / flow 2015 / scene flow 2015 benchmark consists of 200 training scenes and 200 test scenes (4 color images per scene, saved in loss less png format). Compared to the stereo 2012 and flow 2012 benchmarks, it comprises dynamic scenes for which the ground truth has been established in a semi-automatic process. Our evaluation server computes the percentage of bad pixels averaged over all ground truth pixels of all 200 test images. For this benchmark, we consider a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields. More details can be found in Object Scene Flow for Autonomous Vehicles (CVPR 2015).

Our evaluation table ranks all methods according to the number of erroneous pixels. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. Legend:

  • D1: Percentage of stereo disparity outliers in first frame
  • D2: Percentage of stereo disparity outliers in second frame
  • Fl: Percentage of optical flow outliers
  • SF: Percentage of scene flow outliers (=outliers in either D0, D1 or Fl)
  • bg: Percentage of outliers averaged only over background regions
  • fg: Percentage of outliers averaged only over foreground regions
  • all: Percentage of outliers averaged over all ground truth pixels


Note: On 13.03.2017 we have fixed several small errors in the flow (noc+occ) ground truth of the dynamic foreground objects and manually verified all images for correctness by warping them according to the ground truth. As a consequence, all error numbers have decreased slightly. Please download the devkit and the annotations with the improved ground truth for the training set again if you have downloaded the files prior to 13.03.2017 and consider reporting these new number in all future publications. The last leaderboards before these corrections can be found here (optical flow 2015) and here (scene flow 2015). The leaderboards for the KITTI 2015 stereo benchmarks did not change.

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Motion stereo: Method uses epipolar geometry for computing optical flow
  • Additional training data: Use of additional data sources for training (see details)

Evaluation ground truth        Evaluation area

Method Setting Code D1-bg D1-fg D1-all Density Runtime Environment
1 UASNet 1.42 % 2.73 % 1.64 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
2 ADLAB-RFDisp 1.41 % 2.77 % 1.64 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
3 LEAStereo code 1.40 % 2.91 % 1.65 % 100.00 % 0.30 s GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020.
4 ACVNet code 1.37 % 3.07 % 1.65 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
5 LaC+GANet 1.44 % 2.83 % 1.67 % 100.00 % 1.8 s GPU @ 2.5 Ghz (Python)
6 GA-fw 1.52 % 2.49 % 1.68 % 100.00 % 1.8 s 1 core @ 2.5 Ghz (Python)
7 gwc_CoAtRS 1.39 % 3.25 % 1.70 % 100.00 % 0.26 s 1 core @ 2.5 Ghz (Python)
8 MSMDNet_matching 1.42 % 3.15 % 1.71 % 100.00 % 0.32 s 1 core @ 2.5 Ghz (C/C++)
9 ACVNet_small 1.41 % 3.20 % 1.71 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (C/C++)
10 StereoTest 1.44 % 3.05 % 1.71 % 100.00 % 0.8 s GPU @ 2.5 Ghz (Python)
11 CANet 1.45 % 3.11 % 1.72 % 100.00 % 0.70 s 1 core @ 2.5 Ghz (C/C++)
12 UFnet 1.42 % 3.24 % 1.72 % 100.00 % 0.23 s 1 core @ 2.5 Ghz (Python)
13 CF_CoAtRS 1.41 % 3.31 % 1.73 % 100.00 % 0.24 s 1 core @ 2.5 Ghz (Python)
14 HMLNet-v2 1.40 % 3.36 % 1.73 % 100.00 % 0.34 s 1 core @ 2.5 Ghz (C/C++)
15 CSPN 1.51 % 2.88 % 1.74 % 100.00 % 1.0 s GPU @ 2.5 Ghz (Python)
X. Cheng, P. Wang and R. Yang: Learning Depth with Convolutional Spatial Propagation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence(T-PAMI) 2019.
16 GA_CSA 1.49 % 3.01 % 1.74 % 100.00 % 1.8 s 1 core @ 2.5 Ghz (Python)
17 RDNet 1.44 % 3.31 % 1.75 % 100.00 % 0.65 s 1 core @ 2.5 Ghz (Python)
18 HMLNet 1.47 % 3.20 % 1.76 % 100.00 % 0.53 s GPU @ 2.5 Ghz (Python)
19 LaC+GwcNet 1.43 % 3.44 % 1.77 % 100.00 % 0. 65 s GPU @ 2.5 Ghz (Python)
20 GANet-RSSM 1.44 % 3.39 % 1.77 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python)
21 PSM_CoAtRS 1.44 % 3.44 % 1.77 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
22 GANet+DSMNet 1.48 % 3.23 % 1.77 % 100.00 % 2.0 s GPU @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching Networks. Europe Conference on Computer Vision (ECCV) 2020.
23 ACVNet 1.46 % 3.36 % 1.77 % 100.00 % 0.43 s 1 core @ 2.5 Ghz (Python)
24 AFCNet 1.44 % 3.47 % 1.78 % 100.00 % 0.42 s 1 core @ 2.5 Ghz (C/C++)
25 HPA-Net 1.50 % 3.31 % 1.80 % 100.00 % 0.42 s GPU @ 2.5 Ghz (Python)
26 SUW-Stereo 1.47 % 3.45 % 1.80 % 100.00 % 1.8 s 1 core @ 2.5 Ghz (C/C++)
H. Ren, A. Raj, M. El-Khamy and J. Lee: SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep Learning for Monocular Depth Estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 2020.
27 Gwc-RSSM 1.51 % 3.26 % 1.80 % 100.00 % 0.20 s 1 core @ 2.5 Ghz (Python)
28 nsg 1.47 % 3.46 % 1.80 % 100.00 % 1.82 s GPU @ 1.5 Ghz (Python)
29 Binary TTC
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 1.0 Ghz (Python)
A. Badki, O. Gallo, J. Kautz and P. Sen: Binary TTC: A Temporal Geofence for Autonomous Navigation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
30 LPSF
This method uses optical flow information.
This method makes use of multiple (>2) views.
1.48 % 3.46 % 1.81 % 100.00 % 60 s 1 core @ 2.5 Ghz (C/C++)
31 CamLiFlow
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
32 RAFT-3D
This method uses optical flow information.
1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Teed and J. Deng: RAFT-3D: Scene Flow using Rigid-Motion Embeddings. arXiv preprint arXiv:2012.00726 2020.
33 GANet-deep code 1.48 % 3.46 % 1.81 % 100.00 % 1.8 s GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
34 Stereo expansion
This method uses optical flow information.
code 1.48 % 3.46 % 1.81 % 100.00 % 2 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Upgrading Optical Flow to 3D Scene Flow through Optical Expansion. CVPR 2020.
