Object Detection Evaluation 2012


The object detection and object orientation estimation benchmark consists of 7481 training images and 7518 test images, comprising a total of 80.256 labeled objects. All images are color and saved as png. For evaluation, we compute precision-recall curves for object detection and orientation-similarity-recall curves for joint object detection and orientation estimation. In the latter case not only the object 2D bounding box has to be located correctly, but also the orientation estimate in bird's eye view is evaluated. To rank the methods we compute average precision and average orientation similiarity. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate object detection performance using the PASCAL criteria and object detection and orientation estimation performance using the measure discussed in our CVPR 2012 publication. For cars we require an overlap of 70%, while for pedestrians and cyclists we require an overlap of 50% for a detection. Detections in don't care areas or detections which are smaller than the minimum size do not count as false positive. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results. Note that for the hard evaluation ~2 % of the provided bounding boxes have not been recognized by humans, thereby upper bounding recall at 98 %. Hence, the hard evaluation is only given for reference.
Note 1: On 25.04.2017, we have fixed a bug in the object detection evaluation script. As of now, the submitted detections are filtered based on the min. bounding box height for the respective category which we have been done before only for the ground truth detections, thus leading to false positives for the category "Easy" when bounding boxes of height 25-39 Px were submitted (and to false positives for all categories if bounding boxes smaller than 25 Px were submitted). We like to thank Amy Wu, Matt Wilder, Pekka Jänis and Philippe Vandermersch for their feedback. The last leaderboards right before the changes can be found here!

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 ViKIENet 98.06 % 98.63 % 93.21 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Yu, B. Qiu and A. Khong: ViKIENet: Towards Efficient 3D Object Detection with Virtual Key Instance Enhanced Network. CVPR 2025.
2 LVP 97.84 % 98.70 % 93.07 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, G. Cai, Z. Song, Z. Liu, B. Zeng, J. Li and Z. Wang: LVP: Leverage Virtual Points in Multi- modal Early Fusion for 3D Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2024.
3 P3GMF 97.81 % 96.67 % 93.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
4 UDeerPEP code 97.57 % 98.42 % 95.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen: PeP: a Point enhanced Painting method for unified point cloud tasks. 2023.
5 ViKIENet-R 97.40 % 95.89 % 92.63 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Z. Yu, B. Qiu and A. Khong: ViKIENet: Towards Efficient 3D Object Detection with Virtual Key Instance Enhanced Network. CVPR 2025.
6 RM3D 97.35 % 95.93 % 92.67 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
7 VirConv-S code 97.27 % 98.00 % 94.53 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
8 MuStD 97.21 % 97.91 % 94.04 % 67 ms >8 cores @ 2.5 Ghz (Python)
9 PointVit V2 96.56 % 97.04 % 88.97 % .006 s 1 core @ 2.5 Ghz (Python + C/C++)
10 GraR-VoI code 96.38 % 96.81 % 91.20 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
11 VirConv-T code 96.38 % 98.93 % 93.56 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
12 LumiNet code 96.27 % 99.23 % 88.94 % 0.1 s 1 core @ 2.5 Ghz (Python)
13 LDRFusion 96.20 % 96.73 % 93.33 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
14 GraR-Po code 96.18 % 96.84 % 91.11 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
15 SFD code 96.17 % 98.97 % 91.13 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
16 MLF-DET 96.17 % 96.89 % 88.90 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
17 VPFNet code 96.15 % 96.64 % 91.14 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
18 WWW 96.07 % 98.74 % 93.27 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
19 CLOCs code 96.07 % 96.77 % 91.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
20 ACFNet 96.06 % 96.68 % 93.36 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
21 RDIoU code 96.05 % 98.79 % 91.03 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
22 GraR-Vo code 96.05 % 96.67 % 93.01 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
23 TED code 96.03 % 96.64 % 93.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
24 BFT3D 96.03 % 96.98 % 88.81 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
25 CLOCs_PVCas code 95.96 % 96.76 % 91.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
26 DPFusion code 95.94 % 96.72 % 90.91 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
27 PVT-SSD 95.90 % 96.75 % 90.69 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
28 UPIDet code 95.89 % 96.25 % 93.25 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
29 GraR-Pi code 95.89 % 98.59 % 92.85 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
30 MPCF code 95.87 % 98.95 % 90.98 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
P. Gao and P. Zhang: MPCF: Multi-Phase Consolidated Fusion for Multi-Modal 3D Object Detection with Pseudo Point Cloud. 2024.
31 SQD++ 95.84 % 98.47 % 93.03 % 0.08 s GPU @ >3.5 Ghz (Python)
32 None 95.84 % 98.47 % 93.03 % 0.05 1 core @ 2.5 Ghz (C/C++)
33 OcTr 95.84 % 96.48 % 90.99 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
34 3D Dual-Fusion code 95.82 % 96.54 % 93.11 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
35 GLENet-VR code 95.81 % 96.85 % 90.91 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
Y. Zhang, J. Hou and Y. Yuan: A Comprehensive Study of the Robustness for LiDAR-based 3D Object Detectors against Adversarial Attacks. International Journal of Computer Vision 2023.
36 mm3d 95.81 % 96.89 % 90.92 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
37 TSSTDet 95.81 % 96.65 % 93.05 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang, D. Bui and M. Yoo: TSSTDet: Transformation-Based 3-D Object Detection via a Spatial Shape Transformer. IEEE Sensors Journal 2024.
38 R2Pfusion-Det 95.79 % 96.53 % 93.20 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
39 DVF-V 95.77 % 96.60 % 90.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
40 Fast-CLOCs 95.75 % 96.69 % 90.95 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
41 TRTConv-L 95.73 % 96.58 % 92.97 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
42 3D HANet code 95.73 % 98.61 % 92.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
43 DSGN++
This method uses stereo information.
code 95.70 % 98.08 % 88.27 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
44 ImagePG 95.66 % 96.56 % 93.06 % 1 s 1 core @ 2.5 Ghz (C/C++)
45 mat3D 95.64 % 98.83 % 93.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
46 CasA code 95.62 % 96.52 % 92.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
47 BADet code 95.61 % 98.75 % 90.64 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
48 SE-SSD
This method makes use of Velodyne laser scans.
code 95.60 % 96.69 % 90.53 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
49 FARP-Net code 95.57 % 96.11 % 93.07 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
50 LoGoNet code 95.55 % 96.60 % 93.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
51 GD-MAE 95.54 % 98.38 % 90.42 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
52 3D-AWARE 95.52 % 98.69 % 92.93 % 0.1 s 1 core @ 2.5 Ghz (Python)
53 DVF-PV 95.49 % 96.42 % 92.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
54 SpaA 95.47 % 96.18 % 92.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
55 SPANet 95.46 % 96.54 % 90.47 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
56 PG-RCNN code 95.40 % 96.66 % 90.55 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
57 FIRM-Net_SCF+ 95.38 % 96.31 % 92.71 % 0.07 s 1 core @ 2.5 Ghz (Python)
58 SCDA-Net 95.37 % 98.62 % 92.90 % - s 1 core @ 2.5 Ghz (C/C++)
59 FIRM-Net-SCF 95.36 % 96.30 % 92.69 % 0.07 s 1 core @ 2.5 Ghz (Python)
60 SASA
This method makes use of Velodyne laser scans.
code 95.35 % 96.01 % 92.53 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
61 SPG_mini
This method makes use of Velodyne laser scans.
code 95.32 % 96.23 % 92.68 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
62 EQ-PVRCNN code 95.32 % 98.23 % 92.65 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
63 TRTConv-T 95.31 % 98.38 % 92.69 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
64 Focals Conv code 95.28 % 96.30 % 92.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
65 CasA++ code 95.28 % 95.83 % 94.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
66 DUO-Net 95.24 % 96.19 % 90.60 % 0.1 s 1 core @ 2.5 Ghz (Python)
67 CEF code 95.24 % 96.19 % 90.60 % 0.03 s 1 core @ 2.5 Ghz (Python)
68 VoxSeT code 95.23 % 96.16 % 90.49 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
69 PC-CNN-V2
This method makes use of Velodyne laser scans.
95.20 % 96.06 % 89.37 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
70 RagNet3D code 95.17 % 96.27 % 92.66 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang: Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection. Available at SSRN 4979473 .
71 VPFNet code 95.17 % 96.06 % 92.66 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
72 F-PointNet
This method makes use of Velodyne laser scans.
code 95.17 % 95.85 % 85.42 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
73 EPNet++ 95.17 % 96.73 % 92.10 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
74 SA-SSD code 95.16 % 97.92 % 90.15 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
75 HMFI code 95.16 % 96.29 % 92.45 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
76 USVLab BSAODet code 95.15 % 96.26 % 92.62 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
77 MPC3DNet 95.14 % 98.49 % 92.42 % 0.05 s GPU @ 1.5 Ghz (Python)
78 Pyramid R-CNN 95.13 % 95.88 % 92.62 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
79 Voxel R-CNN code 95.11 % 96.49 % 92.45 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
80 3DSSD code 95.10 % 97.69 % 92.18 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
81 CAIA_PRO code 95.09 % 95.72 % 90.44 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
82 MonoSample (DID-M3D) code 95.02 % 96.45 % 85.58 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Qiao, B. Liu, J. Yang, B. Wang, S. Xiu, X. Du and X. Nie: MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2024.
83 PDV code 95.00 % 96.07 % 92.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
84 MVRA + I-FRCNN+ 94.98 % 95.87 % 82.52 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
85 SVFMamba code 94.97 % 95.54 % 92.24 % N/A s 1 core @ 2.5 Ghz (C/C++)
86 SIENet code 94.97 % 96.02 % 92.40 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
87 VoTr-TSD code 94.94 % 95.97 % 92.44 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
88 L-AUG 94.92 % 95.84 % 92.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
89 SQD code 94.92 % 98.21 % 92.37 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Z. Hou, W. Huang, Y. Hu, J. Wang and J. Yan: Sparse Query Dense: Enhancing 3D Object Detection with Pseudo Points. ACM MM Oral 2024.
90 GraphAlign(ICCV2023) code 94.87 % 98.06 % 92.47 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
91 M3DeTR code 94.83 % 97.39 % 92.10 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
92 StructuralIF 94.81 % 96.14 % 92.12 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
93 XView 94.77 % 95.89 % 92.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
94 P2V-RCNN 94.73 % 96.03 % 92.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
95 SPG
This method makes use of Velodyne laser scans.
code 94.71 % 97.80 % 92.19 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
96 CAT-Det 94.71 % 95.97 % 92.07 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
97 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 94.70 % 98.17 % 92.04 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
98 RobusTor3D 94.69 % 98.12 % 92.30 % ... s 1 core @ 2.5 Ghz (C/C++)
99 SVGA-Net 94.67 % 96.05 % 91.86 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
100 RangeDet (Official) code 94.64 % 95.50 % 91.77 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
101 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 94.64 % 95.86 % 92.10 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
102 RangeIoUDet
This method makes use of Velodyne laser scans.
94.61 % 95.74 % 91.98 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
103 BVIFusion+ 94.61 % 95.81 % 91.93 % 0.09 s 1 core @ 2.5 Ghz (Python)
104 PASS-PV-RCNN-Plus 94.59 % 95.79 % 92.10 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
105 DVFENet 94.57 % 95.35 % 91.77 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
106 Voxel RCNN* code 94.53 % 96.12 % 91.84 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
107 TuSimple code 94.47 % 95.12 % 86.45 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
108 EPNet code 94.44 % 96.15 % 89.99 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
109 SFA_IGCL_Focalsconv* code 94.44 % 95.92 % 92.18 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
110 2025AAAI-SSLfusion code 94.42 % 98.23 % 89.97 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
111 SERCNN
This method makes use of Velodyne laser scans.
94.42 % 96.33 % 89.96 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
112 New_VLGCL code 94.35 % 97.60 % 92.05 % 0.4 s 1 core @ 2.5 Ghz (Python)
113 ... code 94.32 % 98.02 % 91.88 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
114 dsvd+vx 94.30 % 95.09 % 91.51 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
115 UberATG-MMF
This method makes use of Velodyne laser scans.
94.25 % 97.41 % 89.87 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
116 SRDL 94.24 % 95.86 % 91.80 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
117 CGML 94.14 % 97.56 % 91.89 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
118 Voxel RCNN-Focal* code 94.14 % 95.62 % 91.99 % 0.2 s 1 core @ 2.5 Ghz (Python)
119 VLGCL_NoText code 94.12 % 95.89 % 91.92 % 0.3 s 1 core @ 2.5 Ghz (Python)
120 FocalsConv* 94.10 % 97.67 % 91.88 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
121 HMNet 94.07 % 95.51 % 91.23 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
122 PointVit V1 94.04 % 99.36 % 86.46 % .006 s 1 core @ 2.5 Ghz (Python + C/C++)
123 RangeRCNN
This method makes use of Velodyne laser scans.
94.03 % 95.48 % 91.74 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
124 SA V1 94.02 % 94.86 % 91.16 % 0.5 s GPU @ 2.5 Ghz (Python)
125 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 93.99 % 95.81 % 91.72 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
126 DD3D code 93.99 % 94.69 % 89.37 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
127 MSFASA-3DNet 93.98 % 95.21 % 90.94 % 0.03 s GPU @ 2.5 Ghz (Python)
128 SIF 93.95 % 95.51 % 91.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
129 MGAF-3DSSD code 93.87 % 94.45 % 86.37 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
130 3ONet 93.87 % 96.97 % 88.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
131 LPCG-Monoflex code 93.86 % 96.90 % 83.94 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
132 MMLAB LIGA-Stereo
This method uses stereo information.
code 93.82 % 96.43 % 86.19 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
133 Sem-Aug
This method makes use of Velodyne laser scans.
93.77 % 96.79 % 88.78 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
134 Patches - EMP
This method makes use of Velodyne laser scans.
93.75 % 97.91 % 90.56 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
135 CIA-SSD
This method makes use of Velodyne laser scans.
code 93.72 % 96.87 % 86.20 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
136 MonoHPE 93.72 % 96.49 % 83.86 % 0.04 s 1 core @ 2.5 Ghz (Python)
137 QD-3DT
This is an online method (no batch processing).
code 93.66 % 94.26 % 83.63 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
138 MVAF-Net code 93.66 % 95.37 % 90.90 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
139 SSL-PointGNN code 93.65 % 96.61 % 88.53 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
140 work6_new1 93.65 % 94.87 % 90.94 % 0.5 s GPU @ 2.5 Ghz (Python)
141 MonoHPE-Mask 93.63 % 96.48 % 86.04 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
142 PA3DNet 93.62 % 96.57 % 88.65 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
143 CS3D 93.58 % 95.18 % 90.84 % 0.5 s 1 core @ 2.5 Ghz (Python)
144 IA-SSD (multi) code 93.56 % 96.10 % 90.68 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
145 MonoLiG code 93.56 % 96.70 % 83.74 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
146 MonoPair 93.55 % 96.61 % 83.55 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
147 IA-SSD (single) code 93.54 % 96.26 % 88.49 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
148 EBM3DOD code 93.54 % 96.81 % 88.33 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
149 IDEAL-M3D 60% 93.51 % 96.32 % 85.98 % 0.04 s 1 core @ 2.5 Ghz (Python)
150 SeSame-point code 93.50 % 95.22 % 90.44 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
151 Deep MANTA 93.50 % 98.89 % 83.21 % 0.7 s GPU @ 2.5 Ghz (Python + C/C++)
F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau: Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. CVPR 2017.
152 Point-GNN
This method makes use of Velodyne laser scans.
code 93.50 % 96.58 % 88.35 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
153 BtcDet
This method makes use of Velodyne laser scans.
code 93.47 % 96.23 % 88.55 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
154 MonoDLGD 93.45 % 96.45 % 83.72 % 0.04 s GPU @ 2.5 Ghz (Python)
155 Struc info fusion II 93.45 % 96.72 % 88.31 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
156 EBM3DOD baseline code 93.45 % 96.72 % 88.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
157 StereoDistill 93.43 % 97.61 % 87.71 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
158 MonoAFKD 93.42 % 96.18 % 83.62 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
159 MonoLSS 93.42 % 96.19 % 83.62 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
160 RRC code 93.40 % 95.68 % 87.37 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
161 AM 93.39 % 96.22 % 85.84 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
162 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 93.36 % 96.78 % 86.11 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
163 SNVC
This method uses stereo information.
code 93.32 % 96.33 % 85.81 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
164 DFAF3D 93.32 % 96.58 % 90.24 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
165 MonoLSPF 93.32 % 96.15 % 85.74 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
166 Struc info fusion I 93.31 % 96.59 % 88.23 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
167 NoText_VLGCL code 93.30 % 97.56 % 89.42 % 0.2 s 1 core @ 2.5 Ghz (Python)
168 CityBrainLab-CT3D code 93.30 % 96.28 % 90.58 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
169 STD code 93.22 % 96.14 % 90.53 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
170 SARPNET 93.21 % 96.07 % 88.09 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
171 H^23D R-CNN code 93.20 % 96.20 % 90.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
172 Fast Point R-CNN
This method makes use of Velodyne laser scans.
93.18 % 96.13 % 87.68 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
173 sensekitti code 93.17 % 94.79 % 84.38 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
174 SJTU-HW 93.11 % 96.30 % 82.21 % 0.85s GPU @ 1.5 Ghz (Python + C/C++)
S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION EMBEDDED DETECTOR. IEEE International Conference on Image Processing 2018.
L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications 2018.
175 FromVoxelToPoint code 93.06 % 96.08 % 90.53 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
176 CLOCs_SecCas 92.95 % 95.43 % 89.21 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
177 MonoCD code 92.91 % 96.43 % 85.55 % n/a s 1 core @ 2.5 Ghz (Python)
L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan: MonoCD: Monocular 3D Object Detection with Complementary Depths. CVPR 2024.
178 Fade-kd 92.91 % 96.26 % 89.99 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
179 ACDet code 92.84 % 96.18 % 89.83 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
180 HotSpotNet 92.81 % 96.21 % 89.80 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
181 SegVoxelNet 92.73 % 96.00 % 87.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
182 Patches
This method makes use of Velodyne laser scans.
92.72 % 96.34 % 87.63 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
183 Cube R-CNN code 92.72 % 95.78 % 84.81 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
184 CenterNet3D 92.69 % 95.76 % 89.81 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
185 R-GCN 92.67 % 96.19 % 87.66 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
186 PI-RCNN 92.66 % 96.17 % 87.68 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
187 PointPainting
This method makes use of Velodyne laser scans.
92.58 % 98.39 % 89.71 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
188 Fade 3D code 92.55 % 97.71 % 87.50 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
189 DensePointPillars 92.55 % 95.66 % 87.35 % 0.03 s GPU @ 2.5 Ghz (Python)
190 DASS 92.53 % 96.23 % 87.75 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
191 3D IoU-Net 92.47 % 96.31 % 87.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
192 Associate-3Ddet code 92.45 % 95.61 % 87.32 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
193 S-AT GCN 92.44 % 95.06 % 90.78 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
194 PointRGCN 92.33 % 97.51 % 87.07 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
195 Sem-Aug-PointRCNN++ 92.32 % 95.65 % 87.62 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
196 XPillars
This method makes use of Velodyne laser scans.
92.26 % 94.78 % 89.18 % 0.02 s GPU @ 2.5 Ghz (Python)
197 Harmonic PointPillar code 92.25 % 95.16 % 89.11 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
198 F-ConvNet
This method makes use of Velodyne laser scans.
code 92.19 % 95.85 % 80.09 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
199 PFF3D
This method makes use of Velodyne laser scans.
code 92.15 % 95.37 % 87.54 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
200 geo-pillars 92.10 % 95.30 % 89.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
201 PASS-PointPillar 92.09 % 95.20 % 88.73 % 1 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
202 SDP+RPN 92.03 % 95.16 % 79.16 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
203 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 92.00 % 95.88 % 86.98 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
204 PointPillars_mmdet3d 91.96 % 95.21 % 87.03 % 0.03 s 1 core @ 2.5 Ghz (Python)
205 PCNet3D++ 91.90 % 94.96 % 88.61 % 0.5 s GPU @ 3.5 Ghz (Python)
206 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 91.90 % 95.92 % 87.11 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
207 M3DNet 91.87 % 95.00 % 88.69 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
208 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 91.86 % 95.03 % 89.06 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
209 mmFUSION code 91.84 % 95.69 % 87.05 % 1s 1 core @ 2.5 Ghz (Python)
J. Ahmad and A. Del Bue: mmFUSION: Multimodal Fusion for 3D Objects Detection. arXiv preprint arXiv:2311.04058 2023.
210 WeakM3D code 91.81 % 94.51 % 85.35 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
211 epBRM
This method makes use of Velodyne laser scans.
code 91.77 % 94.59 % 88.45 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
212 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
91.77 % 94.79 % 88.82 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
213 C-GCN 91.73 % 95.64 % 86.37 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
214 ITVD code 91.73 % 95.85 % 79.31 % 0.3 s GPU @ 2.5 Ghz (C/C++)
Y. Wei Liu: Improving Tiny Vehicle Detection in Complex Scenes. IEEE International Conference on Multimedia and Expo (ICME) 2018.
215 BFT3D_easy 91.72 % 97.15 % 84.32 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
216 SINet+ code 91.67 % 94.17 % 78.60 % 0.3 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
217 Cascade MS-CNN code 91.60 % 94.26 % 78.84 % 0.25 s GPU @ 2.5 Ghz (C/C++)
Z. Cai and N. Vasconcelos: Cascade R-CNN: High Quality Object Detection and Instance Segmentation. arXiv preprint arXiv:1906.09756 2019.
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A unified multi-scale deep convolutional neural network for fast object detection. European conference on computer vision 2016.
218 SeSame-pillar code 91.57 % 95.13 % 88.41 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
219 MDD-M3D-X 91.53 % 93.45 % 84.33 % 0.01 s 1 core @ 2.5 Ghz (Python)
220 DSFNet 91.51 % 94.58 % 87.81 % 0.5 s GPU @ 2.5 Ghz (Python)
221 PointRGBNet 91.48 % 95.40 % 86.50 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
222 MAFF-Net(DAF-Pillar) 91.46 % 94.38 % 83.89 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
223 HRI-VoxelFPN 91.44 % 96.65 % 86.18 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
224 EgoNet code 91.39 % 96.18 % 81.33 % 0.1 s GPU @ 1.5 Ghz (Python)
S. Li, Z. Yan, H. Li and K. Cheng: Exploring intermediate representation for monocular vehicle pose estimation. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
225 MonoDTF 91.35 % 95.03 % 85.92 % 0.1 s 1 core @ 2.5 Ghz (Python)
Anonymities: Revisiting Monocular 3D Object Detection from Scene-Level Depth Retargeting to Instance- Level Spatial Refinement. arXiv preprint arXiv:2412.19165 2024.
226 SeSame-pillar w/scor code 91.34 % 94.89 % 88.13 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
227 MonoSKD code 91.34 % 96.68 % 83.69 % 0.04 s 1 core @ 2.5 Ghz (Python)
S. Wang and J. Zheng: MonoSKD: General Distillation Framework for Monocular 3D Object Detection via Spearman Correlation Coefficient. ECAI 2023.
228 Stereo CenterNet
This method uses stereo information.
91.27 % 96.61 % 83.50 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
229 DDStereo
This method uses stereo information.
91.26 % 94.20 % 83.53 % 0.02 s GPU @ 2.5 Ghz (Python)
230 AARMOD 91.23 % 96.70 % 83.76 % 0.1 s 1 core @ 2.5 Ghz (Python)
231 PointPillars
This method makes use of Velodyne laser scans.
code 91.19 % 94.00 % 88.17 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
232 LTN 91.18 % 94.68 % 81.51 % 0.4 s GPU @ >3.5 Ghz (Python)
T. Wang, X. He, Y. Cai and G. Xiao: Learning a Layout Transfer Network for Context Aware Object Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
233 MonoCoP-Car 91.18 % 93.60 % 81.77 % 0.01 s GPU @ 2.5 Ghz (Python)
234 EOTL code 91.17 % 96.31 % 81.20 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
235 WS3D
This method makes use of Velodyne laser scans.
91.15 % 95.13 % 86.52 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
236 NeurOCS 91.08 % 96.39 % 81.20 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
237 KM3D code 91.07 % 96.44 % 81.19 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
238 DID-M3D code 91.04 % 94.29 % 81.31 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
239 FII-CenterNet code 91.03 % 94.48 % 83.00 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
240 Aston-EAS 91.02 % 93.91 % 77.93 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.
241 MonoFlex 91.02 % 96.01 % 83.38 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
242 Mix-Teaching code 91.02 % 96.35 % 83.41 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
243 ARPNET 90.99 % 94.00 % 83.49 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
244 CIE 90.98 % 96.31 % 83.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
245 HINTED code 90.97 % 95.16 % 85.55 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
246 MonoVQD 90.97 % 96.20 % 81.04 % 0.02 s 1 core @ 2.5 Ghz (Python)
247 DCD code 90.93 % 96.44 % 83.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
248 MonoEF 90.88 % 96.32 % 83.27 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
249 PatchNet code 90.87 % 93.82 % 79.62 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
250 MV3D
This method makes use of Velodyne laser scans.
90.83 % 96.47 % 78.63 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
251 monodle code 90.81 % 93.83 % 80.93 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
252 3D IoU Loss
This method makes use of Velodyne laser scans.
90.79 % 95.92 % 85.65 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
253 SINet_VGG code 90.79 % 93.59 % 77.53 % 0.2 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
254 HomoLoss(monoflex) code 90.69 % 95.92 % 80.91 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
255 TANet code 90.67 % 93.67 % 85.31 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
256 T-SSD 90.65 % 96.06 % 85.54 % 0.04 1 core @ 2.0 Ghz (C/C++)
257 fdaa11 90.65 % 95.90 % 80.85 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
258 MonoGeo code 90.64 % 93.48 % 80.89 % 0.14 s GPU @ 2.5 Ghz (Python)
259 MonoCInIS 90.60 % 96.05 % 82.43 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
260 MonoCLUE 90.55 % 93.51 % 80.79 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
261 SeSame-voxel code 90.55 % 95.78 % 87.62 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
262 temp 90.52 % 96.06 % 82.86 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
263 MonoCLUE 90.48 % 95.82 % 80.71 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
264 MonoCLUE_all 90.38 % 95.56 % 80.58 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
265 CG-Stereo
This method uses stereo information.
90.38 % 96.31 % 82.80 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
266 SCNet
This method makes use of Velodyne laser scans.
90.30 % 95.59 % 85.09 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
267 CMKD code 90.28 % 95.14 % 83.91 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
268 PS-fld code 90.27 % 95.75 % 82.32 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
269 Deep3DBox 90.19 % 94.71 % 76.82 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
270 FQNet 90.17 % 94.72 % 76.78 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
271 DeepStereoOP 90.06 % 95.15 % 79.91 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
272 SubCNN 89.98 % 94.26 % 79.78 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
273 MLOD
This method makes use of Velodyne laser scans.
code 89.97 % 94.88 % 84.98 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
274 GPP code 89.96 % 94.02 % 81.13 % 0.23 s GPU @ 1.5 Ghz (Python + C/C++)
A. Rangesh and M. Trivedi: Ground plane polling for 6dof pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles 2020.
275 AVOD
This method makes use of Velodyne laser scans.
code 89.88 % 95.17 % 82.83 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
276 SINet_PVA code 89.86 % 92.72 % 76.47 % 0.11 s TITAN X GPU
X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin and P. Heng: SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
277 MonoCoP 89.72 % 92.13 % 80.15 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
278 MonoGeo code 89.68 % 94.83 % 82.18 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
279 3DOP
This method uses stereo information.
code 89.55 % 92.96 % 79.38 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
280 ADD code 89.53 % 94.82 % 81.60 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
281 IAFA 89.46 % 93.08 % 79.83 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
282 Mono3D code 89.37 % 94.52 % 79.15 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
283 4d-MSCNN
This method uses stereo information.
code 89.37 % 92.40 % 77.00 % 0.3 min GPU @ 3.0 Ghz (Matlab + C/C++)
P. Ferraz, B. Oliveira, F. Ferreira, C. Silva Martins and others: Three-stage RGBD architecture for vehicle and pedestrian detection using convolutional neural networks and stereo vision. IET Intelligent Transport Systems 2020.
284 MonoDDE 89.19 % 96.76 % 81.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
285 MonoUNI code 88.96 % 94.30 % 78.95 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
286 AVOD-FPN
This method makes use of Velodyne laser scans.
code 88.92 % 94.70 % 84.13 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
287 PCT code 88.78 % 96.45 % 78.85 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
288 OPA-3D code 88.77 % 96.50 % 76.55 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
289 MonOri code 88.72 % 95.23 % 81.77 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
290 AM3D 88.71 % 92.55 % 77.78 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
291 MS-CNN code 88.68 % 93.87 % 76.11 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
292 MonoPSR code 88.50 % 93.63 % 73.36 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
293 Shift R-CNN (mono) code 88.48 % 94.07 % 78.34 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
294 RCD 88.46 % 92.52 % 83.73 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
295 MM-MRFC
This method uses optical flow information.
This method makes use of Velodyne laser scans.
88.46 % 95.54 % 78.14 % 0.05 s GPU @ 2.5 Ghz (C/C++)
A. Costea, R. Varga and S. Nedevschi: Fast Boosting based Detection using Scale Invariant Multimodal Multiresolution Filtered Features. CVPR 2017.
296 MonoDTR 88.41 % 93.90 % 76.20 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
297 MonoDSSMs-M 88.31 % 93.96 % 76.15 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
K. Vu, T. Tran and D. Nguyen: MonoDSSMs: Efficient Monocular 3D Object Detection with Depth-Aware State Space Models. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
298 3DBN
This method makes use of Velodyne laser scans.
88.29 % 93.74 % 80.74 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
299 MonoDSSMs-A 88.19 % 93.91 % 76.04 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
K. Vu, T. Tran and D. Nguyen: MonoDSSMs: Efficient Monocular 3D Object Detection with Depth-Aware State Space Models. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
300 MonoCInIS 88.16 % 96.22 % 75.72 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
301 MonoRUn code 87.91 % 95.48 % 78.10 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
302 PS-SVDM 87.55 % 94.49 % 78.21 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
303 SMOKE code 87.51 % 93.21 % 77.66 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
304 monospb 87.44 % 93.05 % 77.48 % 0.01 s 1 core @ 2.5 Ghz (Python)
305 UniCuboid 87.33 % 95.79 % 77.76 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
306 H3 87.33 % 93.58 % 77.79 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
307 MonoFRD 87.31 % 95.25 % 77.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
308 CDN
This method uses stereo information.
code 87.19 % 95.85 % 79.43 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
309 CPD++(unsupervised) code 86.95 % 94.96 % 83.72 % 0.1 s GPU @ >3.5 Ghz (Python)
310 RTM3D code 86.93 % 91.82 % 77.41 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
311 MonoNeRD code 86.89 % 94.60 % 77.23 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
312 MonoRCNN code 86.78 % 91.98 % 66.97 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
313 BirdNet+
This method makes use of Velodyne laser scans.
code 86.73 % 92.61 % 81.80 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
314 MonoRCNN++ code 86.69 % 94.31 % 71.87 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
315 DEVIANT code 86.64 % 94.42 % 76.69 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
316 GUPNet code 86.45 % 94.15 % 74.18 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
317 DSGN
This method uses stereo information.
code 86.43 % 95.53 % 78.75 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
318 GATE3D code 86.23 % 90.58 % 79.19 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
319 MonoDETR code 86.17 % 93.99 % 76.19 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
320 mdab 86.15 % 94.14 % 76.25 % 0.02 s 1 core @ 2.5 Ghz (Python)
321 PS-SVDM 86.15 % 94.45 % 77.86 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
322 Stereo R-CNN
This method uses stereo information.
code 85.98 % 93.98 % 71.25 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
323 StereoFENet
This method uses stereo information.
85.70 % 91.48 % 77.62 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
324 DMF
This method uses stereo information.
85.49 % 89.50 % 82.52 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
325 ResNet-RRC_Car 85.33 % 91.45 % 74.27 % 0.06 s GPU @ 1.5 Ghz (Python + C/C++)
H. Jeon and others: High-Speed Car Detection Using ResNet- Based Recurrent Rolling Convolution. Proceedings of the IEEE conference on systems, man, and cybernetics 2018.
326 DetAny3D code 85.20 % 95.22 % 80.64 % 0.58 s 1 core @ 2.5 Ghz (Python)
327 MM3D 85.18 % 95.81 % 77.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
328 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 85.15 % 94.95 % 77.78 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
329 M3D-RPN code 85.08 % 89.04 % 69.26 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
330 CDN-PL++
This method uses stereo information.
85.01 % 94.66 % 77.60 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
331 SDP+CRC (ft) 85.00 % 92.06 % 71.71 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
332 SSM3D 84.96 % 93.63 % 77.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
333 SS3D 84.92 % 92.72 % 70.35 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
334 M3D 84.78 % 93.46 % 77.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
335 M5_3D 84.69 % 93.53 % 77.16 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
336 MonoFENet 84.63 % 91.68 % 76.71 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
337 STLM3D 84.58 % 93.59 % 75.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
338 DLE code 84.45 % 94.66 % 62.10 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
339 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
84.39 % 93.08 % 79.27 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
340 Complexer-YOLO
This method makes use of Velodyne laser scans.
84.16 % 91.92 % 79.62 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
341 MonOAPC 84.13 % 92.39 % 74.62 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
342 ZoomNet
This method uses stereo information.
code 83.92 % 94.22 % 69.00 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
343 CMAN 83.74 % 89.74 % 65.35 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
344 D4LCN code 83.67 % 90.34 % 65.33 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
345 test_det 83.23 % 84.04 % 74.69 % -1 s 1 core @ 2.5 Ghz (C/C++)
346 Faster R-CNN code 83.16 % 88.97 % 72.62 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
347 SGM3D code 83.05 % 93.66 % 73.35 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
348 Pseudo-LiDAR++
This method uses stereo information.
code 82.90 % 94.46 % 75.45 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
349 Disp R-CNN
This method uses stereo information.
code 82.86 % 93.64 % 68.33 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
350 MonoMH code 82.77 % 91.02 % 71.66 % 0.04 s 1 core @ 2.5 Ghz (Python)
351 BS3D 82.72 % 95.35 % 70.01 % 22 ms Titan Xp
N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler: Beyond Bounding Boxes: Using Bounding Shapes for Real-Time 3D Vehicle Detection from Monocular RGB Images. 2019 IEEE Intelligent Vehicles Symposium (IV) 2019.