35 PSMNet-NL 1.58 % 3.01 % 1.82 % 100.00 % 0.41 s GPU @ 2.5 Ghz (Python)
36 RUANet 1.60 % 2.91 % 1.82 % 100.00 % 0.05 s GPU @ 2.5 Ghz (Python)
37 HDU-FCC code 1.50 % 3.45 % 1.82 % 100.00 % 0.7 s 1 core @ 2.5 Ghz (C/C++)
38 OptStereo 1.50 % 3.43 % 1.82 % 100.00 % 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
39 gwcnet+DCA 1.49 % 3.51 % 1.83 % 100.00 % 0.27 s GPU @ 2.5 Ghz (Python)
40 MMNet 1.58 % 3.06 % 1.83 % 100.00 % 0.13 s 1 core @ 2.5 Ghz (C/C++)
41 NLCA-Net-3 code 1.45 % 3.78 % 1.83 % 100.00 % 0.44 s >8 cores @ 3.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
42 AMNet 1.53 % 3.43 % 1.84 % 100.00 % 0.9 s GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo Disparity Estimation Networks. 2019.
43 SSTTStereo 1.45 % 3.82 % 1.85 % 100.00 % 0.26 s 1 core @ 2.5 Ghz (C/C++)
44 UnDAF-LEAStereo 1.53 % 3.49 % 1.86 % 100.00 % 0.30 s GPU @ 2.5 Ghz (Python)
45 DASPPNet 1.55 % 3.43 % 1.86 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
46 CTNet 1.51 % 3.67 % 1.87 % 100.00 % 0.4 s 8 cores @ 2.5 Ghz (C/C++)
47 PSM-RSSM 1.56 % 3.44 % 1.87 % 100.00 % 0.2 s 1 core @ 2.5 Ghz (Python)
48 pcr_psm 1.53 % 3.62 % 1.88 % 100.00 % 0.46 s GPU @ 2.5 Ghz (Python)
49 CFNet code 1.54 % 3.56 % 1.88 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
50 SRMS 1.55 % 3.55 % 1.88 % 100.00 % 0.31 s GPU @ 2.5 Ghz (Python)
51 RigidMask+ISF
This method uses optical flow information.
code 1.53 % 3.65 % 1.89 % 100.00 % 3.3 s GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Learning to Segment Rigid Motions from Two Frames. CVPR 2021.
52 AcfNet code 1.51 % 3.80 % 1.89 % 100.00 % 0.48 s GPU @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching. AAAI 2020.
53 UCNet 1.55 % 3.57 % 1.89 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (C/C++)
54 NLCA_NET_v2_RVC 1.51 % 3.97 % 1.92 % 100.00 % 0.67 s GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
55 CDN code 1.66 % 3.20 % 1.92 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
56 Abc-Net 1.47 % 4.20 % 1.92 % 100.00 % 0.83 s 4 core @ 2.5 Ghz (Python)
57 GANet-15 code 1.55 % 3.82 % 1.93 % 100.00 % 0.36 s GPU (Pytorch)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
58 MDnet 1.57 % 3.77 % 1.93 % 100.00 % 0.33 s 1 core @ 2.5 Ghz (Python)
59 CAL-Net 1.59 % 3.76 % 1.95 % 100.00 % 0.44 s 2 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for Stereo Matching. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021 2021.
60 SMGWCnet code 1.67 % 3.37 % 1.95 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
61 MA-G 1.55 % 4.00 % 1.96 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
62 GWC_pcr 1.57 % 3.91 % 1.96 % 100.00 % 0.32 s 1 core @ 2.5 Ghz (Python)
63 NLCA-Net code 1.53 % 4.09 % 1.96 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
64 CFNet_RVC code 1.65 % 3.53 % 1.96 % 100.00 % 0.22 s GPU @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
65 PGNet 1.64 % 3.60 % 1.96 % 100.00 % 0.7 s 1 core @ 2.5 Ghz (python)
66 MSRFNet 1.68 % 3.38 % 1.96 % 100.00 % 0.056 s GPU @ 2.5 Ghz (Python)
67 UGwc 1.64 % 3.70 % 1.98 % 100.00 % 0.8 s 1 core @ 2.5 Ghz (Python)
68 HITNet code 1.74 % 3.20 % 1.98 % 100.00 % 0.02 s GPU @ 2.5 Ghz (C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021.
69 SGNet 1.63 % 3.76 % 1.99 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo Matching. Proceedings of the Asian Conference on Computer Vision (ACCV) 2020.
70 gwc_dcr_300 1.63 % 3.82 % 1.99 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
71 CSN code 1.59 % 4.03 % 2.00 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python)
X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan and P. Tan: Cascade cost volume for high-resolution multi-view stereo and stereo matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
72 HD^3-Stereo code 1.70 % 3.63 % 2.02 % 100.00 % 0.14 s NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition for Match Density Estimation. CVPR 2019.
73 SCV-Stereo code 1.67 % 3.78 % 2.02 % 100.00 % 0.08 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo matching from a sparse cost volume. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
74 PSMNet-fw 1.74 % 3.50 % 2.03 % 100.00 % 0.41 s 1 core @ 2.5 Ghz (C/C++)
75 nsa 1.65 % 3.95 % 2.03 % 100.00 % 0.08 s GPU @ 1.5 Ghz (Python)
76 AANet+ code 1.65 % 3.96 % 2.03 % 100.00 % 0.06 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
77 HDANet 1.69 % 3.76 % 2.03 % 100.00 % 0.32 s 1 core @ 2.5 Ghz (C/C++)
78 DC3DC-103 1.72 % 3.69 % 2.04 % 100.00 % 1.5 s 1 core @ 2.5 Ghz (Python)
79 SM^3Net code 1.65 % 4.03 % 2.05 % 100.00 % 0.54 s 1 core @ 2.5 Ghz (Python)
80 GwcNet_matching 1.69 % 3.84 % 2.05 % 100.00 % 0.32 s 1 core @ 2.5 Ghz (C/C++)
81 CAEF-Net 1.68 % 3.92 % 2.05 % 100.00 % 0.44 s 1 core @ 2.5 Ghz (Python)
82 DSA-Net 1.68 % 3.95 % 2.06 % 100.00 % 0.46 s GPU @ 2.5 Ghz (Python)
83 MAnet 1.65 % 4.13 % 2.06 % 100.00 % 0.36 s python
84 LR-PSMNet code 1.65 % 4.13 % 2.06 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
W. Chuah, R. Tennakoon, R. Hoseinnezhad, A. Bab-Hadiashar and D. Suter: Adjusting Bias in Long Range Stereo Matching: A semantics guided approach. 2020.