352 Disp R-CNN (velo)
This method uses stereo information.
code 82.64 % 93.45 % 70.45 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
353 HomoLoss(imvoxelnet) code 82.54 % 92.81 % 72.80 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
354 YOLOStereo3D
This method uses stereo information.
code 82.15 % 94.81 % 62.17 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
355 Ground-Aware code 82.05 % 92.33 % 62.08 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
356 FRCNN+Or code 82.00 % 92.91 % 68.79 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
357 DDMP-3D 81.70 % 91.15 % 63.12 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
358 MonoSC 81.52 % 88.86 % 70.96 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
359 A3DODWTDA (image) code 81.25 % 78.96 % 70.56 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
360 RefineNet 81.01 % 91.91 % 65.67 % 0.20 s GPU @ 2.5 Ghz (Matlab + C++)
R. Rajaram, E. Bar and M. Trivedi: RefineNet: Refining Object Detectors for Autonomous Driving. IEEE Transactions on Intelligent Vehicles 2016.
R. Rajaram, E. Bar and M. Trivedi: RefineNet: Iterative Refinement for Accurate Object Localization. Intelligent Transportation Systems Conference 2016.
361 CaDDN code 80.73 % 93.61 % 71.09 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
362 ESGN
This method uses stereo information.
80.58 % 93.07 % 70.68 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
363 PGD-FCOS3D code 80.58 % 92.04 % 69.67 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
364 AMNet+DDAD15M code 80.30 % 88.43 % 74.19 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
365 GrooMeD-NMS code 80.28 % 90.14 % 63.78 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
366 3D-GCK 80.19 % 89.55 % 68.08 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
367 AMNet code 79.84 % 88.59 % 72.78 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
368 YoloMono3D code 79.63 % 92.37 % 59.69 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
369 A3DODWTDA
This method makes use of Velodyne laser scans.
code 79.15 % 82.98 % 68.30 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
370 ImVoxelNet code 79.09 % 89.80 % 69.45 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
371 DFR-Net 78.81 % 90.13 % 60.40 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
372 spLBP 78.66 % 81.66 % 61.69 % 1.5 s 8 cores @ 2.5 Ghz (Matlab + C/C++)
Q. Hu, S. Paisitkriangkrai, C. Shen, A. Hengel and F. Porikli: Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework. IEEE Trans. Intelligent Transportation Systems 2016.
373 FMF-occlusion-net 78.21 % 92.33 % 61.58 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
374 3D-SSMFCNN code 78.19 % 77.92 % 69.19 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
375 MonoGRNet code 77.94 % 88.65 % 63.31 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
376 Aug3D-RPN 77.88 % 85.57 % 61.16 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
377 AutoShape code 77.66 % 86.51 % 64.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
378 Reinspect code 77.48 % 90.27 % 66.73 % 2s 1 core @ 2.5 Ghz (C/C++)
R. Stewart, M. Andriluka and A. Ng: End-to-End People Detection in Crowded Scenes. CVPR 2016.
379 multi-task CNN 77.18 % 86.12 % 68.09 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
380 Regionlets 76.99 % 88.75 % 60.49 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
381 3DVP code 76.98 % 84.95 % 65.78 % 40 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Data-Driven 3D Voxel Patterns for Object Category Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2015.
382 Mobile Stereo R-CNN
This method uses stereo information.
76.73 % 90.08 % 62.23 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
383 SubCat code 76.36 % 84.10 % 60.56 % 0.7 s 6 cores @ 3.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
384 GS3D 76.35 % 86.23 % 62.67 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
385 AOG code 76.24 % 86.08 % 61.51 % 3 s 4 cores @ 2.5 Ghz (Matlab)
T. Wu, B. Li and S. Zhu: Learning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation. TPAMI 2016.
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
386 Pose-RCNN 75.83 % 89.59 % 64.06 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
387 Plane-Constraints code 75.43 % 82.54 % 66.82 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
388 3D FCN
This method makes use of Velodyne laser scans.
74.65 % 86.74 % 67.85 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
389 OC Stereo
This method uses stereo information.
code 74.60 % 87.39 % 62.56 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
390 Kinematic3D code 71.73 % 89.67 % 54.97 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
391 SeSame-point w/score code 71.56 % 88.90 % 61.60 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
392 AOG-View 71.26 % 85.01 % 55.73 % 3 s 1 core @ 2.5 Ghz (Matlab, C/C++)
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
393 GAC3D 70.73 % 83.30 % 52.23 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
394 MV-RGBD-RF
This method makes use of Velodyne laser scans.
70.70 % 77.89 % 57.41 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
395 Vote3Deep
This method makes use of Velodyne laser scans.
70.30 % 78.95 % 63.12 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
396 ROI-10D 70.16 % 76.56 % 61.15 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
397 CPD(unsupervised) code 68.17 % 86.87 % 67.89 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
398 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 68.05 % 92.10 % 65.61 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
399 Decoupled-3D 67.92 % 87.78 % 54.53 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
400 SparVox3D 67.88 % 83.76 % 52.56 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
401 Pseudo-Lidar
This method uses stereo information.
code 67.79 % 85.40 % 58.50 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
402 OC-DPM 67.06 % 79.07 % 52.61 % 10 s 8 cores @ 2.5 Ghz (Matlab)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
403 DPM-VOC+VP 66.72 % 82.15 % 49.01 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
404 BdCost48LDCF code 66.63 % 81.38 % 52.20 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
405 RefinedMPL 65.24 % 88.29 % 53.20 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
406 MDPM-un-BB 64.06 % 79.74 % 49.07 % 60 s 4 core @ 2.5 Ghz (MATLAB)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
407 SeSame-voxel w/score code 63.79 % 73.57 % 58.02 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
408 TLNet (Stereo)
This method uses stereo information.
code 63.53 % 76.92 % 54.58 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
409 PDV-Subcat 63.24 % 78.27 % 47.67 % 7 s 1 core @ 2.5 Ghz (C/C++)
J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential statistic feature for pedestrian and face detection . Pattern Recognition 2017.
410 MDSNet 62.74 % 85.94 % 50.27 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
411 MODet
This method makes use of Velodyne laser scans.
62.54 % 66.06 % 60.04 % 0.05 s GTX1080Ti
Y. Zhang, Z. Xiang, C. Qiao and S. Chen: Accurate and Real-Time Object Detection Based on Bird's Eye View on 3D Point Clouds. 2019 International Conference on 3D Vision (3DV) 2019.
412 CIE + DM3D 61.54 % 79.36 % 53.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
413 SubCat48LDCF code 61.16 % 78.86 % 44.69 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
414 DPM-C8B1
This method uses stereo information.
60.21 % 75.24 % 44.73 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
415 SAMME48LDCF code 58.38 % 77.47 % 44.43 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
416 LSVM-MDPM-sv 58.36 % 71.11 % 43.22 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
417 BirdNet
This method makes use of Velodyne laser scans.
57.12 % 79.30 % 55.16 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
418 ACF-SC 56.60 % 69.90 % 43.61 % <0.3 s 1 core @ >3.5 Ghz (Matlab + C/C++)
C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding System using Context-Aware Object Detection. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2015.
419 LSVM-MDPM-us code 55.95 % 68.94 % 41.45 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
420 ACF 54.09 % 63.05 % 41.81 % 0.2 s 1 core @ >3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
P. Doll\'ar: Piotr's Image and Video Matlab Toolbox (PMT). .
421 Mono3D_PLiDAR code 53.36 % 80.85 % 44.80 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
422 RT3D-GMP
This method uses stereo information.
51.95 % 62.41 % 39.14 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
423 VeloFCN
This method makes use of Velodyne laser scans.
51.82 % 70.53 % 45.70 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
424 BEVHeight++ code 49.99 % 59.85 % 42.86 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, T. Tang, J. Li, P. Chen, K. Yuan, L. Wang, Y. Huang, X. Zhang and K. Yu: Bevheight++: Toward robust visual centric 3d object detection. arXiv preprint arXiv:2309.16179 2023.
425 Vote3D
This method makes use of Velodyne laser scans.
45.94 % 54.38 % 40.48 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
426 TopNet-HighRes
This method makes use of Velodyne laser scans.
45.85 % 58.04 % 41.11 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
427 RT3DStereo
This method uses stereo information.
45.81 % 56.53 % 37.63 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
428 Multimodal Detection
This method makes use of Velodyne laser scans.
code 45.46 % 63.91 % 37.25 % 0.06 s GPU @ 3.5 Ghz (Matlab + C/C++)
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes: Multimodal vehicle detection: fusing 3D- LIDAR and color camera data. Pattern Recognition Letters 2017.
429 RT3D
This method makes use of Velodyne laser scans.
39.69 % 50.33 % 40.04 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
430 VoxelJones code 36.31 % 43.89 % 34.16 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
431 CSoR
This method makes use of Velodyne laser scans.
code 21.66 % 31.52 % 17.99 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
432 mBoW
This method makes use of Velodyne laser scans.
21.59 % 35.22 % 16.89 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
433 DepthCN
This method makes use of Velodyne laser scans.
code 21.18 % 37.45 % 16.08 % 2.3 s GPU @ 3.5 Ghz (Matlab)
A. Asvadi, L. Garrote, C. Premebida, P. Peixoto and U. Nunes: DepthCN: vehicle detection using 3D- LIDAR and convnet. IEEE ITSC 2017.
434 YOLOv2 code 14.31 % 26.74 % 10.94 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
435 TopNet-UncEst
This method makes use of Velodyne laser scans.
6.24 % 7.24 % 5.42 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
436 TopNet-Retina
This method makes use of Velodyne laser scans.
5.00 % 6.82 % 4.52 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
437 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.01 % 0.00 % 0.01 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
438 EAEPNet 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
439 LaserNet 0.00 % 0.00 % 0.00 % 12 ms GPU @ 2.5 Ghz (C/C++)
G. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez and C. Wellington: LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
440 DA3D+KM3D+v2-99 code 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
441 Monohan 0.00 % 0.00 % 0.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
442 Neighbor-Vote 0.00 % 0.00 % 0.00 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
443 DA3D+KM3D code 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
444 DA3D code 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 F-PointNet
This method makes use of Velodyne laser scans.
code 80.13 % 89.83 % 75.05 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
2 HHA-TFFEM
This method makes use of Velodyne laser scans.
78.53 % 87.01 % 74.70 % 0.14 s GPU @ 2.5 Ghz (Python + C/C++)
F. Tan, Z. Xia, Y. Ma and X. Feng: 3D Sensor Based Pedestrian Detection by Integrating Improved HHA Encoding and Two-Branch Feature Fusion. Remote Sensing 2022.
3 TuSimple code 78.40 % 88.87 % 73.66 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
4 RRC code 76.61 % 85.98 % 71.47 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
5 WSSN
This method makes use of Velodyne laser scans.
76.42 % 84.91 % 71.86 % 0.37 s GPU @ >3.5 Ghz (Python + C/C++)
Z. Guo, W. Liao, Y. Xiao, P. Veelaert and W. Philips: Weak Segmentation Supervised Deep Neural Networks for Pedestrian Detection. Pattern Recognition 2021.
6 ECP Faster R-CNN 76.25 % 85.96 % 70.55 % 0.25 s GPU @ 2.5 Ghz (Python)
M. Braun, S. Krebs, F. Flohr and D. Gavrila: The EuroCity Persons Dataset: A Novel Benchmark for Object Detection. CoRR 2018.
7 Aston-EAS 76.07 % 86.71 % 70.02 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang and Z. Xiong: Enhanced Object Detection With Deep Convolutional Neural Networks for Advanced Driving Assistance. IEEE Transactions on Intelligent Transportation Systems 2019.
8 MHN 75.99 % 87.21 % 69.50 % 0.39 s GPU @ 2.5 Ghz (Python)
J. Cao, Y. Pang, S. Zhao and X. Li: High-Level Semantic Networks for Multi- Scale Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2019.
9 FFNet code 75.81 % 87.17 % 69.86 % 1.07 s GPU @ 1.5 Ghz (Python)
C. Zhao, Y. Qian and M. Yang: Monocular Pedestrian Orientation Estimation Based on Deep 2D-3D Feedforward. Pattern Recognition 2019.
10 SJTU-HW 75.81 % 87.17 % 69.86 % 0.85s GPU @ 1.5 Ghz (Python + C/C++)
S. Zhang, X. Zhao, L. Fang, F. Haiping and S. Haitao: LED: LOCALIZATION-QUALITY ESTIMATION EMBEDDED DETECTOR. IEEE International Conference on Image Processing 2018.
L. Fang, X. Zhao and S. Zhang: Small-objectness sensitive detection based on shifted single shot detector. Multimedia Tools and Applications 2018.
11 MS-CNN code 74.89 % 85.71 % 68.99 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
12 DD3D code 73.09 % 85.71 % 68.54 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
13 F-ConvNet
This method makes use of Velodyne laser scans.
code 72.91 % 83.63 % 67.18 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
14 GN 72.29 % 82.93 % 65.56 % 1 s GPU @ 2.5 Ghz (Matlab + C/C++)
S. Jung and K. Hong: Deep network aided by guiding network for pedestrian detection. Pattern Recognition Letters 2017.
15 SubCNN 72.27 % 84.88 % 66.82 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
16 VMVS
This method makes use of Velodyne laser scans.
71.82 % 82.80 % 66.85 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
17 EOTL code 71.45 % 84.74 % 64.58 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
18 IVA code 71.37 % 84.61 % 64.90 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection. ACCV 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015.
19 MM-MRFC
This method uses optical flow information.
This method makes use of Velodyne laser scans.
70.76 % 83.79 % 64.81 % 0.05 s GPU @ 2.5 Ghz (C/C++)
A. Costea, R. Varga and S. Nedevschi: Fast Boosting based Detection using Scale Invariant Multimodal Multiresolution Filtered Features. CVPR 2017.
20 SDP+RPN 70.42 % 82.07 % 65.09 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
21 3DOP
This method uses stereo information.
code 69.57 % 83.17 % 63.48 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
22 MonoPSR code 68.56 % 85.60 % 63.34 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
23 IDEAL-M3D 60% 68.50 % 83.73 % 63.35 % 0.04 s 1 core @ 2.5 Ghz (Python)
24 DeepStereoOP 68.46 % 83.00 % 63.35 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
25 sensekitti code 68.41 % 82.72 % 62.72 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
26 MonoAFKD 67.83 % 82.92 % 60.90 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
27 MonoLSS 67.78 % 82.88 % 60.87 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
28 Frustum-PointPillars code 67.51 % 76.80 % 63.81 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
29 FII-CenterNet code 67.31 % 81.32 % 61.29 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
30 Mono3D code 67.29 % 80.30 % 62.23 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
31 MonoLSPF 66.47 % 83.64 % 61.46 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
32 MonoHPE-Mask 66.40 % 83.33 % 61.27 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
33 MonoHPE 66.32 % 83.41 % 61.26 % 0.04 s 1 core @ 2.5 Ghz (Python)
34 Faster R-CNN code 66.24 % 79.97 % 61.09 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
35 2025AAAI-SSLfusion code 66.12 % 75.35 % 63.57 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
36 VPFNet code 65.68 % 75.03 % 61.95 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
37 UPIDet code 65.50 % 75.07 % 63.09 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
38 EQ-PVRCNN code 65.01 % 77.19 % 61.95 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
39 CasA++ code 64.94 % 74.41 % 62.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
40 TED code 64.74 % 74.26 % 62.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
41 LoGoNet code 64.55 % 72.47 % 62.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
42 SDP+CRC (ft) 64.36 % 79.22 % 59.16 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
43 ImagePG 64.13 % 73.98 % 60.14 % 1 s 1 core @ 2.5 Ghz (C/C++)
44 ... code 63.83 % 72.73 % 61.25 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
45 Pose-RCNN 63.54 % 80.07 % 57.02 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
46 USVLab BSAODet code 63.21 % 72.86 % 59.48 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
47 MLF-DET 63.09 % 70.25 % 59.23 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
48 FIRM-Net_SCF+ 62.91 % 72.98 % 60.31 % 0.07 s 1 core @ 2.5 Ghz (Python)
49 CFM 62.84 % 74.76 % 56.06 % <2 s GPU @ 2.5 Ghz (Matlab + C/C++)
Q. Hu, P. Wang, C. Shen, A. Hengel and F. Porikli: Pushing the Limits of Deep CNNs for Pedestrian Detection. IEEE Transactions on Circuits and Systems for Video Technology 2017.
50 CasA code 62.73 % 72.65 % 60.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
51 FIRM-Net-SCF 62.63 % 72.78 % 59.99 % 0.07 s 1 core @ 2.5 Ghz (Python)
52 Fast-CLOCs 62.57 % 76.22 % 60.13 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
53 DUO-Net 62.48 % 71.70 % 59.97 % 0.1 s 1 core @ 2.5 Ghz (Python)
54 PiFeNet code 62.35 % 72.74 % 59.29 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
55 HotSpotNet 62.31 % 71.43 % 59.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
56 BVIFusion+ 62.06 % 71.81 % 58.21 % 0.09 s 1 core @ 2.5 Ghz (Python)
57 P2V-RCNN 61.83 % 71.76 % 59.29 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
58 MonoPair 61.57 % 78.81 % 56.51 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
59 MDD-M3D-X 61.53 % 78.10 % 56.86 % 0.01 s 1 core @ 2.5 Ghz (Python)
60 LumiNet code 61.38 % 72.01 % 58.94 % 0.1 s 1 core @ 2.5 Ghz (Python)
61 monodle code 61.29 % 78.66 % 56.18 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
62 RPN+BF code 61.22 % 77.06 % 55.22 % 0.6 s GPU @ 2.5 Ghz (Matlab + C/C++)
L. Zhang, L. Lin, X. Liang and K. He: Is Faster R-CNN Doing Well for Pedestrian Detection?. ECCV 2016.
63 SpaA 61.08 % 70.72 % 58.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
64 3ONet 60.89 % 72.45 % 56.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
65 Regionlets 60.83 % 73.79 % 54.72 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
66 RobusTor3D 60.56 % 68.60 % 58.35 % ... s 1 core @ 2.5 Ghz (C/C++)
67 3DSSD code 60.51 % 72.33 % 56.28 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
68 ACFNet 60.12 % 71.42 % 55.96 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
69 vsis-PHNet 60.10 % 71.15 % 57.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
70 PHNetp 60.10 % 71.15 % 57.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
71 CEF code 59.82 % 70.59 % 57.41 % 0.03 s 1 core @ 2.5 Ghz (Python)
72 dsvd+vx 59.75 % 69.79 % 57.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
73 DPPFA-Net 59.52 % 67.68 % 56.87 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.
74 ACDet code 59.51 % 71.27 % 57.03 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
75 WWW 59.48 % 69.28 % 55.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
76 QD-3DT
This is an online method (no batch processing).
code 59.26 % 78.41 % 54.37 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
77 DDStereo
This method uses stereo information.
59.22 % 76.24 % 54.47 % 0.02 s GPU @ 2.5 Ghz (Python)
78 AM 59.09 % 77.32 % 54.25 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
79 TANet code 59.07 % 69.90 % 56.44 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
80 MonoUNI code 58.97 % 76.17 % 53.99 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
81 SFA_IGCL_Focalsconv* code 58.94 % 66.88 % 56.80 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
82 SVFMamba code 58.83 % 69.22 % 55.36 % N/A s 1 core @ 2.5 Ghz (C/C++)
83 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 58.81 % 66.93 % 56.57 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
84 SRDL 58.70 % 68.45 % 56.23 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
85 FocalsConv* 58.61 % 66.08 % 55.20 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
86 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 58.37 % 68.88 % 55.38 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
87 PASS-PV-RCNN-Plus 58.31 % 67.45 % 55.92 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
88 New_VLGCL code 58.22 % 65.34 % 55.94 % 0.4 s 1 core @ 2.5 Ghz (Python)
89 Point-GNN
This method makes use of Velodyne laser scans.
code 58.20 % 71.59 % 54.06 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
90 MPC3DNet 58.20 % 66.33 % 55.97 % 0.05 s GPU @ 1.5 Ghz (Python)
91 DeepParts 58.15 % 71.47 % 51.92 % ~1 s GPU @ 2.5 Ghz (Matlab)
Y. Tian, P. Luo, X. Wang and X. Tang: Deep Learning Strong Parts for Pedestrian Detection. ICCV 2015.
92 CompACT-Deep 58.14 % 70.93 % 52.29 % 1 s 1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Cai, M. Saberian and N. Vasconcelos: Learning Complexity-Aware Cascades for Deep Pedestrian Detection. ICCV 2015.
93 EPNet++ 58.10 % 68.58 % 55.58 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
94 DSGN++
This method uses stereo information.
code 58.09 % 69.70 % 54.45 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
95 Voxel RCNN* code 58.00 % 67.71 % 55.56 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
96 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 57.96 % 68.78 % 54.01 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
97 SVGA-Net 57.92 % 67.81 % 55.25 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
98 AVOD-FPN
This method makes use of Velodyne laser scans.
code 57.87 % 67.95 % 55.23 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
99 Voxel RCNN-Focal* code 57.74 % 65.53 % 55.67 % 0.2 s 1 core @ 2.5 Ghz (Python)
100 DFAF3D 57.65 % 67.45 % 53.89 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
101 VLGCL_NoText code 57.56 % 64.82 % 55.40 % 0.3 s 1 core @ 2.5 Ghz (Python)
102 DPFusion code 57.49 % 68.78 % 53.41 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
103 CGML 57.49 % 64.84 % 55.41 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
104 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 57.35 % 67.88 % 54.42 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
105 PDV code 57.34 % 65.94 % 54.21 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
106 SIF 57.32 % 67.78 % 54.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
107 PG-RCNN code 57.31 % 67.77 % 54.83 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
108 FromVoxelToPoint code 57.26 % 68.26 % 54.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
109 SemanticVoxels 57.22 % 67.62 % 54.90 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
110 IA-SSD (single) code 56.87 % 66.69 % 54.68 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
111 CAT-Det 56.75 % 67.15 % 53.44 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
112 FRCNN+Or code 56.68 % 71.64 % 51.53 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
113 FilteredICF 56.53 % 69.79 % 50.32 % ~ 2 s >8 cores @ 2.5 Ghz (Matlab + C/C++)
S. Zhang, R. Benenson and B. Schiele: Filtered Channel Features for Pedestrian Detection. CVPR 2015.
114 R2Pfusion-Det 56.52 % 67.09 % 54.46 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
115 HMNet 56.46 % 67.93 % 53.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
116 ARPNET 56.42 % 69.08 % 52.69 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
117 MonoRUn code 56.40 % 73.05 % 51.40 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
118 MV-RGBD-RF
This method makes use of Velodyne laser scans.
56.18 % 72.99 % 49.72 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
119 temp 56.00 % 73.33 % 49.64 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
120 HMFI code 55.96 % 66.20 % 53.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
121 MGAF-3DSSD code 55.80 % 66.31 % 52.02 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
122 GUPNet code 55.65 % 74.95 % 48.44 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
123 MLOD
This method makes use of Velodyne laser scans.
code 55.62 % 68.42 % 51.45 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
124 MonoMH code 55.19 % 73.25 % 50.19 % 0.04 s 1 core @ 2.5 Ghz (Python)
125 DEVIANT code 55.16 % 74.27 % 50.21 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
126 PointPillars
This method makes use of Velodyne laser scans.
code 55.10 % 65.29 % 52.39 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
127 StereoDistill 55.09 % 69.00 % 50.95 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
128 STD code 55.04 % 68.33 % 50.85 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
129 OPA-3D code 54.92 % 73.93 % 47.87 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
130 Vote3Deep
This method makes use of Velodyne laser scans.
54.80 % 67.99 % 51.17 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
131 M3DeTR code 54.78 % 63.15 % 52.49 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
132 CAIA_PRO code 54.70 % 64.33 % 52.36 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
133 L-AUG 54.61 % 65.71 % 51.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
134 MonoCoP 54.41 % 70.75 % 49.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
135 epBRM
This method makes use of Velodyne laser scans.
code 54.13 % 62.90 % 51.95 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
136 DVFENet 54.13 % 63.54 % 51.79 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
137 SA V1 54.09 % 64.15 % 51.64 % 0.5 s GPU @ 2.5 Ghz (Python)
138 XView 53.83 % 62.27 % 51.61 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
139 monospb 53.79 % 72.50 % 48.89 % 0.01 s 1 core @ 2.5 Ghz (Python)
140 PointPainting
This method makes use of Velodyne laser scans.
53.76 % 61.86 % 50.61 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
141 work6_new1 53.59 % 62.87 % 51.39 % 0.5 s GPU @ 2.5 Ghz (Python)
142 PDV2 53.54 % 65.59 % 47.65 % 3.7 s 1 core @ 3.0 Ghz Matlab (C/C++)
J. Shen, X. Zuo, J. Li, W. Yang and H. Ling: A novel pixel neighborhood differential statistic feature for pedestrian and face detection . Pattern Recognition 2017.
143 Mix-Teaching code 53.52 % 67.34 % 47.45 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
144 NoText_VLGCL code 53.36 % 62.04 % 51.05 % 0.2 s 1 core @ 2.5 Ghz (Python)
145 Cube R-CNN code 53.27 % 64.96 % 47.84 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
146 TAFT 53.15 % 67.62 % 47.08 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Shen, X. Zuo, W. Yang, D. Prokhorov, X. Mei and H. Ling: Differential Features for Pedestrian Detection: A Taylor Series Perspective. IEEE Transactions on Intelligent Transportation Systems 2018.
147 MSFASA-3DNet 53.10 % 62.22 % 50.28 % 0.03 s GPU @ 2.5 Ghz (Python)
148 Disp R-CNN
This method uses stereo information.
code 52.98 % 71.79 % 48.20 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
149 Disp R-CNN (velo)
This method uses stereo information.
code 52.90 % 71.63 % 48.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
150 pAUCEnsT 52.88 % 65.84 % 46.97 % 60 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.
151 SparVox3D 52.84 % 69.33 % 48.49 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
152 PFF3D
This method makes use of Velodyne laser scans.
code 52.53 % 62.12 % 50.27 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
153 fdaa11 52.46 % 69.18 % 47.61 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
154 IA-SSD (multi) code 52.45 % 65.07 % 50.20 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
155 S-AT GCN 52.30 % 62.01 % 50.10 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
156 MMLAB LIGA-Stereo
This method uses stereo information.
code 52.18 % 65.59 % 49.29 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
157 MonoGeo code 52.15 % 70.33 % 47.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
158 CS3D 52.09 % 60.70 % 49.91 % 0.5 s 1 core @ 2.5 Ghz (Python)
159 HINTED code 51.95 % 66.52 % 47.83 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
160 PCNet3D++ 51.69 % 62.37 % 49.14 % 0.5 s GPU @ 3.5 Ghz (Python)
161 Plane-Constraints code 51.57 % 64.64 % 46.98 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
162 Shift R-CNN (mono) code 51.30 % 70.86 % 46.37 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
163 SeSame-point code 51.27 % 60.29 % 49.06 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
164 M3DNet 51.10 % 62.00 % 48.77 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
165 XPillars
This method makes use of Velodyne laser scans.
51.06 % 62.13 % 48.49 % 0.02 s GPU @ 2.5 Ghz (Python)
166 Ped_Net 50.96 % 60.54 % 48.78 % 0.5 s GPU @ 2.5 Ghz (Python + C/C++)
167 MonoCLUE 50.79 % 68.39 % 46.06 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
168 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
50.51 % 60.54 % 47.30 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
169 DSFNet 49.85 % 61.04 % 46.80 % 0.5 s GPU @ 2.5 Ghz (Python)
170 DensePointPillars 49.81 % 58.95 % 47.05 % 0.03 s GPU @ 2.5 Ghz (Python)
171 SeSame-voxel code 49.74 % 60.69 % 45.64 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
172 SCNet
This method makes use of Velodyne laser scans.
49.61 % 60.95 % 46.91 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
173 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 49.41 % 58.93 % 46.44 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
174 MonoCLUE_all 49.35 % 65.74 % 44.70 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
175 HomoLoss(monoflex) code 48.97 % 63.77 % 44.60 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
176 mdab 48.66 % 65.70 % 43.93 % 0.02 s 1 core @ 2.5 Ghz (Python)
177 ACFD
This method makes use of Velodyne laser scans.
code 48.63 % 61.62 % 44.15 % 0.2 s 4 cores @ >3.5 Ghz (C/C++)
M. Dimitrievski, P. Veelaert and W. Philips: Semantically aware multilateral filter for depth upsampling in automotive LiDAR point clouds. IEEE Intelligent Vehicles Symposium, IV 2017, Los Angeles, CA, USA, June 11-14, 2017 2017.
178 R-CNN 48.57 % 62.88 % 43.05 % 4 s GPU @ 3.3 Ghz (C/C++)
J. Hosang, M. Omran, R. Benenson and B. Schiele: Taking a Deeper Look at Pedestrians. arXiv 2015.
179 GraphAlign(ICCV2023) code 48.47 % 55.17 % 46.68 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
180 MonOri code 48.07 % 61.46 % 42.22 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
181 Fade-kd 47.74 % 58.54 % 45.51 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
182 MonoLiG code 47.69 % 62.87 % 43.27 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
183 MonoFlex 47.58 % 62.64 % 43.15 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
184 BirdNet+
This method makes use of Velodyne laser scans.
code 47.50 % 54.78 % 45.53 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
185 geo-pillars 46.92 % 55.56 % 44.74 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
186 CMKD code 46.84 % 61.04 % 42.92 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
187 MonOAPC 46.31 % 60.93 % 42.05 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
188 PointPillars_mmdet3d 46.06 % 56.07 % 43.60 % 0.03 s 1 core @ 2.5 Ghz (Python)
189 SS3D 45.79 % 61.58 % 41.14 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
190 MonoRCNN++ code 45.76 % 60.29 % 39.39 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
191 ACF 45.67 % 59.81 % 40.88 % 1 s 1 core @ 3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
192 UniCuboid 45.64 % 59.74 % 41.29 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
193 Fusion-DPM
This method makes use of Velodyne laser scans.
code 44.99 % 58.93 % 40.19 % ~ 30 s 1 core @ 3.5 Ghz (Matlab + C/C++)
C. Premebida, J. Carreira, J. Batista and U. Nunes: Pedestrian Detection Combining RGB and Dense LIDAR Data. IROS 2014.
194 ACF-MR 44.79 % 58.29 % 39.94 % 0.6 s 1 core @ 3.5 Ghz (C/C++)
R. Rajaram, E. Ohn-Bar and M. Trivedi: Looking at Pedestrians at Different Scales: A Multi-resolution Approach and Evaluations. T-ITS 2016.
195 SeSame-pillar code 44.21 % 52.67 % 41.95 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
196 LPCG-Monoflex code 44.13 % 62.44 % 39.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
197 HA-SSVM 43.87 % 58.76 % 38.81 % 21 s 1 core @ >3.5 Ghz (Matlab + C/C++)
J. Xu, S. Ramos, D. Vázquez and A. López: Hierarchical Adaptive Structural SVM for Domain Adaptation. IJCV 2016.
198 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 43.86 % 54.55 % 40.99 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
199 MonoEF 43.73 % 58.79 % 39.45 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
200 D4LCN code 43.50 % 59.55 % 37.12 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
201 DMF
This method uses stereo information.
43.43 % 52.99 % 41.29 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
202 MonoDDE 43.36 % 57.80 % 39.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
203 T-SSD 43.31 % 53.86 % 40.96 % 0.04 1 core @ 2.0 Ghz (C/C++)
204 DPM-VOC+VP 43.26 % 59.21 % 38.12 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
205 ACF-SC 42.97 % 53.30 % 38.12 % <0.3 s 1 core @ >3.5 Ghz (Matlab + C/C++)
C. Cadena, A. Dick and I. Reid: A Fast, Modular Scene Understanding System using Context-Aware Object Detection. Robotics and Automation (ICRA), 2015 IEEE International Conference on 2015.
206 SeSame-voxel w/score code 42.88 % 50.84 % 40.76 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
207 MonoDTR 42.86 % 59.44 % 38.57 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
208 SquaresICF code 42.61 % 57.08 % 37.85 % 1 s GPU @ >3.5 Ghz (C/C++)
R. Benenson, M. Mathias, T. Tuytelaars and L. Gool: Seeking the strongest rigid detector. CVPR 2013.
209 CG-Stereo
This method uses stereo information.
42.54 % 54.64 % 38.45 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
210 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 41.97 % 51.38 % 40.15 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
211 DDMP-3D 41.54 % 56.73 % 35.52 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
212 CSW3D
This method makes use of Velodyne laser scans.
41.50 % 53.76 % 37.25 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
213 M3D-RPN code 41.46 % 56.64 % 37.31 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
214 YOLOStereo3D
This method uses stereo information.
code 41.46 % 56.20 % 37.07 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
215 MonoFRD 41.20 % 54.06 % 37.53 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
216 CIE 41.04 % 53.27 % 37.73 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
217 SubCat 40.50 % 53.75 % 35.66 % 1.2 s 6 cores @ 2.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mobile Vision 2014.
218 PS-fld code 40.47 % 55.47 % 36.65 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
219 SeSame-pillar w/scor code 40.24 % 48.38 % 38.25 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
220 DSGN
This method uses stereo information.
code 39.93 % 49.28 % 38.13 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
221 RT3D-GMP
This method uses stereo information.
39.83 % 55.56 % 35.18 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
222 SparsePool code 39.59 % 50.81 % 35.91 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
223 SparsePool code 39.43 % 50.94 % 35.78 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
224 AVOD
This method makes use of Velodyne laser scans.
code 39.43 % 50.90 % 35.75 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
225 ACF 39.12 % 48.42 % 35.03 % 0.2 s 1 core @ >3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
P. Doll\'ar: Piotr's Image and Video Matlab Toolbox (PMT). .
226 LSVM-MDPM-sv 37.26 % 50.74 % 33.13 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
227 multi-task CNN 37.00 % 49.38 % 33.46 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
228 Complexer-YOLO
This method makes use of Velodyne laser scans.
36.45 % 42.16 % 32.91 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
229 LSVM-MDPM-us code 35.92 % 48.73 % 31.70 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
230 CMAN 34.96 % 49.73 % 30.92 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
231 Aug3D-RPN 34.95 % 47.22 % 30.64 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
232 FMF-occlusion-net 34.74 % 49.26 % 30.37 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
233 Fade 3D code 34.70 % 43.64 % 32.98 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
234 MonoNeRD code 34.43 % 46.50 % 31.06 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
235 PS-SVDM 34.15 % 46.43 % 30.90 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
236 PointRGBNet 33.92 % 44.35 % 30.43 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
237 PGD-FCOS3D code 33.67 % 48.30 % 29.76 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
238 Vote3D
This method makes use of Velodyne laser scans.
33.04 % 42.66 % 30.59 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
239 ESGN
This method uses stereo information.
32.60 % 44.09 % 29.10 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
240 SGM3D code 32.48 % 45.03 % 28.58 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
241 CPD++(unsupervised) code 32.46 % 39.25 % 30.79 % 0.1 s GPU @ >3.5 Ghz (Python)
242 CaDDN code 32.42 % 46.35 % 29.98 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
243 PS-SVDM 32.24 % 44.02 % 29.08 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
244 DFR-Net 31.84 % 45.20 % 27.94 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
245 OC Stereo
This method uses stereo information.
code 30.79 % 43.50 % 28.40 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
246 mBoW
This method makes use of Velodyne laser scans.
30.26 % 41.52 % 26.34 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
247 BirdNet
This method makes use of Velodyne laser scans.