85 NASM 1.69 % 3.94 % 2.07 % 100.00 % 0.13 s 1 core @ 2.5 Ghz (Python)
86 PSMNet_pcr 1.71 % 3.89 % 2.07 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
87 UDA-SENSE
This method uses optical flow information.
1.75 % 3.70 % 2.07 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
88 HcNet_v2 1.68 % 4.06 % 2.08 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
89 HcNet 1.74 % 3.76 % 2.08 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
90 PSM + SMD-Nets code 1.69 % 4.01 % 2.08 % 100.00 % 0.41 s 1 core @ 2.5 Ghz (Python + C/C++)
F. Tosi, Y. Liao, C. Schmitt and A. Geiger: SMD-Nets: Stereo Mixture Density Networks. Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
91 METST 1.76 % 3.68 % 2.08 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
92 DCNetTest 1.76 % 3.68 % 2.08 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
93 MDCNet 1.76 % 3.68 % 2.08 % 100.00 % 0.05 s GPU @ >3.5 Ghz (C/C++)
94 EdgeStereo-V2 1.84 % 3.30 % 2.08 % 100.00 % 0.32s Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task learning network for stereo matching and edge detection. International Journal of Computer Vision (IJCV) 2019.
95 FRSNet 1.73 % 3.87 % 2.09 % 100.00 % 0.06 s GPU @ 1.5 Ghz (Python)
96 LR-GwcNet 1.67 % 4.19 % 2.09 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
97 PSM-BCD 1.67 % 4.20 % 2.09 % 100.00 % 0.32 s NVIDIA Titan Xp, 8 core 1.7 Ghz, Pytorch
98 LWS code 1.75 % 3.87 % 2.10 % 100.00 % 0.6 1 core @ 2.5 Ghz (Python)
99 GwcNet-g code 1.74 % 3.93 % 2.11 % 100.00 % 0.32 s GPU @ 2.0 Ghz (Python + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network. CVPR 2019.
100 SSPCVNet 1.75 % 3.89 % 2.11 % 100.00 % 0.9 s 1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost Volumes. The IEEE International Conference on Computer Vision (ICCV) 2019.
101 E-GWCNet 1.67 % 4.34 % 2.11 % 100.00 % 0.49 s 1 core @ 2.5 Ghz (Python)
102 WSMCnet code 1.72 % 4.19 % 2.13 % 100.00 % 0.39s Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network. Acta Optica Sinica 2019.
103 CoEx code 1.79 % 3.82 % 2.13 % 100.00 % 0.027 s RTX 2080Ti (Python)
104 HSM-1.8x code 1.80 % 3.85 % 2.14 % 100.00 % 0.14 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
105 SMCFnet code 1.79 % 3.90 % 2.14 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
106 CLSMNet_v2 code 1.76 % 4.09 % 2.15 % 100.00 % 0.6 s GPU @ 2.5 Ghz (Python)
107 DeepPruner (best) code 1.87 % 3.56 % 2.15 % 100.00 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch. ICCV 2019.
108 DC3DC-67 1.84 % 3.75 % 2.16 % 100.00 % 1.5 s 1 core @ 2.5 Ghz (Python)
109 Stereo-fusion-SJTU 1.87 % 3.61 % 2.16 % 100.00 % 0.7 s Nvidia GTX Titan Xp
X. Song, X. Zhao, H. Hu and L. Fang: EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching. Asian Conference on Computer Vision 2018.
110 SMDeeppruner code 1.82 % 3.96 % 2.17 % 100.00 % 1 s 1 core @ 2.5 Ghz (C/C++)
111 CLSMNet_v1 code 1.75 % 4.28 % 2.17 % 100.00 % 0.62 s 1 core @ 2.5 Ghz (Python)
112 SM_MS code 1.75 % 4.31 % 2.18 % 100.00 % 0.6 s GPU @ 2.5 Ghz (Python)
113 AutoDispNet-CSS code 1.94 % 3.37 % 2.18 % 100.00 % 0.9 s 1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity Estimation with AutoML. The IEEE International Conference on Computer Vision (ICCV) 2019.
114 FADNet++ 1.99 % 3.18 % 2.19 % 100.00 % 0.03 s GPU @ 1.5 Ghz (C/C++)
115 CGF-Net 1.88 % 3.71 % 2.19 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
116 BGNet+ 1.81 % 4.09 % 2.19 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
117 CGF-Net-fast 1.88 % 3.82 % 2.20 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
118 CTFNet-v3 1.84 % 4.03 % 2.20 % 100.00 % 0.4 s 8 cores @ 2.5 Ghz (Python)
119 PSMNet-edge 1.82 % 4.11 % 2.20 % 100.00 % 0.52 s 1 core @ 2.5 Ghz (C/C++)
120 Bi3D code 1.95 % 3.48 % 2.21 % 100.00 % 0.48 s GPU @ 1.5 Ghz (Python)
A. Badki, A. Troccoli, K. Kim, J. Kautz, P. Sen and O. Gallo: Bi3D: Stereo Depth Estimation via Binary Classifications. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
121 sa-gwcnet 1.81 % 4.18 % 2.21 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (Python)
122 MDCTE 1.81 % 4.23 % 2.21 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
123 dh 1.86 % 4.01 % 2.22 % 100.00 % 1.9 s 1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
124 JS^3M(only SM) code 1.79 % 4.37 % 2.22 % 100.00 % 0.45 s GPU @ 2.5 Ghz (Python)
125 SENSE
This method uses optical flow information.
code 2.07 % 3.01 % 2.22 % 100.00 % 0.32s GPU, GTX 2080Ti
H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz: SENSE: A Shared Encoder Network for Scene-Flow Estimation. The IEEE International Conference on Computer Vision (ICCV) 2019.
126 PSMNet+D 1.85 % 4.15 % 2.23 % 100.00 % 0.4 s GPU @ 2.5 Ghz (Python)
127 GA-TeNet 1.89 % 3.94 % 2.23 % 100.00 % 0.49 s 1 core @ 2.5 Ghz (C/C++)
128 MA-P 1.75 % 4.65 % 2.23 % 100.00 % 0.33 s GPU @ 2.5 Ghz (Python)
129 SegStereo code 1.88 % 4.07 % 2.25 % 100.00 % 0.6 s Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic Information for Disparity Estimation. ECCV 2018.
130 PDR_Net 1.85 % 4.24 % 2.25 % 100.00 % 0.19 s 1 core @ 2.5 Ghz (Python)
131 DRNet 1.82 % 4.42 % 2.25 % 100.00 % 0.45 s 8 cores @ 2.5 Ghz (Python)
132 DTF_SENSE
This method uses optical flow information.
This method makes use of multiple (>2) views.
2.08 % 3.13 % 2.25 % 100.00 % 0.76 s 1 core @ 2.5 Ghz (C/C++)
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
133 SuperB 1.99 % 3.63 % 2.26 % 100.00 % 0.1 s NVIDIA Tesla V100 + PyTorch 1.2.0
134 E-PSMNet 1.89 % 4.17 % 2.27 % 100.00 % 0.68 s 1 core @ 2.5 Ghz (Python)
135 MCV-MFC 1.95 % 3.84 % 2.27 % 100.00 % 0.35 s 1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Guo, Y. Feng, W. Chen, L. Qiao, L. Zhou, J. Zhang and H. Liu: Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE transactions on pattern analysis and machine intelligence 2019.
136 HSM-1.5x code 1.95 % 3.93 % 2.28 % 100.00 % 0.085 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
137 CLSM code 1.80 % 4.86 % 2.31 % 100.00 % 0.53 s 1 core @ 2.5 Ghz (Python)
138 CFP-Net code 1.90 % 4.39 % 2.31 % 100.00 % 0.9 s 8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching. arXiv preprint 2019.
139 LAAStereo code 2.03 % 3.77 % 2.32 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
140 PSMNet code 1.86 % 4.62 % 2.32 % 100.00 % 0.41 s Nvidia GTX Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network. arXiv preprint arXiv:1803.08669 2018.
141 LIGNet code 1.92 % 4.38 % 2.33 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
142 GANetREF_RVC code 1.88 % 4.58 % 2.33 % 100.00 % 1.62 s GPU @ >3.5 Ghz (Python + C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End- to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
143 JDCNet 1.91 % 4.47 % 2.33 % 100.00 % 0.079s NVIDIA V100
144 pcanet 1.84 % 4.82 % 2.34 % 100.00 % 10 s 1 core @ 2.5 Ghz (Python)
145 ACVNet-fast code 1.87 % 4.68 % 2.34 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
146 NDR 2.03 % 3.93 % 2.35 % 100.00 % 0.1 s GPU @ 1.5 Ghz (Python + C/C++)
147 APVNet 1.94 % 4.42 % 2.35 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
148 SPNet 1.97 % 4.48 % 2.39 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
149 LIGNet 1.97 % 4.60 % 2.41 % 100.00 % 0.036 s GPU @ 1.5 Ghz (Python)
150 MABNet_origin code 1.89 % 5.02 % 2.41 % 100.00 % 0.38 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
151 ESNet-M code 2.15 % 3.74 % 2.42 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
152 X-StereoLab(HITNET) code 2.14 % 3.83 % 2.43 % 100.00 % 0.02S 1 core @ 2.5 Ghz (C/C++)
153 APNet 2.05 % 4.35 % 2.43 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
154 sanet 2.05 % 4.53 % 2.47 % 100.00 % 0.30 s 1 core @ 2.5 Ghz (Python + C/C++)
155 psmt code 1.98 % 5.00 % 2.48 % 100.00 % 1.0 s 1 core @ 2.5 Ghz (Python)
156 ERSCNet 2.11 % 4.46 % 2.50 % 100.00 % 0.28 s GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
157 PWNet 2.01 % 5.04 % 2.51 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (Python)
158 BGNet 2.07 % 4.74 % 2.51 % 100.00 % 0.02 s GPU @ >3.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
159 DCNet 2.02 % 5.08 % 2.53 % 100.00 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
160 EDNet 2.26 % 3.88 % 2.53 % 100.00 % 0.09 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
161 psmnet_d_version2 2.01 % 5.17 % 2.54 % 100.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
162 UberATG-DRISF
This method uses optical flow information.
2.16 % 4.49 % 2.55 % 100.00 % 0.75 s CPU+GPU @ 2.5 Ghz (Python)
W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Rigid Instance Scene Flow. CVPR 2019.
163 AANet code 1.99 % 5.39 % 2.55 % 100.00 % 0.062 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
164 ESMNet 2.04 % 5.27 % 2.58 % 100.00 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
165 PDSNet 2.29 % 4.05 % 2.58 % 100.00 % 0.5 s 1 core @ 2.5 Ghz (Python)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching. Proceedings of the international conference on Neural Information Processing Systems (NIPS) 2018.
166 DeepPruner (fast) code 2.32 % 3.91 % 2.59 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch. ICCV 2019.
167 FADNet code 2.50 % 3.10 % 2.60 % 100.00 % 0.05 s Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network for Disparity Estimation. arXiv preprint arXiv:2003.10758 2020.
168 ESNet code 2.29 % 4.17 % 2.60 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
169 MMStereo 2.25 % 4.38 % 2.61 % 100.00 % 0.04 s Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for Robotic Manipulation in Homes. .
170 SCV code 2.22 % 4.53 % 2.61 % 100.00 % 0.36 s Nvidia GTX 1080 Ti
C. Lu, H. Uchiyama, D. Thomas, A. Shimada and R. Taniguchi: Sparse Cost Volume for Efficient Stereo Matching. Remote Sensing 2018.
171 2DFuseNet 2.08 % 5.42 % 2.63 % 100.00 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
172 WaveletStereo: 2.24 % 4.62 % 2.63 % 100.00 % 0.27 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients for stereo matching. arXiv: Computer Vision and Pattern Recognition 2019.
173 RLStereo code 2.09 % 5.38 % 2.64 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Anonymous: RLStereo: Real-time Stereo Matching based on Reinforcement Learning. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
174 MCDRNet 2.09 % 5.42 % 2.65 % 100.00 % 0.032 s 1 core @ 2.5 Ghz (C/C++)
175 DEBG-Net 2.11 % 5.45 % 2.67 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
176 AANet_RVC 2.23 % 4.89 % 2.67 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
177 CRL code 2.48 % 3.59 % 2.67 % 100.00 % 0.47 s Nvidia GTX 1080
J. Pang, W. Sun, J. Ren, C. Yang and Q. Yan: Cascade residual learning: A two-stage convolutional neural network for stereo matching. ICCV Workshop on Geometry Meets Deep Learning 2017.
178 CoT-Stereo 2.25 % 4.86 % 2.68 % 100.00 % 0.30 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: Co-teaching: An ark to unsupervised stereo matching. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
179 EASNet 2.34 % 4.51 % 2.70 % 100.00 % 0.08 s GPU @ 1.5 Ghz (C/C++)
180 DEBG-Net 2.14 % 5.54 % 2.71 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
181 OURNET 2.22 % 5.18 % 2.71 % 100.00 % 0.16 s 2 cores @ 2.5 Ghz (Python)
182 HybridNet_semi 2.14 % 5.65 % 2.72 % 100.00 % 0.12 s GPU @ 2.5 Ghz (Python)
183 FADNet-RVC 2.62 % 3.68 % 2.80 % 100.00 % 0.03 s GPU @ 1.5 Ghz (Python)
184 MSCVNet 2.31 % 5.41 % 2.82 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
185 LWS-2D 2.49 % 4.53 % 2.83 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (Python)
186 GC-NET 2.21 % 6.16 % 2.87 % 100.00 % 0.9 s Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. Proceedings of the International Conference on Computer Vision (ICCV) 2017.