30.07 % 36.82 % 28.40 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
248 SeSame-point w/score code 30.04 % 40.65 % 27.65 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
249 RT3DStereo
This method uses stereo information.
29.30 % 41.12 % 25.25 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
250 MDSNet 29.25 % 41.64 % 26.01 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
251 AMNet+DDAD15M code 28.50 % 37.11 % 25.83 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
252 AMNet code 26.21 % 34.68 % 23.62 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
253 DPM-C8B1
This method uses stereo information.
25.34 % 36.40 % 22.00 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
254 RefinedMPL 20.81 % 30.41 % 18.72 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
255 TopNet-Retina
This method makes use of Velodyne laser scans.
16.45 % 22.37 % 15.43 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
256 TopNet-HighRes
This method makes use of Velodyne laser scans.
15.28 % 21.22 % 13.89 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
257 CPD(unsupervised) code 12.53 % 15.97 % 11.54 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
258 YOLOv2 code 11.46 % 15.37 % 9.67 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
259 TopNet-UncEst
This method makes use of Velodyne laser scans.
8.58 % 13.00 % 7.38 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
260 BIP-HETERO 7.05 % 8.51 % 6.30 % ~2 s 1 core @ 2.5 Ghz (C/C++)
A. Mekonnen, F. Lerasle, A. Herbulot and C. Briand: People Detection with Heterogeneous Features and Explicit Optimization on Computation Time. Pattern Recognition (ICPR), 2014 22nd International Conference on 2014.
261 GATE3D code 1.09 % 1.49 % 1.18 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
262 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.01 % 0.01 % 0.01 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
263 DA3D+KM3D+v2-99 code 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
264 DA3D+KM3D code 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
265 DA3D code 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 ImagePG 86.37 % 92.08 % 79.01 % 1 s 1 core @ 2.5 Ghz (C/C++)
2 UPIDet code 84.44 % 90.16 % 77.71 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
3 TED code 84.36 % 92.60 % 78.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 CasA++ code 84.26 % 92.38 % 78.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
5 LoGoNet code 84.00 % 90.14 % 77.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
6 CasA code 83.21 % 92.86 % 77.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
7 SpaA 82.24 % 91.91 % 75.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
8 MLF-DET 81.95 % 87.34 % 74.79 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
9 HMFI code 81.76 % 89.35 % 74.93 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
10 MPC3DNet 81.73 % 88.19 % 75.09 % 0.05 s GPU @ 1.5 Ghz (Python)
11 RangeIoUDet
This method makes use of Velodyne laser scans.
81.67 % 90.43 % 74.90 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
12 USVLab BSAODet code 81.36 % 86.82 % 74.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
13 RagNet3D code 81.20 % 90.12 % 74.57 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang: Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection. Available at SSRN 4979473 .
14 CAT-Det 80.70 % 87.94 % 73.86 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
15 SPG_mini
This method makes use of Velodyne laser scans.
code 80.58 % 87.77 % 74.86 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
16 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 80.57 % 88.65 % 74.81 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
17 BtcDet
This method makes use of Velodyne laser scans.
code 80.46 % 88.41 % 74.59 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
18 WWW 80.43 % 87.56 % 71.44 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
19 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 80.42 % 86.62 % 73.64 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
20 EQ-PVRCNN code 80.37 % 89.07 % 74.20 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
21 HINTED code 80.04 % 86.76 % 73.45 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
22 PDV code 79.84 % 88.76 % 73.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
23 vsis-PHNet 79.54 % 90.67 % 74.37 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
24 DPFusion code 79.41 % 88.75 % 70.40 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
25 M3DeTR code 79.29 % 87.38 % 72.46 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
26 PASS-PV-RCNN-Plus 79.22 % 86.26 % 72.68 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
27 BVIFusion+ 79.18 % 88.31 % 72.49 % 0.09 s 1 core @ 2.5 Ghz (Python)
28 HotSpotNet 78.81 % 86.06 % 71.74 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
29 IA-SSD (single) code 78.71 % 88.99 % 72.03 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
30 PG-RCNN code 78.69 % 88.17 % 72.16 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
31 PHNetc 78.57 % 89.35 % 73.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
32 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 78.29 % 88.90 % 71.19 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
33 F-ConvNet
This method makes use of Velodyne laser scans.
code 78.05 % 86.75 % 68.12 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
34 PointPainting
This method makes use of Velodyne laser scans.
78.04 % 87.70 % 69.27 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
35 dsvd+vx 77.89 % 91.96 % 70.70 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
36 FIRM-Net_SCF+ 77.82 % 89.67 % 70.82 % 0.07 s 1 core @ 2.5 Ghz (Python)
37 DFAF3D 77.74 % 87.20 % 70.77 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
38 FIRM-Net-SCF 77.58 % 89.59 % 70.62 % 0.07 s 1 core @ 2.5 Ghz (Python)
39 CGML 77.49 % 85.87 % 72.13 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
40 3ONet 77.36 % 89.11 % 70.31 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
41 VLGCL_NoText code 77.29 % 85.91 % 72.09 % 0.3 s 1 core @ 2.5 Ghz (Python)
42 GraphAlign(ICCV2023) code 77.15 % 84.72 % 72.34 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
43 P2V-RCNN 76.93 % 88.40 % 70.35 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
44 EOTL code 76.88 % 85.62 % 66.04 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
45 RRC code 76.81 % 86.81 % 66.59 % 3.6 s GPU @ 2.5 Ghz (C/C++)
J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y. Tai and L. Xu: Accurate Single Stage Detector Using Recurrent Rolling Convolution. CVPR 2017.
46 Voxel RCNN* code 76.56 % 87.44 % 69.94 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
47 SA V1 76.44 % 87.06 % 69.68 % 0.5 s GPU @ 2.5 Ghz (Python)
48 ACFNet 76.15 % 86.92 % 71.33 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
49 CAIA_PRO code 75.98 % 86.78 % 69.51 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
50 DUO-Net 75.79 % 88.22 % 69.08 % 0.1 s 1 core @ 2.5 Ghz (Python)
51 ACDet code 75.41 % 88.54 % 69.45 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
52 New_VLGCL code 75.35 % 81.15 % 71.26 % 0.4 s 1 core @ 2.5 Ghz (Python)
53 MS-CNN code 75.30 % 84.88 % 65.27 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Z. Cai, Q. Fan, R. Feris and N. Vasconcelos: A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. ECCV 2016.
54 TuSimple code 75.22 % 83.68 % 65.22 % 1.6 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 2016.
55 SVGA-Net 75.14 % 85.13 % 68.14 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
56 Point-GNN
This method makes use of Velodyne laser scans.
code 75.08 % 85.75 % 68.69 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
57 Fast-CLOCs 75.07 % 89.73 % 67.93 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
58 SVFMamba code 75.00 % 83.71 % 68.71 % N/A s 1 core @ 2.5 Ghz (C/C++)
59 Voxel RCNN-Focal* code 74.84 % 81.72 % 69.66 % 0.2 s 1 core @ 2.5 Ghz (Python)
60 Deep3DBox 74.78 % 84.36 % 64.05 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
61 LumiNet code 74.76 % 88.45 % 67.89 % 0.1 s 1 core @ 2.5 Ghz (Python)
62 RobusTor3D 74.71 % 82.68 % 69.99 % ... s 1 core @ 2.5 Ghz (C/C++)
63 VPFNet code 74.52 % 82.60 % 66.04 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
64 3DSSD code 74.12 % 87.09 % 67.67 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
65 SFA_IGCL_Focalsconv* code 74.06 % 80.50 % 68.54 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
66 FocalsConv* 74.03 % 83.55 % 69.37 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
67 MSFASA-3DNet 74.02 % 85.61 % 67.70 % 0.03 s GPU @ 2.5 Ghz (Python)
68 SDP+RPN 73.85 % 82.59 % 64.87 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 2015.
69 SRDL 73.68 % 85.44 % 66.94 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
70 DVFENet 73.66 % 85.45 % 67.10 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
71 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 73.63 % 85.43 % 66.64 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
72 sensekitti code 73.48 % 82.90 % 64.03 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
73 L-AUG 73.43 % 83.88 % 68.12 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
74 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 73.42 % 86.21 % 66.45 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
75 2025AAAI-SSLfusion code 73.30 % 82.33 % 67.23 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
76 SIF 73.19 % 85.18 % 65.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
77 F-PointNet
This method makes use of Velodyne laser scans.
code 73.16 % 86.86 % 65.21 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
78 FromVoxelToPoint code 73.16 % 87.07 % 65.98 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
79 XView 73.16 % 88.02 % 65.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
80 CEF code 73.07 % 86.62 % 68.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
81 S-AT GCN 72.81 % 82.79 % 66.72 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
82 H^23D R-CNN code 72.73 % 85.50 % 65.81 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
83 ... code 72.36 % 81.52 % 67.79 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
84 SeSame-point code 72.25 % 84.16 % 65.39 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
85 MonoPSR code 72.08 % 82.06 % 62.43 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
86 HMNet 72.00 % 85.29 % 66.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
87 ARPNET 71.95 % 84.96 % 65.21 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
88 XPillars
This method makes use of Velodyne laser scans.
71.93 % 82.48 % 67.17 % 0.02 s GPU @ 2.5 Ghz (Python)
89 SubCNN 71.72 % 79.36 % 62.74 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
90 STD code 71.63 % 83.99 % 64.92 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
91 work6_new1 71.48 % 84.07 % 65.22 % 0.5 s GPU @ 2.5 Ghz (Python)
92 R2Pfusion-Det 71.01 % 82.87 % 63.90 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
93 NoText_VLGCL code 70.88 % 82.53 % 65.31 % 0.2 s 1 core @ 2.5 Ghz (Python)
94 CS3D 70.70 % 83.49 % 64.24 % 0.5 s 1 core @ 2.5 Ghz (Python)
95 IA-SSD (multi) code 70.46 % 84.98 % 65.55 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
96 MGAF-3DSSD code 70.41 % 86.42 % 63.26 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
97 PCNet3D++ 70.28 % 82.71 % 64.10 % 0.5 s GPU @ 3.5 Ghz (Python)
98 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 70.18 % 82.86 % 63.55 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
99 DSFNet 69.81 % 81.30 % 63.08 % 0.5 s GPU @ 2.5 Ghz (Python)
100 DensePointPillars 69.65 % 81.88 % 63.61 % 0.03 s GPU @ 2.5 Ghz (Python)
101 SeSame-voxel code 69.59 % 87.27 % 62.84 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
102 T-SSD 69.08 % 83.96 % 64.75 % 0.04 1 core @ 2.0 Ghz (C/C++)
103 PointPillars
This method makes use of Velodyne laser scans.
code 68.98 % 83.97 % 62.17 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
104 Vote3Deep
This method makes use of Velodyne laser scans.
68.82 % 78.41 % 62.50 % 1.5 s 4 cores @ 2.5 Ghz (C/C++)
M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong and I. Posner: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks. ArXiv e-prints 2016.
105 geo-pillars 68.79 % 81.21 % 62.26 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
106 3DOP
This method uses stereo information.
code 68.71 % 80.52 % 61.07 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
107 Pose-RCNN 68.40 % 81.53 % 59.43 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
108 EPNet++ 68.30 % 80.27 % 63.00 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
109 TANet code 68.20 % 82.24 % 62.13 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
110 IVA code 67.57 % 78.48 % 58.83 % 0.4 s GPU @ 2.5 Ghz (C/C++)
Y. Zhu, J. Wang, C. Zhao, H. Guo and H. Lu: Scale-adaptive Deconvolutional Regression Network for Pedestrian Detection. ACCV 2016.
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015.
111 Fade-kd 67.44 % 81.35 % 61.32 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
112 M3DNet 67.35 % 79.31 % 60.98 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
113 DeepStereoOP 67.22 % 79.35 % 58.60 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
114 Cube R-CNN code 66.98 % 81.99 % 58.56 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
115 PointPillars_mmdet3d 66.84 % 80.55 % 60.70 % 0.03 s 1 core @ 2.5 Ghz (Python)
116 SeSame-pillar code 66.76 % 77.99 % 60.45 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
117 FII-CenterNet code 66.54 % 79.04 % 57.76 % 0.09 s GPU @ 2.5 Ghz (Python)
S. Fan, F. Zhu, S. Chen, H. Zhang, B. Tian, Y. Lv and F. Wang: FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology 2021.
118 epBRM
This method makes use of Velodyne laser scans.
code 66.51 % 79.65 % 60.31 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
119 PFF3D
This method makes use of Velodyne laser scans.
code 66.25 % 79.44 % 60.11 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
120 DD3D code 65.98 % 81.13 % 58.86 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
121 PointRGBNet 65.98 % 79.87 % 59.75 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
122 BirdNet+
This method makes use of Velodyne laser scans.
code 65.40 % 72.96 % 60.23 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
123 Mono3D code 65.15 % 77.19 % 57.88 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
124 DMF
This method uses stereo information.
63.39 % 74.69 % 56.96 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
125 PiFeNet code 63.34 % 78.05 % 56.46 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
126 Faster R-CNN code 62.86 % 72.40 % 54.97 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
S. Ren, K. He, R. Girshick and J. Sun: Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks. NIPS 2015.
127 SCNet
This method makes use of Velodyne laser scans.
62.50 % 78.48 % 56.34 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
128 DSGN++
This method uses stereo information.
code 62.10 % 77.71 % 55.78 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
129 StereoDistill 61.46 % 80.92 % 54.64 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
130 Fade 3D code 61.19 % 76.76 % 55.78 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
131 AVOD-FPN
This method makes use of Velodyne laser scans.
code 60.79 % 70.38 % 55.37 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
132 SDP+CRC (ft) 60.72 % 75.63 % 53.00 % 0.6 s GPU @ 2.5 Ghz (C/C++)
F. Yang, W. Choi and Y. Lin: Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2016.
133 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
60.35 % 74.52 % 53.83 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
134 Complexer-YOLO
This method makes use of Velodyne laser scans.
59.78 % 66.94 % 55.63 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
135 IDEAL-M3D 60% 58.75 % 75.87 % 50.33 % 0.04 s 1 core @ 2.5 Ghz (Python)
136 Mix-Teaching code 58.65 % 75.15 % 50.54 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
137 Regionlets 58.52 % 71.12 % 50.83 % 1 s >8 cores @ 2.5 Ghz (C/C++)
X. Wang, M. Yang, S. Zhu and Y. Lin: Regionlets for Generic Object Detection. T-PAMI 2015.
W. Zou, X. Wang, M. Sun and Y. Lin: Generic Object Detection with Dense Neural Patterns and Regionlets. British Machine Vision Conference 2014.
C. Long, X. Wang, G. Hua, M. Yang and Y. Lin: Accurate Object Detection with Location Relaxation and Regionlets Relocalization. Asian Conference on Computer Vision 2014.
138 MonoLiG code 58.35 % 80.41 % 51.21 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
139 FRCNN+Or code 57.01 % 70.99 % 50.14 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
140 MonoLSPF 56.80 % 72.73 % 50.30 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
141 QD-3DT
This is an online method (no batch processing).
code 56.51 % 75.55 % 49.70 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
142 MonoPair 56.37 % 74.77 % 48.37 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
143 MonOri code 56.05 % 71.12 % 48.34 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
144 MLOD
This method makes use of Velodyne laser scans.
code 56.04 % 75.35 % 49.11 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
145 SeSame-voxel w/score code 55.27 % 67.26 % 50.21 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
146 MonoHPE 54.90 % 74.75 % 48.12 % 0.04 s 1 core @ 2.5 Ghz (Python)
147 MonoAFKD 54.77 % 74.42 % 48.08 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
148 MonoFlex 54.76 % 72.41 % 46.21 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
149 MonoLSS 54.63 % 74.54 % 47.98 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
150 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 54.61 % 74.97 % 50.29 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
151 AM 54.58 % 72.88 % 48.14 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
152 MMLAB LIGA-Stereo
This method uses stereo information.
code 54.57 % 74.40 % 48.11 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
153 HomoLoss(monoflex) code 54.12 % 70.14 % 46.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
154 MonoHPE-Mask 53.75 % 72.26 % 45.81 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
155 MonoUNI code 53.71 % 71.68 % 45.26 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
156 monodle code 53.29 % 70.78 % 45.01 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
157 LPCG-Monoflex code 53.04 % 72.36 % 46.11 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
158 AVOD
This method makes use of Velodyne laser scans.
code 52.60 % 66.45 % 46.39 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
159 CMKD code 51.76 % 73.18 % 45.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
160 MonOAPC 51.68 % 68.18 % 44.08 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
161 UniCuboid 51.59 % 73.71 % 44.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
162 MonoDDE 51.10 % 70.85 % 44.02 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
163 MonoDTR 49.48 % 64.93 % 42.76 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
164 MonoRUn code 49.13 % 67.47 % 43.41 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
165 MonoRCNN++ code 48.84 % 67.78 % 42.44 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
166 CG-Stereo
This method uses stereo information.
48.46 % 69.98 % 42.41 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
167 BirdNet
This method makes use of Velodyne laser scans.
47.64 % 64.91 % 44.59 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
168 monospb 47.40 % 68.42 % 41.60 % 0.01 s 1 core @ 2.5 Ghz (Python)
169 MDD-M3D-X 46.54 % 66.20 % 41.04 % 0.01 s 1 core @ 2.5 Ghz (Python)
170 DEVIANT code 46.42 % 67.71 % 39.44 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
171 Disp R-CNN (velo)
This method uses stereo information.
code 46.37 % 63.22 % 40.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
172 Disp R-CNN
This method uses stereo information.
code 46.37 % 63.24 % 40.15 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
173 DDStereo
This method uses stereo information.