187 naive-stereo 2.53 % 4.66 % 2.89 % 100.00 % 0.015s 1 core @ 2.5 Ghz (Python)
188 PVStereo 2.29 % 6.50 % 2.99 % 100.00 % 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
189 LRCR 2.55 % 5.42 % 3.03 % 100.00 % 49.2 s Nvidia GTX Titan X
Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng and W. Liu: Left-Right Comparative Recurrent Model for Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
190 SLNet 2.50 % 5.78 % 3.05 % 100.00 % 0.2 s 4 cores @ 2.5 Ghz (C/C++)
191 SLNet 2.49 % 5.98 % 3.07 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (Python)
192 Fast DS-CS code 2.83 % 4.31 % 3.08 % 100.00 % 0.02 s GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures. WACV 2020 (to appear).
193 SS-SENSE
This method uses optical flow information.
2.46 % 6.17 % 3.08 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python)
194 AdaStereo 2.59 % 5.55 % 3.08 % 100.00 % 0.41 s GPU @ 2.5 Ghz (Python)
X. Song, G. Yang, X. Zhu, H. Zhou, Z. Wang and J. Shi: AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching. CVPR 2021.
195 MFN_U_SF_K 2.78 % 4.68 % 3.09 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
196 RecResNet code 2.46 % 6.30 % 3.10 % 100.00 % 0.3 s GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN Architecture for Disparity Map Enhancement. In International Conference on 3D Vision (3DV) 2018.
197 NVStereoNet code 2.62 % 5.69 % 3.13 % 100.00 % 0.6 s NVIDIA Titan Xp
N. Smolyanskiy, A. Kamenev and S. Birchfield: On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach. arXiv preprint arXiv:1803.09719 2018.
198 MFN_U_SF_DS_RVC code 2.60 % 5.86 % 3.15 % 100.00 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
199 DRR 2.58 % 6.04 % 3.16 % 100.00 % 0.4 s Nvidia GTX Titan X
S. Gidaris and N. Komodakis: Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling. arXiv preprint arXiv:1612.04770 2016.
200 MSC_U_SF_K code 3.06 % 4.38 % 3.28 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
201 DWARF
This method uses optical flow information.
3.20 % 3.94 % 3.33 % 100.00 % 0.14s - 1.43s TitanXP - JetsonTX2
F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia: Learning end-to-end scene flow by distilling single tasks knowledge. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) 2020.
202 CaTeNet2 2.71 % 6.67 % 3.37 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
203 DispnetC+attention code 2.69 % 6.88 % 3.39 % 100.00 % 0.03 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
204 SsSMnet 2.70 % 6.92 % 3.40 % 100.00 % 0.8 s P100
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo Matching with Self-Improving Ability. arXiv:1709.00930 2017.
205 L-ResMatch code 2.72 % 6.95 % 3.42 % 100.00 % 48 s 1 core @ 2.5 Ghz (C/C++)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway Networks and Reflective Loss. arXiv preprint arxiv:1701.00165 2016.
206 Displets v2 code 3.00 % 5.56 % 3.43 % 100.00 % 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
207 LBPS code 2.85 % 6.35 % 3.44 % 100.00 % 0.39 s GPU @ 2.5 Ghz (C/C++)
P. Knöbelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer and T. Pock: Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
208 CaTeNet 2.65 % 8.21 % 3.58 % 100.00 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
209 ACOSF
This method uses optical flow information.
2.79 % 7.56 % 3.58 % 100.00 % 5 min 1 core @ 3.0 Ghz (Matlab + C/C++)
C. Li, H. Ma and Q. Liao: Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model. International Conference on Pattern Recognition (ICPR) 2020.
210 CNNF+SGM 2.78 % 7.69 % 3.60 % 100.00 % 71 s TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New Features for Effective Dense Matching. IEEE Transactions on Image Processing 2018.
211 PBCP 2.58 % 8.74 % 3.61 % 100.00 % 68 s Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.
212 SGM-Net 2.66 % 8.64 % 3.66 % 100.00 % 67 s Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural Networks. CVPR 2017.
213 STTR 3.23 % 6.06 % 3.70 % 99.98 % 0.6 s 1 core @ 2.5 Ghz (C/C++)
214 RLNet 3.11 % 6.67 % 3.70 % 100.00 % 0.13 s 1 core @ 2.5 Ghz (C/C++)
215 DSMNet-synthetic 3.11 % 6.72 % 3.71 % 100.00 % 1.6 s 4 cores @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching Networks. Europe Conference on Computer Vision (ECCV) 2020.
216 HSM-Net_RVC code 2.74 % 8.73 % 3.74 % 100.00 % 0.97 s GPU @ 2.5 Ghz (Python)
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical deep stereo matching on high-resolution images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
217 CasNet 2.94 % 7.77 % 3.75 % 100.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
218 MABNet_tiny code 3.04 % 8.07 % 3.88 % 100.00 % 0.11 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
219 MC-CNN-acrt code 2.89 % 8.88 % 3.89 % 100.00 % 67 s Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. Submitted to JMLR .
220 FD-Fusion code 3.22 % 7.44 % 3.92 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations. International Conference on 3D Vision (3DV) 2019.
221 ADCPNet 3.27 % 7.58 % 3.98 % 100.00 % 0.007 s RTX 2080Ti
222 Reversing-PSMNet code 3.13 % 8.70 % 4.06 % 100.00 % 0.41 s 1 core @ 1.5 Ghz (Python)
F. Aleotti, F. Tosi, L. Zhang, M. Poggi and S. Mattoccia: Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation. European Conference on Computer Vision (ECCV) 2020.
223 Simpnet 3.26 % 8.09 % 4.06 % 100.00 % 0.6 s 1 core @ 2.5 Ghz (C/C++)
224 DGS 3.21 % 8.62 % 4.11 % 100.00 % 0.32 s GPU @ 2.5 Ghz (Python + C/C++)
W. Chuah, R. Tennakoon, A. Bab-Hadiashar and D. Suter: Achieving Domain Robustness in Stereo Matching Networks by Removing Shortcut Learning. arXiv preprint arXiv:2106.08486 2021.
225 F407NJJ-FLOW
This method uses optical flow information.
3.25 % 9.11 % 4.22 % 100.00 % -1 s 1 core @ 2.5 Ghz (C/C++)
226 PRSM
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 3.02 % 10.52 % 4.27 % 99.99 % 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015.
227 dgs-psm 3.35 % 8.92 % 4.27 % 100.00 % 0.41 s GPU @ 2.5 Ghz (Python)
228 DispNetC code 4.32 % 4.41 % 4.34 % 100.00 % 0.06 s Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.
229 W3D-Net
This method uses optical flow information.
4.06 % 5.91 % 4.37 % 100.00 % 0.12 s 1 core @ 2.5 Ghz (Python)
230 SGM-Forest 3.11 % 10.74 % 4.38 % 99.92 % 6 seconds 1 core @ 3.0 Ghz (Python/C/C++)
J. Schönberger, S. Sinha and M. Pollefeys: Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching. European Conference on Computer Vision (ECCV) 2018.
231 SSF
This method uses optical flow information.
3.55 % 8.75 % 4.42 % 100.00 % 5 min 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Ren, D. Sun, J. Kautz and E. Sudderth: Cascaded Scene Flow Prediction using Semantic Segmentation. International Conference on 3D Vision (3DV) 2017.
232 SMV 3.45 % 9.32 % 4.43 % 100.00 % 0.5 s GPU @ 2.5 Ghz (C/C++)
W. Yuan, Y. Zhang, B. Wu, S. Zhu, P. Tan, M. Wang and Q. Chen: Stereo Matching by Self-supervision of Multiscopic Vision. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
233 3D
This method uses optical flow information.
4.01 % 6.65 % 4.45 % 100.00 % 1 s 1 core @ 2.5 Ghz (Python)
234 FSNet_MS 3.56 % 8.91 % 4.45 % 100.00 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
235 ISF
This method uses optical flow information.
4.12 % 6.17 % 4.46 % 100.00 % 10 min 1 core @ 3 Ghz (C/C++)
A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. International Conference on Computer Vision (ICCV) 2017.
236 Content-CNN 3.73 % 8.58 % 4.54 % 100.00 % 1 s Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching. CVPR 2016.
237 MADnet code 3.75 % 9.20 % 4.66 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia and L. Di Stefano: Real-Time self-adaptive deep stereo. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
238 DTF_PWOC
This method uses optical flow information.
This method makes use of multiple (>2) views.
3.91 % 8.57 % 4.68 % 100.00 % 0.38 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions. IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
239 UnsuperSceneFlow
This method uses optical flow information.
code 3.46 % 11.33 % 4.77 % 100.00 % .1 s GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
240 VN 4.29 % 7.65 % 4.85 % 100.00 % 0.5 s GPU @ 3.5 Ghz (Python + C/C++)
P. Knöbelreiter and T. Pock: Learned Collaborative Stereo Refinement. German Conference on Pattern Recognition (GCPR) 2019.
241 MC-CNN-WS code 3.78 % 10.93 % 4.97 % 100.00 % 1.35 s 1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep metrics for stereo reconstruction. ICCV 2017.
242 3DMST 3.36 % 13.03 % 4.97 % 100.00 % 93 s 1 core @ >3.5 Ghz (C/C++)
X. Lincheng Li and L. Zhang: 3D Cost Aggregation with Multiple Minimum Spanning Trees for Stereo Matching. submitted to Applied Optics .
243 CBMV_ROB code 3.55 % 12.09 % 4.97 % 100.00 % 250 s 6 core @ 3.0 Ghz (Python + C/C++)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018.
244 OSF+TC
This method uses optical flow information.
This method makes use of multiple (>2) views.
4.11 % 9.64 % 5.03 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Neoral and J. Šochman: Object Scene Flow with Temporal Consistency. 22nd Computer Vision Winter Workshop (CVWW) 2017.
245 CBMV code 4.17 % 9.53 % 5.06 % 100.00 % 250 s 6 cores @ 3.0 Ghz (Python,C/C++,CUDA Nvidia TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. 2018.
246 PWOC-3D
This method uses optical flow information.
code 4.19 % 9.82 % 5.13 % 100.00 % 0.13 s GTX 1080 Ti
R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker: PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation. Intelligent Vehicles Symposium (IV) 2019.
247 OSF 2018
This method uses optical flow information.
code 4.11 % 11.12 % 5.28 % 100.00 % 390 s 1 core @ 2.5 Ghz (Matlab + C/C++)
M. Menze, C. Heipke and A. Geiger: Object Scene Flow. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018.
248 SPS-St code 3.84 % 12.67 % 5.31 % 100.00 % 2 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
249 MDP
This method uses stereo information.
4.19 % 11.25 % 5.36 % 100.00 % 11.4 s 4 cores @ 3.5 Ghz (Matlab + C/C++)
A. Li, D. Chen, Y. Liu and Z. Yuan: Coordinating Multiple Disparity Proposals for Stereo Computation. IEEE Conference on Computer Vision and Pattern Recognition 2016.
250 SFF++
This method uses optical flow information.
This method makes use of multiple (>2) views.
4.27 % 12.38 % 5.62 % 100.00 % 78 s 4 cores @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker: SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation. International Journal of Computer Vision (IJCV) 2019.
251 SRS2 4.68 % 11.05 % 5.74 % 78.74 % 0.15 s GPU @ 2.5 Ghz (C/C++)
252 OSF
This method uses optical flow information.
code 4.54 % 12.03 % 5.79 % 100.00 % 50 min 1 core @ 2.5 Ghz (C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
253 pSGM 4.84 % 11.64 % 5.97 % 100.00 % 7.77 s 4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal Matching. IEEE Signal Processing Letters 2018.
254 CSF
This method uses optical flow information.
4.57 % 13.04 % 5.98 % 99.99 % 80 s 1 core @ 2.5 Ghz (C/C++)
Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert: A Continuous Optimization Approach for Efficient and Accurate Scene Flow. European Conf. on Computer Vision (ECCV) 2016.
255 MBM 4.69 % 13.05 % 6.08 % 100.00 % 0.13 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo. IV 2015.
256 CRD-Fusion 4.59 % 13.68 % 6.11 % 100.00 % 0.02 s GPU @ 2.5 Ghz (Python)
257 SRS 4.96 % 11.91 % 6.12 % 77.80 % 0.15 s GPU @ 2.5 Ghz (Python)
258 PR-Sceneflow
This method uses optical flow information.
code 4.74 % 13.74 % 6.24 % 100.00 % 150 s 4 core @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. ICCV 2013.
259 DispSegNet 4.20 % 16.97 % 6.33 % 100.00 % 0.9 s GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End- to-End Learning of Disparity Estimation From Stereo Imagery. IEEE Robotics and Automation Letters 2019.