46.01 % 67.08 % 41.08 % 0.02 s GPU @ 2.5 Ghz (Python)
174 SparsePool code 44.57 % 60.53 % 40.37 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
175 MonoCoP 44.17 % 64.73 % 39.45 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
176 temp 43.36 % 66.56 % 37.18 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
177 fdaa11 43.12 % 63.94 % 36.92 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
178 Shift R-CNN (mono) code 42.96 % 63.24 % 38.22 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
179 D4LCN code 42.86 % 65.29 % 36.29 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
180 GUPNet code 42.78 % 67.11 % 37.94 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
181 CPD++(unsupervised) code 42.56 % 57.51 % 35.46 % 0.1 s GPU @ >3.5 Ghz (Python)
182 M3D-RPN code 41.54 % 61.54 % 35.23 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
183 MonoEF 41.19 % 51.06 % 35.70 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
184 PS-fld code 41.13 % 58.13 % 35.90 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
185 Plane-Constraints code 41.01 % 58.71 % 35.35 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
186 MV-RGBD-RF
This method makes use of Velodyne laser scans.
40.94 % 51.10 % 34.83 % 4 s 4 cores @ 2.5 Ghz (C/C++)
A. Gonzalez, D. Vazquez, A. Lopez and J. Amores: On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts.. IEEE Trans. on Cybernetics 2016.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores and A. Lopez: Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection. IEEE Intelligent Vehicles Symposium (IV) 2015.
187 MonoGeo code 40.91 % 59.83 % 35.08 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
188 MonoCLUE 40.16 % 60.57 % 34.45 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
189 MonoMH code 39.69 % 59.04 % 34.04 % 0.04 s 1 core @ 2.5 Ghz (Python)
190 MonoFRD 38.98 % 55.86 % 34.32 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
191 MonoCLUE_all 38.79 % 57.61 % 33.28 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
192 DDMP-3D 38.62 % 58.70 % 34.10 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
193 CMAN 38.36 % 58.12 % 31.79 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
194 OPA-3D code 38.35 % 55.98 % 33.83 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
195 Aug3D-RPN 36.69 % 51.49 % 30.04 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
196 SparsePool code 36.26 % 44.21 % 32.57 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
197 SS3D 35.48 % 52.97 % 31.07 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
198 mdab 35.46 % 52.35 % 30.87 % 0.02 s 1 core @ 2.5 Ghz (Python)
199 DSGN
This method uses stereo information.
code 35.15 % 49.10 % 31.41 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
200 pAUCEnsT 34.90 % 50.51 % 30.35 % 60 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Paisitkriangkrai, C. Shen and A. Hengel: Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. arXiv 2014.
201 TopNet-Retina
This method makes use of Velodyne laser scans.
31.98 % 47.51 % 29.84 % 52ms GeForce 1080Ti (tensorflow-gpu, v1.12)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
202 DFR-Net 31.93 % 48.34 % 27.95 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
203 AMNet+DDAD15M code 31.01 % 45.93 % 27.06 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
204 PS-SVDM 30.95 % 46.46 % 27.00 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
205 PS-SVDM 30.16 % 46.35 % 26.13 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
206 CIE 30.10 % 38.03 % 26.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
207 MonoNeRD code 29.89 % 45.35 % 26.49 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
208 AMNet code 29.62 % 43.82 % 25.55 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
209 OC Stereo
This method uses stereo information.
code 28.76 % 43.18 % 24.80 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
210 Vote3D
This method makes use of Velodyne laser scans.
27.99 % 39.81 % 25.19 % 0.5 s 4 cores @ 2.8 Ghz (C/C++)
D. Wang and I. Posner: Voting for Voting in Online Point Cloud Object Detection. Proceedings of Robotics: Science and Systems 2015.
211 SGM3D code 27.89 % 42.21 % 24.73 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
212 LSVM-MDPM-us code 27.81 % 37.66 % 24.83 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
213 DPM-VOC+VP 27.73 % 41.58 % 24.61 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
214 RefinedMPL 27.17 % 44.47 % 22.84 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
215 CaDDN code 27.13 % 40.03 % 23.23 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
216 PGD-FCOS3D code 26.48 % 44.28 % 23.03 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
217 SeSame-pillar w/scor code 26.32 % 23.56 % 24.54 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
218 LSVM-MDPM-sv 26.05 % 35.70 % 23.56 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
219 DPM-C8B1
This method uses stereo information.
25.57 % 41.47 % 21.93 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
220 FMF-occlusion-net 23.59 % 37.41 % 21.20 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
221 RT3D-GMP
This method uses stereo information.
22.90 % 33.64 % 19.87 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
222 mBoW
This method makes use of Velodyne laser scans.
17.63 % 26.66 % 16.02 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
223 MDSNet 16.64 % 28.23 % 14.14 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
224 TopNet-HighRes
This method makes use of Velodyne laser scans.
13.98 % 22.86 % 14.52 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
225 ESGN
This method uses stereo information.
13.45 % 21.13 % 11.72 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
226 RT3DStereo
This method uses stereo information.
12.96 % 19.58 % 11.47 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
227 TopNet-UncEst
This method makes use of Velodyne laser scans.
12.00 % 18.14 % 11.85 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
228 SeSame-point w/score code 10.20 % 12.43 % 9.34 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
229 CPD(unsupervised) code 9.81 % 13.96 % 8.76 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
230 GATE3D code 0.68 % 0.00 % 0.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
231 YOLOv2 code 0.06 % 0.15 % 0.07 % 0.02 s GPU @ 3.5 Ghz (C/C++)
J. Redmon, S. Divvala, R. Girshick and A. Farhadi: You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
J. Redmon and A. Farhadi: YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017.
232 TopNet-DecayRate
This method makes use of Velodyne laser scans.
0.04 % 0.00 % 0.04 % 92 ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
233 DA3D+KM3D+v2-99 code 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
234 DA3D+KM3D code 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
235 DA3D code 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
Table as LaTeX | Only published Methods

Object Detection and Orientation Estimation Evaluation

Cars


Method Setting Code Moderate Easy Hard Runtime Environment
1 ViKIENet 97.90 % 98.59 % 92.98 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Yu, B. Qiu and A. Khong: ViKIENet: Towards Efficient 3D Object Detection with Virtual Key Instance Enhanced Network. CVPR 2025.
2 LVP 97.66 % 98.68 % 92.81 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, G. Cai, Z. Song, Z. Liu, B. Zeng, J. Li and Z. Wang: LVP: Leverage Virtual Points in Multi- modal Early Fusion for 3D Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2024.
3 P3GMF 97.65 % 96.66 % 92.83 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
4 UDeerPEP code 97.39 % 98.40 % 94.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen: PeP: a Point enhanced Painting method for unified point cloud tasks. 2023.
5 RM3D 97.16 % 95.91 % 92.38 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
6 ViKIENet-R 97.08 % 95.78 % 92.11 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Z. Yu, B. Qiu and A. Khong: ViKIENet: Towards Efficient 3D Object Detection with Virtual Key Instance Enhanced Network. CVPR 2025.
7 MuStD 97.03 % 97.88 % 93.74 % 67 ms >8 cores @ 2.5 Ghz (Python)
8 PointVit V2 96.50 % 97.04 % 88.88 % .006 s 1 core @ 2.5 Ghz (Python + C/C++)
9 VirConv-S code 96.46 % 96.99 % 93.74 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
10 GraR-VoI code 96.29 % 96.81 % 91.06 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
11 MLF-DET 96.09 % 96.87 % 88.78 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
12 GraR-Po code 96.09 % 96.83 % 90.99 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
13 LDRFusion 96.09 % 96.71 % 93.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
14 SFD code 96.05 % 98.95 % 90.96 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
15 VPFNet code 96.04 % 96.63 % 90.99 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
16 VirConv-T code 96.01 % 98.64 % 93.12 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
17 TED code 95.96 % 96.63 % 93.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
18 WWW 95.96 % 98.72 % 93.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
19 RDIoU code 95.95 % 98.77 % 90.90 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
20 ACFNet 95.95 % 96.64 % 93.17 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
21 CLOCs code 95.93 % 96.77 % 90.93 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
22 GraR-Vo code 95.92 % 96.66 % 92.78 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
23 BFT3D 95.87 % 96.94 % 88.61 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
24 LumiNet code 95.87 % 99.09 % 88.47 % 0.1 s 1 core @ 2.5 Ghz (Python)
25 UPIDet code 95.85 % 96.25 % 93.17 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
26 DPFusion code 95.83 % 96.70 % 90.74 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
27 PVT-SSD 95.83 % 96.74 % 90.58 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
28 CLOCs_PVCas code 95.79 % 96.74 % 90.81 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
29 MPCF code 95.78 % 98.94 % 90.88 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
P. Gao and P. Zhang: MPCF: Multi-Phase Consolidated Fusion for Multi-Modal 3D Object Detection with Pseudo Point Cloud. 2024.
30 3D Dual-Fusion code 95.76 % 96.53 % 93.01 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
31 R2Pfusion-Det 95.75 % 96.53 % 93.12 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
32 GLENet-VR code 95.73 % 96.84 % 90.80 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
Y. Zhang, J. Hou and Y. Yuan: A Comprehensive Study of the Robustness for LiDAR-based 3D Object Detectors against Adversarial Attacks. International Journal of Computer Vision 2023.
33 SQD++ 95.72 % 98.46 % 92.84 % 0.08 s GPU @ >3.5 Ghz (Python)
34 None 95.72 % 98.46 % 92.84 % 0.05 1 core @ 2.5 Ghz (C/C++)
35 GraR-Pi code 95.72 % 98.57 % 92.55 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
36 OcTr 95.69 % 96.44 % 90.78 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
37 mm3d 95.65 % 96.84 % 90.69 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
38 DVF-V 95.63 % 96.59 % 90.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
39 DSGN++
This method uses stereo information.
code 95.58 % 98.04 % 88.09 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
40 Fast-CLOCs 95.57 % 96.66 % 90.70 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
41 TSSTDet 95.56 % 96.54 % 92.71 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang, D. Bui and M. Yoo: TSSTDet: Transformation-Based 3-D Object Detection via a Spatial Shape Transformer. IEEE Sensors Journal 2024.
42 ImagePG 95.55 % 96.55 % 92.88 % 1 s 1 core @ 2.5 Ghz (C/C++)
43 3D HANet code 95.54 % 98.59 % 92.66 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
44 FARP-Net code 95.53 % 96.10 % 92.98 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
45 CasA code 95.53 % 96.51 % 92.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
46 mat3D 95.48 % 98.79 % 92.73 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
47 LoGoNet code 95.44 % 96.59 % 92.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
48 TRTConv-L 95.41 % 96.37 % 92.57 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
49 3D-AWARE 95.40 % 98.68 % 92.74 % 0.1 s 1 core @ 2.5 Ghz (Python)
50 GD-MAE 95.36 % 98.31 % 90.19 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
51 DVF-PV 95.35 % 96.40 % 92.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
52 BADet code 95.34 % 98.65 % 90.28 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
53 SpaA 95.31 % 96.15 % 92.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
54 SASA
This method makes use of Velodyne laser scans.
code 95.29 % 96.00 % 92.42 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
55 PG-RCNN code 95.27 % 96.64 % 90.37 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
56 FIRM-Net_SCF+ 95.23 % 96.29 % 92.44 % 0.07 s 1 core @ 2.5 Ghz (Python)
57 Focals Conv code 95.23 % 96.29 % 92.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
58 FIRM-Net-SCF 95.21 % 96.28 % 92.42 % 0.07 s 1 core @ 2.5 Ghz (Python)
59 CEF code 95.20 % 96.18 % 90.50 % 0.03 s 1 core @ 2.5 Ghz (Python)
60 EQ-PVRCNN code 95.20 % 98.22 % 92.47 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
61 SCDA-Net 95.19 % 98.57 % 92.64 % - s 1 core @ 2.5 Ghz (C/C++)
62 CasA++ code 95.17 % 95.81 % 94.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
63 SE-SSD
This method makes use of Velodyne laser scans.
code 95.17 % 96.55 % 90.00 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
64 TRTConv-T 95.15 % 98.35 % 92.45 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
65 VoxSeT code 95.13 % 96.15 % 90.38 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
66 HMFI code 95.05 % 96.28 % 92.28 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
67 RagNet3D code 95.04 % 96.26 % 92.48 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang: Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection. Available at SSRN 4979473 .
68 SPANet 95.03 % 96.31 % 89.99 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
69 Pyramid R-CNN 95.03 % 95.87 % 92.46 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
70 MPC3DNet 95.03 % 98.48 % 92.24 % 0.05 s GPU @ 1.5 Ghz (Python)
71 VPFNet code 95.01 % 96.03 % 92.41 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
72 EPNet++ 95.00 % 96.70 % 91.82 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
73 CAIA_PRO code 95.00 % 95.71 % 90.31 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
74 USVLab BSAODet code 94.99 % 96.23 % 92.36 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
75 Voxel R-CNN code 94.96 % 96.47 % 92.24 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
76 PDV code 94.91 % 96.06 % 92.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
77 SIENet code 94.85 % 96.01 % 92.23 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
78 SQD code 94.85 % 98.20 % 92.26 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Z. Hou, W. Huang, Y. Hu, J. Wang and J. Yan: Sparse Query Dense: Enhancing 3D Object Detection with Pseudo Points. ACM MM Oral 2024.
79 SVFMamba code 94.84 % 95.51 % 92.03 % N/A s 1 core @ 2.5 Ghz (C/C++)
80 VoTr-TSD code 94.81 % 95.95 % 92.24 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
81 GraphAlign(ICCV2023) code 94.79 % 98.04 % 92.35 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
82 L-AUG 94.76 % 95.80 % 91.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
83 M3DeTR code 94.70 % 97.37 % 91.89 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
84 MonoSample (DID-M3D) code 94.69 % 96.30 % 85.10 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Qiao, B. Liu, J. Yang, B. Wang, S. Xiu, X. Du and X. Nie: MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2024.
85 XView 94.66 % 95.88 % 92.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
86 StructuralIF 94.64 % 96.12 % 91.85 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
87 P2V-RCNN 94.59 % 96.01 % 92.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
88 CAT-Det 94.57 % 95.95 % 91.88 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
89 RobusTor3D 94.57 % 98.10 % 92.08 % ... s 1 core @ 2.5 Ghz (C/C++)
90 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 94.57 % 98.15 % 91.85 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
91 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 94.52 % 95.84 % 91.93 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
92 RangeDet (Official) code 94.51 % 95.48 % 91.57 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
93 MVRA + I-FRCNN+ 94.46 % 95.66 % 81.74 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
94 SVGA-Net 94.45 % 96.02 % 91.54 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
95 PASS-PV-RCNN-Plus 94.45 % 95.77 % 91.89 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
96 DVFENet 94.44 % 95.33 % 91.55 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
97 RangeIoUDet
This method makes use of Velodyne laser scans.
94.42 % 95.69 % 91.70 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
98 BVIFusion+ 94.40 % 95.77 % 91.61 % 0.09 s 1 core @ 2.5 Ghz (Python)
99 Voxel RCNN* code 94.38 % 96.09 % 91.59 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
100 SFA_IGCL_Focalsconv* code 94.35 % 95.90 % 92.02 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
101 New_VLGCL code 94.26 % 97.59 % 91.90 % 0.4 s 1 core @ 2.5 Ghz (Python)
102 SERCNN
This method makes use of Velodyne laser scans.
94.24 % 96.31 % 89.71 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
103 EPNet code 94.22 % 96.13 % 89.68 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
104 dsvd+vx 94.20 % 95.08 % 91.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
105 2025AAAI-SSLfusion code 94.12 % 98.19 % 89.51 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
106 ... code 94.12 % 98.00 % 91.55 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
107 SRDL 94.08 % 95.83 % 91.55 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
108 CGML 94.08 % 97.55 % 91.74 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
109 Voxel RCNN-Focal* code 94.06 % 95.61 % 91.83 % 0.2 s 1 core @ 2.5 Ghz (Python)
110 VLGCL_NoText code 94.05 % 95.88 % 91.78 % 0.3 s 1 core @ 2.5 Ghz (Python)
111 FocalsConv* 94.01 % 97.66 % 91.72 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
112 PointVit V1 93.98 % 99.34 % 86.37 % .006 s 1 core @ 2.5 Ghz (Python + C/C++)
113 HMNet 93.96 % 95.50 % 91.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
114 RangeRCNN
This method makes use of Velodyne laser scans.
93.90 % 95.47 % 91.53 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
115 SA V1 93.88 % 94.84 % 90.92 % 0.5 s GPU @ 2.5 Ghz (Python)
116 MSFASA-3DNet 93.84 % 95.19 % 90.71 % 0.03 s GPU @ 2.5 Ghz (Python)
117 SIF 93.79 % 95.48 % 91.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
118 DD3D code 93.78 % 94.67 % 88.99 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
119 MGAF-3DSSD code 93.77 % 94.45 % 86.25 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
120 MMLAB LIGA-Stereo
This method uses stereo information.
code 93.71 % 96.40 % 86.00 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
121 Sem-Aug
This method makes use of Velodyne laser scans.
93.69 % 96.78 % 88.69 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
122 3ONet 93.58 % 96.86 % 88.45 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
123 Patches - EMP
This method makes use of Velodyne laser scans.
93.58 % 97.88 % 90.31 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
124 PA3DNet 93.55 % 96.56 % 88.56 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
125 MVAF-Net code 93.54 % 95.35 % 90.70 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
126 work6_new1 93.50 % 94.84 % 90.72 % 0.5 s GPU @ 2.5 Ghz (Python)
127 IA-SSD (multi) code 93.47 % 96.07 % 90.51 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
128 CS3D 93.45 % 95.16 % 90.62 % 0.5 s 1 core @ 2.5 Ghz (Python)
129 IA-SSD (single) code 93.41 % 96.23 % 88.34 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
130 CIA-SSD
This method makes use of Velodyne laser scans.
code 93.34 % 96.65 % 85.76 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
131 MonoHPE 93.32 % 96.34 % 83.28 % 0.04 s 1 core @ 2.5 Ghz (Python)
132 SeSame-point code 93.32 % 95.20 % 90.14 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
133 Deep MANTA 93.31 % 98.83 % 82.95 % 0.7 s GPU @ 2.5 Ghz (Python + C/C++)
F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Chateau: Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. CVPR 2017.
134 StereoDistill 93.29 % 97.57 % 87.48 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
135 IDEAL-M3D 60% 93.27 % 96.22 % 85.51 % 0.04 s 1 core @ 2.5 Ghz (Python)
136 LPCG-Monoflex code 93.26 % 96.68 % 83.34 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
137 MonoLiG code 93.23 % 96.56 % 83.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
138 MonoHPE-Mask 93.21 % 96.29 % 85.36 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
139 CityBrainLab-CT3D code 93.20 % 96.26 % 90.44 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
140 DFAF3D 93.20 % 96.54 % 90.03 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
141 MonoLSS 93.11 % 95.99 % 83.14 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
142 MonoAFKD 93.11 % 95.99 % 83.13 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
143 SNVC
This method uses stereo information.
code 93.09 % 96.27 % 85.51 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
144 NoText_VLGCL code 93.04 % 97.51 % 89.02 % 0.2 s 1 core @ 2.5 Ghz (Python)
145 H^23D R-CNN code 93.03 % 96.13 % 90.33 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
146 AM 93.01 % 96.13 % 85.21 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
147 MonoLSPF 93.00 % 96.05 % 85.15 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
148 FromVoxelToPoint code 92.98 % 96.07 % 90.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
149 EBM3DOD code 92.88 % 96.39 % 87.58 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
150 Struc info fusion II 92.88 % 96.44 % 87.67 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
151 MonoDLGD 92.75 % 96.25 % 82.86 % 0.04 s GPU @ 2.5 Ghz (Python)
152 HotSpotNet 92.74 % 96.20 % 89.68 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
153 Struc info fusion I 92.71 % 96.24 % 87.55 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
154 EBM3DOD baseline code 92.70 % 96.31 % 87.44 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
155 MonoCD code 92.65 % 96.36 % 85.17 % n/a s 1 core @ 2.5 Ghz (Python)
L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan: MonoCD: Monocular 3D Object Detection with Complementary Depths. CVPR 2024.
156 Fade-kd 92.59 % 96.18 % 89.54 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
157 SARPNET 92.58 % 95.82 % 87.33 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
158 Patches
This method makes use of Velodyne laser scans.
92.57 % 96.31 % 87.41 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
159 R-GCN 92.53 % 96.16 % 87.45 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
160 PI-RCNN 92.52 % 96.15 % 87.47 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
161 CenterNet3D 92.48 % 95.71 % 89.54 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
162 PointPainting
This method makes use of Velodyne laser scans.
92.43 % 98.36 % 89.49 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
163 3D IoU-Net 92.42 % 96.31 % 87.60 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
164 CLOCs_SecCas 92.37 % 95.16 % 88.43 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
165 ACDet code 92.36 % 96.07 % 89.18 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
166 DASS 92.25 % 96.20 % 87.26 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
167 S-AT GCN 92.24 % 95.02 % 90.46 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
168 Fade 3D code 92.23 % 97.62 % 87.09 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
169 Sem-Aug-PointRCNN++ 92.20 % 95.64 % 87.48 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
170 SegVoxelNet 92.16 % 95.86 % 86.90 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
171 PointRGCN 92.15 % 97.48 % 86.83 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
172 XPillars
This method makes use of Velodyne laser scans.
92.07 % 94.76 % 88.88 % 0.02 s GPU @ 2.5 Ghz (Python)
173 F-ConvNet
This method makes use of Velodyne laser scans.
code 91.98 % 95.81 % 79.83 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
174 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 91.87 % 95.86 % 86.78 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
175 geo-pillars 91.87 % 95.27 % 88.73 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
176 PASS-PointPillar 91.82 % 95.15 % 88.31 % 1 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
177 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 91.77 % 95.90 % 86.92 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
178 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 91.73 % 95.00 % 88.86 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
179 PCNet3D++ 91.72 % 94.93 % 88.32 % 0.5 s GPU @ 3.5 Ghz (Python)
180 DensePointPillars 91.70 % 95.37 % 86.38 % 0.03 s GPU @ 2.5 Ghz (Python)
181 M3DNet 91.68 % 94.97 % 88.39 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
182 BFT3D_easy 91.61 % 97.11 % 84.18 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
183 C-GCN 91.57 % 95.63 % 86.13 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
184 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
91.42 % 94.76 % 88.30 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
185 PointRGBNet 91.33 % 95.39 % 86.29 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
186 mmFUSION code 91.30 % 95.47 % 86.33 % 1s 1 core @ 2.5 Ghz (Python)
J. Ahmad and A. Del Bue: mmFUSION: Multimodal Fusion for 3D Objects Detection. arXiv preprint arXiv:2311.04058 2023.
187 DSFNet 91.30 % 94.53 % 87.48 % 0.5 s GPU @ 2.5 Ghz (Python)
188 SeSame-pillar code 91.26 % 95.07 % 87.94 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
189 EgoNet code 91.23 % 96.11 % 80.96 % 0.1 s GPU @ 1.5 Ghz (Python)
S. Li, Z. Yan, H. Li and K. Cheng: Exploring intermediate representation for monocular vehicle pose estimation. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
190 MDD-M3D-X 91.20 % 93.31 % 83.91 % 0.01 s 1 core @ 2.5 Ghz (Python)
191 PointPillars_mmdet3d 91.19 % 94.78 % 86.17 % 0.03 s 1 core @ 2.5 Ghz (Python)
192 MonoDTF 91.13 % 94.92 % 85.52 % 0.1 s 1 core @ 2.5 Ghz (Python)
Anonymities: Revisiting Monocular 3D Object Detection from Scene-Level Depth Retargeting to Instance- Level Spatial Refinement. arXiv preprint arXiv:2412.19165 2024.
193 PFF3D
This method makes use of Velodyne laser scans.
code 91.06 % 94.86 % 86.28 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
194 SeSame-pillar w/scor code 91.03 % 94.83 % 87.65 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
195 Stereo CenterNet
This method uses stereo information.
91.02 % 96.54 % 83.15 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
196 MonoSKD code 90.96 % 96.58 % 83.10 % 0.04 s 1 core @ 2.5 Ghz (Python)
S. Wang and J. Zheng: MonoSKD: General Distillation Framework for Monocular 3D Object Detection via Spearman Correlation Coefficient. ECAI 2023.
197 Mix-Teaching code 90.84 % 96.31 % 83.11 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
198 MonoFlex 90.82 % 95.95 % 83.11 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
199 DDStereo
This method uses stereo information.
90.81 % 94.03 % 82.87 % 0.02 s GPU @ 2.5 Ghz (Python)
200 MonoCoP-Car 90.79 % 93.49 % 81.28 % 0.01 s GPU @ 2.5 Ghz (Python)
201 Harmonic PointPillar code 90.78 % 94.23 % 87.42 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
202 MAFF-Net(DAF-Pillar) 90.78 % 94.17 % 83.17 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
203 HRI-VoxelFPN 90.76 % 96.35 % 85.37 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
204 KM3D code 90.70 % 96.34 % 80.72 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
205 PointPillars
This method makes use of Velodyne laser scans.
code 90.70 % 93.84 % 87.47 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
206 WS3D
This method makes use of Velodyne laser scans.
90.69 % 94.85 % 85.94 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
207 EOTL code 90.67 % 96.14 % 80.59 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
208 DCD code 90.66 % 96.31 % 83.01 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
209 NeurOCS 90.66 % 96.15 % 80.64 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
210 MonoEF 90.65 % 96.19 % 82.95 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
211 CIE 90.64 % 96.19 % 82.90 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
212 T-SSD 90.56 % 96.05 % 85.37 % 0.04 1 core @ 2.0 Ghz (C/C++)
213 DID-M3D code 90.55 % 94.20 % 80.61 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
214 AARMOD 90.51 % 96.35 % 82.96 % 0.1 s 1 core @ 2.5 Ghz (Python)
215 QD-3DT
This is an online method (no batch processing).
code 90.49 % 92.61 % 80.32 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
216 HomoLoss(monoflex) code 90.49 % 95.86 % 80.66 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
217 SeSame-voxel code 90.42 % 95.76 % 87.40 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
218 MonoVQD 90.36 % 96.03 % 80.29 % 0.02 s 1 core @ 2.5 Ghz (Python)
219 monodle code 90.23 % 93.46 % 80.11 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
220 3D IoU Loss
This method makes use of Velodyne laser scans.
90.21 % 95.60 % 84.96 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
221 MonoCInIS 90.20 % 95.80 % 82.00 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
222 MonoGeo code 90.16 % 93.33 % 80.21 % 0.14 s GPU @ 2.5 Ghz (Python)
223 ARPNET 90.11 % 93.42 % 82.56 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
224 fdaa11 90.11 % 95.76 % 80.06 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
225 TANet code 90.11 % 93.52 % 84.61 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
226 CG-Stereo
This method uses stereo information.
89.98 % 96.28 % 82.21 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
227 Deep3DBox 89.88 % 94.62 % 76.40 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
228 MonoCLUE 89.86 % 93.32 % 80.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
229 CMKD code 89.81 % 95.07 % 83.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
230 PS-fld code 89.78 % 95.60 % 81.68 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
231 MonoCLUE 89.76 % 95.54 % 79.86 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
232 MonoCLUE_all 89.76 % 95.38 % 79.83 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
233 GPP code 89.68 % 93.94 % 80.60 % 0.23 s GPU @ 1.5 Ghz (Python + C/C++)
A. Rangesh and M. Trivedi: Ground plane polling for 6dof pose estimation of objects on the road. IEEE Transactions on Intelligent Vehicles 2020.
234 SubCNN 89.53 % 94.11 % 79.14 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
235 HINTED code 89.41 % 93.97 % 83.95 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
236 SCNet
This method makes use of Velodyne laser scans.
89.36 % 95.23 % 84.03 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
237 AVOD
This method makes use of Velodyne laser scans.
code 89.22 % 94.98 % 82.14 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
238 MonoCoP 89.15 % 91.77 % 79.47 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
239 IAFA 89.14 % 92.96 % 79.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
240 MonoDDE 89.07 % 96.72 % 81.42 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
241 temp 89.06 % 95.13 % 81.17 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
242 ADD code 88.96 % 94.58 % 80.78 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
243 MonoGeo code 88.91 % 94.61 % 81.18 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
244 AVOD-FPN
This method makes use of Velodyne laser scans.
code 88.61 % 94.65 % 83.71 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
245 MonOri code 88.58 % 95.19 % 81.58 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
246 MonoUNI code 88.50 % 94.10 % 78.35 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
247 OPA-3D code 88.44 % 96.41 % 76.17 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
248 DeepStereoOP 87.81 % 93.68 % 77.60 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
249 MonoRUn code 87.64 % 95.44 % 77.75 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
250 3DBN
This method makes use of Velodyne laser scans.
87.59 % 93.34 % 79.91 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
251 FQNet 87.49 % 93.66 % 73.61 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
252 Shift R-CNN (mono) code 87.47 % 93.75 % 77.19 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
253 MonoPSR code 87.45 % 93.29 % 72.26 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
254 Mono3D code 87.28 % 93.13 % 77.00 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
255 H3 87.19 % 93.54 % 77.61 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
256 SMOKE code 87.02 % 92.94 % 77.12 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
257 3DOP
This method uses stereo information.
code 86.93 % 91.31 % 76.72 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
258 CDN
This method uses stereo information.
code 86.90 % 95.79 % 79.05 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
259 PS-SVDM 86.88 % 94.20 % 77.34 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
260 MonoDSSMs-M 86.83 % 93.32 % 74.62 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
K. Vu, T. Tran and D. Nguyen: MonoDSSMs: Efficient Monocular 3D Object Detection with Depth-Aware State Space Models. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
261 RTM3D code 86.73 % 91.75 % 77.18 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
262 MonoDTR 86.70 % 93.12 % 74.53 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
263 UniCuboid 86.67 % 95.49 % 77.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
264 MonoFRD 86.58 % 95.01 % 76.82 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
265 MonoDSSMs-A 86.57 % 93.07 % 74.32 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
K. Vu, T. Tran and D. Nguyen: MonoDSSMs: Efficient Monocular 3D Object Detection with Depth-Aware State Space Models. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
266 MonoRCNN code 86.48 % 91.90 % 66.71 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
267 MonoRCNN++ code 86.37 % 94.22 % 71.52 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
268 BirdNet+
This method makes use of Velodyne laser scans.
code 86.13 % 92.39 % 81.11 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
269 MonoNeRD code 86.13 % 94.24 % 76.38 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
270 MonoPair 86.11 % 91.65 % 76.45 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
271 CPD++(unsupervised) code 86.07 % 93.98 % 82.76 % 0.1 s GPU @ >3.5 Ghz (Python)
272 DSGN
This method uses stereo information.
code 86.03 % 95.42 % 78.27 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
273 DEVIANT code 85.97 % 94.01 % 75.84 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
274 GUPNet code 85.90 % 93.92 % 73.55 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
275 GATE3D code 85.73 % 90.42 % 78.52 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
276 PS-SVDM 85.50 % 94.16 % 76.93 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
277 MonoDETR code 85.44 % 93.78 % 75.29 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
278 DMF
This method uses stereo information.
85.20 % 89.42 % 82.07 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
279 StereoFENet
This method uses stereo information.
85.14 % 91.28 % 76.80 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
280 MM3D 85.08 % 95.78 % 77.50 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
281 SSM3D 84.85 % 93.59 % 77.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
282 M3D 84.73 % 93.44 % 77.04 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
283 mdab 84.70 % 93.39 % 74.71 % 0.02 s 1 core @ 2.5 Ghz (Python)
284 M5_3D 84.60 % 93.47 % 77.01 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
285 monospb 84.56 % 90.95 % 74.72 % 0.01 s 1 core @ 2.5 Ghz (Python)
286 STLM3D 84.52 % 93.56 % 74.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
287 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 84.42 % 94.83 % 76.95 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
288 SS3D 84.38 % 92.57 % 69.82 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
289 CDN-PL++
This method uses stereo information.
84.21 % 94.45 % 76.69 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
290 MonoFENet 84.09 % 91.42 % 75.93 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
291 MonOAPC 83.97 % 92.34 % 74.42 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
292 Complexer-YOLO
This method makes use of Velodyne laser scans.
83.89 % 91.77 % 79.24 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
293 ZoomNet
This method uses stereo information.
code 83.79 % 94.14 % 68.78 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
294 DLE code 83.19 % 94.06 % 61.13 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
295 M3D-RPN code 82.81 % 88.38 % 67.08 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
296 MonoMH code 82.54 % 90.90 % 71.37 % 0.04 s 1 core @ 2.5 Ghz (Python)
297 SGM3D code 82.51 % 93.46 % 72.67 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
298 test_det 82.47 % 83.86 % 73.85 % -1 s 1 core @ 2.5 Ghz (C/C++)
299 Disp R-CNN (velo)
This method uses stereo information.
code 82.09 % 93.31 % 69.78 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
300 D4LCN code 82.08 % 90.01 % 63.98 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
301 CMAN 81.96 % 89.43 % 63.74 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
302 Disp R-CNN
This method uses stereo information.
code 81.96 % 93.49 % 67.35 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
303 Pseudo-LiDAR++
This method uses stereo information.
code 81.87 % 94.14 % 74.29 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
304 BS3D 81.22 % 94.66 % 68.39 % 22 ms Titan Xp
N. Gählert, J. Wan, M. Weber, J. Zöllner, U. Franke and J. Denzler: Beyond Bounding Boxes: Using Bounding Shapes for Real-Time 3D Vehicle Detection from Monocular RGB Images. 2019 IEEE Intelligent Vehicles Symposium (IV) 2019.
305 YOLOStereo3D
This method uses stereo information.
code 80.88 % 93.65 % 61.17 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
306 MonoSC 80.83 % 88.48 % 70.12 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
307 HomoLoss(imvoxelnet) code 80.67 % 91.94 % 70.64 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
308 FRCNN+Or code 80.57 % 91.50 % 67.49 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
309 DDMP-3D 80.20 % 90.73 % 61.82 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
310 Ground-Aware code 80.05 % 90.98 % 60.51 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
311 GrooMeD-NMS code 79.93 % 90.05 % 63.43 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
312 AMNet+DDAD15M code 79.86 % 88.23 % 73.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
313 ESGN
This method uses stereo information.
79.84 % 92.74 % 69.76 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
314 AMNet code 79.49 % 88.52 % 72.23 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
315 PGD-FCOS3D code 79.46 % 91.51 % 68.48 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
316 DetAny3D code 79.23 % 90.51 % 74.45 % 0.58 s 1 core @ 2.5 Ghz (Python)
317 YoloMono3D code 78.50 % 91.43 % 58.80 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
318 3D-GCK 78.44 % 88.59 % 66.28 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
319 3D-SSMFCNN code 77.82 % 77.84 % 68.67 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
320 DFR-Net 77.41 % 89.79 % 59.20 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
321 AutoShape code 77.31 % 86.41 % 64.06 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
322 ImVoxelNet code 77.18 % 89.07 % 67.35 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
323 Aug3D-RPN 76.89 % 84.89 % 60.21 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
324 FMF-occlusion-net 75.95 % 91.51 % 59.55 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
325 3DVP code 75.71 % 84.44 % 64.41 % 40 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Data-Driven 3D Voxel Patterns for Object Category Recognition. IEEE Conference on Computer Vision and Pattern Recognition 2015.