260 DeepCostAggr code 5.34 % 11.35 % 6.34 % 99.98 % 0.03 s GPU @ 2.5 Ghz (C/C++)
A. Kuzmin, D. Mikushin and V. Lempitsky: End-to-end Learning of Cost-Volume Aggregation for Real-time Dense Stereo. 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) 2017.
261 SGM_RVC 5.06 % 13.00 % 6.38 % 100.00 % 0.11 s Nvidia GTX 980
H. Hirschm\"uller: Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008.
262 SceneFFields
This method uses optical flow information.
5.12 % 13.83 % 6.57 % 100.00 % 65 s 4 cores @ 3.7 Ghz (C/C++)
R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker: SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences. IEEE Winter Conference on Applications of Computer Vision (WACV) 2018.
263 RTSORF 5.09 % 14.02 % 6.58 % 100.00 % 0.1 s GPU @ 2.5 Ghz (Python)
264 SPS+FF++
This method uses optical flow information.
code 5.47 % 12.19 % 6.59 % 100.00 % 36 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller and D. Stricker: Dense Scene Flow from Stereo Disparity and Optical Flow. ACM Computer Science in Cars Symposium (CSCS) 2018.
265 Flow2Stereo 5.01 % 14.62 % 6.61 % 99.97 % 0.05 s GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching. CVPR 2020.
266 GU-Net code 5.56 % 12.00 % 6.63 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
267 FSF+MS
This method uses optical flow information.
This method makes use of the epipolar geometry.
This method makes use of multiple (>2) views.
5.72 % 11.84 % 6.74 % 100.00 % 2.7 s 4 cores @ 3.5 Ghz (C/C++)
T. Taniai, S. Sinha and Y. Sato: Fast Multi-frame Stereo Scene Flow with Motion Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) 2017.
268 AABM 4.88 % 16.07 % 6.74 % 100.00 % 0.08 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces. IV 2013.
269 SGM+C+NL
This method uses optical flow information.
code 5.15 % 15.29 % 6.84 % 100.00 % 4.5 min 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
D. Sun, S. Roth and M. Black: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them. IJCV 2013.
270 SGM+LDOF
This method uses optical flow information.
code 5.15 % 15.29 % 6.84 % 100.00 % 86 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
T. Brox and J. Malik: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. PAMI 2011.
271 SGM+SF
This method uses optical flow information.
5.15 % 15.29 % 6.84 % 100.00 % 45 min 16 core @ 3.2 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information. PAMI 2008.
M. Hornacek, A. Fitzgibbon and C. Rother: SphereFlow: 6 DoF Scene Flow from RGB-D Pairs. CVPR 2014.
272 FC-DCNN code 5.21 % 15.16 % 6.87 % 100.00 % 5 s GPU @ >3.5 Ghz (Python)
273 SNCC 5.36 % 16.05 % 7.14 % 100.00 % 0.08 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation. DICTA 2010.
274 PSM+PASM 5.31 % 16.52 % 7.17 % 100.00 % 30 s GPU @ 2.5 Ghz (Matlab)
275 PASMnet code 5.41 % 16.36 % 7.23 % 100.00 % 0.5 s GPU @ 2.5 Ghz (Python)
L. Wang, Y. Guo, Y. Wang, Z. Liang, Z. Lin, J. Yang and W. An: Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence(T-PAMI) 2020.
276 AAFS 6.27 % 13.95 % 7.54 % 100.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices. Proceedings of the Asian Conference on Computer Vision 2020.
277 Z2ZNCC 6.55 % 13.19 % 7.65 % 99.93 % 0.035s Jetson TX2 GPU @ 1.0 Ghz (CUDA)
Q. Chang: Z2-ZNCC: ZigZag Scanning based Zero-means Normalized Cross Correlation for Fast and Accurate Stereo Matching on Embedded GPU. 38th IEEE International Conference on Computer Design, ICCD 2020.
278 ReS2tAC
This method uses stereo information.
6.27 % 16.07 % 7.90 % 86.03 % 0.06 s Jetson AGX GPU @ 1.5 Ghz (C/C++)
B. Ruf, J. Mohrs, M. Weinmann, S. Hinz and J. Beyerer: ReS2tAC - UAV-Borne Real-Time SGM Stereo Optimized for Embedded ARM and CUDA Devices. Sensors 2021.
279 FCU-Net
This method uses optical flow information.
6.04 % 17.48 % 7.95 % 100.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
280 UUF-Net
This method uses optical flow information.
6.35 % 16.60 % 8.06 % 100.00 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
281 CSCT+SGM+MF 6.91 % 14.87 % 8.24 % 100.00 % 0.0064 s Nvidia GTX Titan X @ 1.0 Ghz (CUDA)
D. Hernandez-Juarez, A. Chacon, A. Espinosa, D. Vazquez, J. Moure and A. Lopez: Embedded real-time stereo estimation via Semi-Global Matching on the GPU. Procedia Computer Science 2016.
282 MBMGPU 6.61 % 16.70 % 8.29 % 100.00 % 0.0019 s GPU @ 1.0 Ghz (CUDA)
Q. Chang and T. Maruyama: Real-Time Stereo Vision System: A Multi-Block Matching on GPU. IEEE Access 2018.
283 MeshStereo code 5.82 % 21.21 % 8.38 % 100.00 % 87 s 1 core @ 2.5 Ghz (C/C++)
C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao and Y. Rui: MeshStereo: A Global Stereo Model With Mesh Alignment Regularization for View Interpolation. The IEEE International Conference on Computer Vision (ICCV) 2015.
284 PCOF + ACTF
This method uses optical flow information.
6.31 % 19.24 % 8.46 % 100.00 % 0.08 s GPU @ 2.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
285 PCOF-LDOF
This method uses optical flow information.
6.31 % 19.24 % 8.46 % 100.00 % 50 s 1 core @ 3.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo. German Conference on Pattern Recognition 2016.
286 OASM-Net 6.89 % 19.42 % 8.98 % 100.00 % 0.73 s GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning. Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
287 Permutation SM 7.97 % 17.04 % 9.48 % 99.85 % 30 s GPU @ 2.5 Ghz (Matlab)
288 ELAS_RVC code 7.38 % 21.15 % 9.67 % 100.00 % 0.19 s 4 cores @ >3.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
289 ELAS code 7.86 % 19.04 % 9.72 % 92.35 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
290 REAF code 8.43 % 18.51 % 10.11 % 100.00 % 1.1 s 1 core @ 2.5 Ghz (C/C++)
C. Cigla: Recursive Edge-Aware Filters for Stereo Matching. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2015.
291 iGF
This method makes use of multiple (>2) views.
8.64 % 21.85 % 10.84 % 100.00 % 220 s 1 core @ 3.0 Ghz (C/C++)
R. Hamzah, H. Ibrahim and A. Hassan: Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. Journal of Visual Communication and Image Representation 2016.
292 OCV-SGBM code 8.92 % 20.59 % 10.86 % 90.41 % 1.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching and mutual information. PAMI 2008.
293 TW-SMNet 11.92 % 12.16 % 11.96 % 100.00 % 0.7 s GPU @ 2.5 Ghz (Python)
M. El-Khamy, H. Ren, X. Du and J. Lee: TW-SMNet: Deep Multitask Learning of Tele-Wide Stereo Matching. arXiv:1906.04463 2019.
294 SDM 9.41 % 24.75 % 11.96 % 62.56 % 1 min 1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis in complex scenes. BMVC 2003.
295 SGM&FlowFie+
This method uses optical flow information.
11.93 % 20.57 % 13.37 % 81.24 % 29 s 1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: Combining Stereo Disparity and Optical Flow for Basic Scene Flow. Commercial Vehicle Technology Symposium (CVTS) 2018.
296 DDP_out_ELAS_params2 12.32 % 20.20 % 13.63 % 100.00 % 10 min 1 core @ 2.5 Ghz (Python)
297 GCSF
This method uses optical flow information.
code 11.64 % 27.11 % 14.21 % 100.00 % 2.4 s 1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by growing Correspondence Seeds. CVPR 2011.
298 MT-TW-SMNet 15.47 % 16.25 % 15.60 % 100.00 % 0.4s GPU @ 2.5 Ghz (Python)
M. El-Khamy, X. Du, H. Ren and J. Lee: Multi-Task Learning of Depth from Tele and Wide Stereo Image Pairs. Proceedings of the IEEE Conference on Image Processing 2019.
299 Mono-SF
This method uses optical flow information.
14.21 % 26.94 % 16.32 % 100.00 % 41 s 1 core @ 3.5 Ghz (Matlab + C/C++)
F. Brickwedde, S. Abraham and R. Mester: Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes. Proc. of International Conference on Computer Vision (ICCV) 2019.
300 CostFilter code 17.53 % 22.88 % 18.42 % 100.00 % 4 min 1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. CVPR 2011.
301 MonoComb
This method uses optical flow information.
17.89 % 21.16 % 18.44 % 100.00 % 0.58 s RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow. ACM Computer Science in Cars Symposium (CSCS) 2020.
302 DWBSF
This method uses optical flow information.
19.61 % 22.69 % 20.12 % 100.00 % 7 min 4 cores @ 3.5 Ghz (C/C++)
C. Richardt, H. Kim, L. Valgaerts and C. Theobalt: Dense Wide-Baseline Scene Flow From Two Handheld Video Cameras. 3DV 2016.
303 monoResMatch code 22.10 % 19.81 % 21.72 % 100.00 % 0.16 s Titan X GPU
F. Tosi, F. Aleotti, M. Poggi and S. Mattoccia: Learning monocular depth estimation infusing traditional stereo knowledge. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
304 Self-Mono-SF-ft
This method uses optical flow information.
code 20.72 % 29.41 % 22.16 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
305 Multi-Mono-SF-ft
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 21.60 % 28.22 % 22.71 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame Monocular Scene Flow. CVPR 2021.
306 OCV-BM code 24.29 % 30.13 % 25.27 % 58.54 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library. Dr. Dobb's Journal of Software Tools 2000.
307 VSF
This method uses optical flow information.
code 27.31 % 21.72 % 26.38 % 100.00 % 125 min 1 core @ 2.5 Ghz (C/C++)
F. Huguet and F. Devernay: A Variational Method for Scene Flow Estimation from Stereo Sequences. ICCV 2007.
308 SED code 25.01 % 40.43 % 27.58 % 4.02 % 0.68 s 1 core @ 2.0 Ghz (C/C++)
D. Pe\~{n}a and A. Sutherland: Disparity Estimation by Simultaneous Edge Drawing. Computer Vision -- ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II 2017.
309 Multi-Mono-SF
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 27.48 % 47.30 % 30.78 % 100.00 % 0.06 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame Monocular Scene Flow. CVPR 2021.
310 mts1 code 28.03 % 46.55 % 31.11 % 2.52 % 0.18 s 4 cores @ 3.5 Ghz (C/C++)
R. Brandt, N. Strisciuglio, N. Petkov and M. Wilkinson: Efficient binocular stereo correspondence matching with 1-D Max-Trees. Pattern Recognition Letters 2020.
311 Self-Mono-SF
This method uses optical flow information.
code 31.22 % 48.04 % 34.02 % 100.00 % 0.09 s NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene Flow Estimation. CVPR 2020.
312 MST code 45.83 % 38.22 % 44.57 % 100.00 % 7 s 1 core @ 2.5 Ghz (Matlab + C/C++)
Q. Yang: A Non-Local Cost Aggregation Method for Stereo Matching. CVPR 2012.
Table as LaTeX | Only published Methods




Related Datasets

  • HCI/Bosch Robust Vision Challenge: Optical flow and stereo vision challenge on high resolution imagery recorded at a high frame rate under diverse weather conditions (e.g., sunny, cloudy, rainy). The Robert Bosch AG provides a prize for the best performing method.
  • Image Sequence Analysis Test Site (EISATS): Synthetic image sequences with ground truth information provided by UoA and Daimler AG. Some of the images come with 3D range sensor information.
  • Middlebury Stereo Evaluation: The classic stereo evaluation benchmark, featuring four test images in version 2 of the benchmark, with very accurate ground truth from a structured light system. 38 image pairs are provided in total.
  • Daimler Stereo Dataset: Stereo bad weather highway scenes with partial ground truth for freespace
  • Make3D Range Image Data: Images with small-resolution ground truth used to learn and evaluate depth from single monocular images.
  • Lubor Ladicky's Stereo Dataset: Stereo Images with manually labeled ground truth based on polygonal areas.
  • Middlebury Optical Flow Evaluation: The classic optical flow evaluation benchmark, featuring eight test images, with very accurate ground truth from a shape from UV light pattern system. 24 image pairs are provided in total.

Citation

When using this dataset in your research, we will be happy if you cite us:
@ARTICLE{Menze2018JPRS,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Object Scene Flow},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing (JPRS)},
  year = {2018}
}
@INPROCEEDINGS{Menze2015ISA,
  author = {Moritz Menze and Christian Heipke and Andreas Geiger},
  title = {Joint 3D Estimation of Vehicles and Scene Flow},
  booktitle = {ISPRS Workshop on Image Sequence Analysis (ISA)},
  year = {2015}
}



eXTReMe Tracker