326 GS3D 75.63 % 85.79 % 61.85 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
327 Pose-RCNN 75.41 % 89.49 % 63.57 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
328 SubCat code 75.26 % 83.31 % 59.55 % 0.7 s 6 cores @ 3.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
329 Plane-Constraints code 75.18 % 82.46 % 66.51 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
330 3D FCN
This method makes use of Velodyne laser scans.
74.54 % 86.65 % 67.73 % >5 s 1 core @ 2.5 Ghz (C/C++)
B. Li: 3D Fully Convolutional Network for Vehicle Detection in Point Cloud. IROS 2017.
331 Mobile Stereo R-CNN
This method uses stereo information.
74.13 % 88.80 % 59.84 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
332 OC Stereo
This method uses stereo information.
code 73.34 % 86.86 % 61.37 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
333 SeSame-point w/score code 71.49 % 88.88 % 61.49 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
334 GAC3D 70.49 % 83.27 % 52.04 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
335 ROI-10D 68.14 % 75.32 % 58.98 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
336 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 67.65 % 91.82 % 65.11 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
337 multi-task CNN 67.51 % 79.00 % 58.80 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
338 CaDDN code 67.31 % 78.28 % 59.52 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
339 Decoupled-3D 67.23 % 87.34 % 53.84 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
340 CPD(unsupervised) code 66.95 % 85.83 % 65.96 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
341 BdCost48LDCF code 65.50 % 80.44 % 51.24 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
342 OC-DPM 65.32 % 77.35 % 51.00 % 10 s 8 cores @ 2.5 Ghz (Matlab)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
343 RefinedMPL 64.02 % 87.95 % 52.06 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
344 DPM-VOC+VP 63.58 % 79.09 % 46.59 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
345 SeSame-voxel w/score code 63.45 % 73.43 % 57.52 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
346 AOG-View 62.62 % 77.62 % 48.27 % 3 s 1 core @ 2.5 Ghz (Matlab, C/C++)
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
347 CIE + DM3D 61.42 % 79.31 % 53.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
348 LSVM-MDPM-sv 57.48 % 70.23 % 42.54 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
349 SAMME48LDCF code 57.26 % 76.28 % 43.55 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
350 BirdNet
This method makes use of Velodyne laser scans.
56.94 % 79.20 % 54.88 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
351 VeloFCN
This method makes use of Velodyne laser scans.
51.05 % 70.03 % 44.82 % 1 s GPU @ 2.5 Ghz (Python + C/C++)
B. Li, T. Zhang and T. Xia: Vehicle Detection from 3D Lidar Using Fully Convolutional Network. RSS 2016 .
352 Mono3D_PLiDAR code 49.39 % 76.90 % 41.13 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
353 DPM-C8B1
This method uses stereo information.
48.00 % 57.76 % 35.52 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
354 LTN 46.54 % 48.96 % 41.58 % 0.4 s GPU @ >3.5 Ghz (Python)
T. Wang, X. He, Y. Cai and G. Xiao: Learning a Layout Transfer Network for Context Aware Object Detection. IEEE Transactions on Intelligent Transportation Systems 2019.
355 sensekitti code 46.12 % 49.16 % 42.79 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
356 Kinematic3D code 45.50 % 58.33 % 34.81 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
357 WeakM3D code 41.50 % 41.21 % 38.11 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
358 MonoCInIS 40.75 % 45.00 % 34.48 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
359 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 39.79 % 40.44 % 36.10 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
360 Cube R-CNN code 39.78 % 38.09 % 35.40 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
361 SPG_mini
This method makes use of Velodyne laser scans.
code 38.75 % 39.26 % 38.57 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
362 SPG
This method makes use of Velodyne laser scans.
code 38.73 % 40.02 % 38.52 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
363 SA-SSD code 38.30 % 39.40 % 37.07 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
364 BtcDet
This method makes use of Velodyne laser scans.
code 38.00 % 39.26 % 36.82 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
365 SSL-PointGNN code 37.21 % 38.55 % 36.53 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
366 Point-GNN
This method makes use of Velodyne laser scans.
code 37.20 % 38.66 % 36.29 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
367 RT3D-GMP
This method uses stereo information.
36.31 % 44.06 % 27.32 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
368 AOG code 29.81 % 33.28 % 23.91 % 3 s 4 cores @ 2.5 Ghz (Matlab)
T. Wu, B. Li and S. Zhu: Learning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation. TPAMI 2016.
B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014.
369 SubCat48LDCF code 26.68 % 34.33 % 19.44 % 0.5 s 8 cores @ 3.5 Ghz (Matlab + C/C++)
A. Fernández-Baldera, J. Buenaposada and L. Baumela: BAdaCost: Multi-class Boosting with Costs . Pattern Recognition 2018.
370 RT3DStereo
This method uses stereo information.
21.41 % 25.58 % 17.52 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
371 CSoR
This method makes use of Velodyne laser scans.
code 20.82 % 30.65 % 17.14 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
372 BEVHeight++ code 20.21 % 24.77 % 17.37 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, T. Tang, J. Li, P. Chen, K. Yuan, L. Wang, Y. Huang, X. Zhang and K. Yu: Bevheight++: Toward robust visual centric 3d object detection. arXiv preprint arXiv:2309.16179 2023.
373 RT3D
This method makes use of Velodyne laser scans.
18.96 % 24.41 % 19.85 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
374 VoxelJones code 15.41 % 17.83 % 14.13 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
375 Associate-3Ddet code 1.20 % 0.52 % 1.38 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
376 EAEPNet 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
377 DA3D+KM3D+v2-99 code 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
378 Monohan 0.00 % 0.00 % 0.00 % 0.05 s 1 core @ 2.5 Ghz (Python)
379 DA3D+KM3D code 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
380 DA3D code 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
Table as LaTeX | Only published Methods


Pedestrians


Method Setting Code Moderate Easy Hard Runtime Environment
1 VMVS
This method makes use of Velodyne laser scans.
68.19 % 79.98 % 63.18 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
2 SubCNN 66.70 % 79.65 % 61.35 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
3 DD3D code 63.92 % 77.09 % 59.41 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
4 F-ConvNet
This method makes use of Velodyne laser scans.
code 63.87 % 75.19 % 58.57 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
5 UPIDet code 61.92 % 72.38 % 59.31 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
6 ImagePG 61.63 % 72.07 % 57.48 % 1 s 1 core @ 2.5 Ghz (C/C++)
7 CasA++ code 61.59 % 71.78 % 58.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
8 3DOP
This method uses stereo information.
code 61.48 % 74.22 % 55.89 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
9 TED code 61.44 % 71.72 % 58.59 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
10 IDEAL-M3D 60% 61.20 % 75.99 % 56.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
11 LoGoNet code 60.70 % 69.16 % 58.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
12 HotSpotNet 60.65 % 70.36 % 57.42 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
13 MonoAFKD 60.39 % 75.23 % 53.94 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
14 MonoLSS 60.28 % 75.13 % 53.85 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
15 DeepStereoOP 60.15 % 73.76 % 55.30 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
16 Pose-RCNN 59.84 % 76.24 % 53.59 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
17 USVLab BSAODet code 59.73 % 69.95 % 55.85 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
18 CasA code 59.69 % 70.33 % 56.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
19 MonoHPE-Mask 59.36 % 75.86 % 54.24 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
20 MonoHPE 59.23 % 75.82 % 54.23 % 0.04 s 1 core @ 2.5 Ghz (Python)
21 FFNet code 58.87 % 69.24 % 53.75 % 1.07 s GPU @ 1.5 Ghz (Python)
C. Zhao, Y. Qian and M. Yang: Monocular Pedestrian Orientation Estimation Based on Deep 2D-3D Feedforward. Pattern Recognition 2019.
22 Mono3D code 58.66 % 71.19 % 53.94 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
23 VPFNet code 58.63 % 67.96 % 54.77 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
24 P2V-RCNN 57.94 % 68.67 % 55.07 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
25 dsvd+vx 57.68 % 68.29 % 54.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
26 MonoLSPF 57.58 % 73.49 % 52.85 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
27 SpaA 57.39 % 67.80 % 54.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
28 Fast-CLOCs 57.35 % 70.93 % 54.48 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
29 2025AAAI-SSLfusion code 57.23 % 66.94 % 54.60 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
30 EOTL code 57.17 % 68.99 % 51.48 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
31 MLF-DET 56.89 % 64.49 % 53.17 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
32 FIRM-Net_SCF+ 56.65 % 66.97 % 53.90 % 0.07 s 1 core @ 2.5 Ghz (Python)
33 WWW 56.46 % 66.96 % 52.51 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
34 FIRM-Net-SCF 56.44 % 66.80 % 53.65 % 0.07 s 1 core @ 2.5 Ghz (Python)
35 BVIFusion+ 56.36 % 66.56 % 52.55 % 0.09 s 1 core @ 2.5 Ghz (Python)
36 MDD-M3D-X 56.30 % 72.60 % 51.61 % 0.01 s 1 core @ 2.5 Ghz (Python)
37 ... code 55.93 % 65.20 % 53.25 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
38 LumiNet code 55.80 % 66.85 % 53.17 % 0.1 s 1 core @ 2.5 Ghz (Python)
39 vsis-PHNet 55.13 % 66.56 % 52.44 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
40 PHNetp 55.13 % 66.56 % 52.44 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
41 DPFusion code 55.06 % 66.79 % 50.92 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
42 DFAF3D 54.99 % 65.42 % 51.21 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
43 MPC3DNet 54.92 % 63.60 % 52.36 % 0.05 s GPU @ 1.5 Ghz (Python)
44 3ONet 54.88 % 66.35 % 50.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
45 FromVoxelToPoint code 54.80 % 66.21 % 52.03 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
46 MonoPSR code 54.65 % 68.98 % 50.07 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
47 SVFMamba code 54.57 % 65.47 % 50.98 % N/A s 1 core @ 2.5 Ghz (C/C++)
48 CEF code 54.48 % 65.63 % 51.90 % 0.03 s 1 core @ 2.5 Ghz (Python)
49 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 54.38 % 63.12 % 51.98 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
50 PDV code 54.08 % 63.43 % 50.75 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
51 ACFNet 53.97 % 65.55 % 49.97 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
52 PASS-PV-RCNN-Plus 53.82 % 63.49 % 51.30 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
53 monodle code 53.78 % 69.94 % 48.98 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
54 MGAF-3DSSD code 53.73 % 64.69 % 49.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
55 HMNet 53.48 % 65.59 % 50.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
56 AM 53.39 % 71.12 % 48.57 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
57 SRDL 53.36 % 63.39 % 50.43 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
58 PG-RCNN code 53.12 % 63.73 % 50.46 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
59 IA-SSD (single) code 52.69 % 62.90 % 50.27 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
60 R2Pfusion-Det 52.67 % 63.49 % 50.39 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
61 Voxel RCNN-Focal* code 52.65 % 60.83 % 50.40 % 0.2 s 1 core @ 2.5 Ghz (Python)
62 Voxel RCNN* code 52.63 % 63.05 % 50.00 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
63 MonoUNI code 52.62 % 69.15 % 47.89 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
64 HMFI code 52.47 % 63.10 % 49.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
65 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 52.42 % 63.45 % 49.23 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
66 SVGA-Net 52.27 % 62.33 % 49.44 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
67 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 52.20 % 63.51 % 48.27 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
68 FRCNN+Or code 52.15 % 67.03 % 47.14 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
69 RobusTor3D 52.12 % 60.95 % 49.85 % ... s 1 core @ 2.5 Ghz (C/C++)
70 CAIA_PRO code 52.11 % 62.38 % 49.56 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
71 SIF 52.10 % 62.72 % 49.19 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
72 VLGCL_NoText code 52.08 % 60.06 % 49.59 % 0.3 s 1 core @ 2.5 Ghz (Python)
73 FocalsConv* 51.97 % 59.61 % 48.59 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
74 CGML 51.91 % 60.01 % 49.53 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
75 SFA_IGCL_Focalsconv* code 51.76 % 60.17 % 49.28 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
76 New_VLGCL code 51.59 % 59.19 % 49.14 % 0.4 s 1 core @ 2.5 Ghz (Python)
77 QD-3DT
This is an online method (no batch processing).
code 51.46 % 68.64 % 47.00 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
78 ACDet code 50.90 % 62.39 % 48.34 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
79 MonoMH code 50.76 % 68.08 % 45.95 % 0.04 s 1 core @ 2.5 Ghz (Python)
80 DDStereo
This method uses stereo information.
50.74 % 66.51 % 46.22 % 0.02 s GPU @ 2.5 Ghz (Python)
81 GUPNet code 50.74 % 68.93 % 44.01 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
82 DEVIANT code 50.66 % 68.78 % 45.89 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
83 DVFENet 50.52 % 60.32 % 47.92 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
84 OPA-3D code 50.42 % 68.35 % 43.91 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
85 PointPainting
This method makes use of Velodyne laser scans.
50.22 % 59.25 % 46.95 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
86 Mix-Teaching code 50.19 % 64.04 % 44.37 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
87 M3DeTR code 50.09 % 58.90 % 47.66 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
88 SA V1 50.06 % 60.55 % 47.36 % 0.5 s GPU @ 2.5 Ghz (Python)
89 work6_new1 49.76 % 59.53 % 47.22 % 0.5 s GPU @ 2.5 Ghz (Python)
90 IA-SSD (multi) code 49.58 % 62.51 % 47.17 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
91 MSFASA-3DNet 49.31 % 58.85 % 46.35 % 0.03 s GPU @ 2.5 Ghz (Python)
92 XView 49.30 % 58.39 % 46.81 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
93 ARPNET 48.49 % 60.47 % 45.02 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
94 MonoCoP 48.49 % 64.34 % 43.91 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
95 DPPFA-Net 48.38 % 56.13 % 45.93 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.
96 NoText_VLGCL code 48.35 % 57.39 % 45.79 % 0.2 s 1 core @ 2.5 Ghz (Python)
97 CS3D 48.20 % 57.35 % 45.75 % 0.5 s 1 core @ 2.5 Ghz (Python)
98 PointPillars
This method makes use of Velodyne laser scans.
code 48.05 % 57.47 % 45.40 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
99 HINTED code 47.84 % 62.13 % 43.71 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
100 MonoRUn code 47.82 % 63.28 % 43.23 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
101 SeSame-voxel code 47.60 % 58.80 % 43.53 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
102 L-AUG 47.59 % 58.42 % 44.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
103 temp 47.56 % 63.75 % 41.99 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
104 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 47.33 % 57.19 % 44.31 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
105 Ped_Net 47.15 % 56.92 % 44.59 % 0.5 s GPU @ 2.5 Ghz (Python + C/C++)
106 SeSame-point code 47.09 % 56.55 % 44.58 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
107 XPillars
This method makes use of Velodyne laser scans.
46.81 % 58.03 % 44.00 % 0.02 s GPU @ 2.5 Ghz (Python)
108 S-AT GCN 46.64 % 56.55 % 44.23 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
109 PiFeNet code 46.59 % 55.11 % 44.14 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
110 Shift R-CNN (mono) code 46.56 % 64.73 % 41.86 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
111 Disp R-CNN
This method uses stereo information.
code 45.80 % 63.23 % 41.32 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
112 Disp R-CNN (velo)
This method uses stereo information.
code 45.66 % 63.16 % 41.14 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
113 HomoLoss(monoflex) code 45.44 % 59.94 % 41.15 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
114 GraphAlign(ICCV2023) code 45.18 % 52.14 % 43.18 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
115 PCNet3D++ 45.03 % 55.89 % 42.29 % 0.5 s GPU @ 3.5 Ghz (Python)
116 fdaa11 44.96 % 60.73 % 40.46 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
117 Plane-Constraints code 44.76 % 57.28 % 40.56 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
118 MonoGeo code 44.72 % 61.41 % 40.36 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
119 MonoFlex 44.20 % 58.96 % 39.89 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
120 M3DNet 44.17 % 54.94 % 41.61 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
121 MonoCLUE 44.00 % 60.20 % 39.60 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
122 AVOD-FPN
This method makes use of Velodyne laser scans.
code 43.99 % 53.48 % 41.56 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
123 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
43.90 % 53.77 % 40.77 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
124 CAT-Det 43.86 % 52.75 % 41.15 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
125 DSGN++
This method uses stereo information.
code 43.35 % 54.16 % 40.10 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
126 EPNet++ 43.29 % 51.89 % 40.98 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
127 MonOri code 43.12 % 56.28 % 37.80 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
128 MonoCLUE_all 43.01 % 58.35 % 38.73 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
129 monospb 42.99 % 58.36 % 38.82 % 0.01 s 1 core @ 2.5 Ghz (Python)
130 Frustum-PointPillars code 42.97 % 49.04 % 40.69 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
131 MonoRCNN++ code 42.54 % 56.59 % 36.64 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
132 MonOAPC 42.52 % 56.84 % 38.43 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
133 MonoPair 42.38 % 55.26 % 38.53 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
134 T-SSD 41.55 % 52.44 % 39.16 % 0.04 1 core @ 2.0 Ghz (C/C++)
135 DSFNet 41.47 % 51.90 % 38.47 % 0.5 s GPU @ 2.5 Ghz (Python)
136 MonoDDE 41.09 % 55.28 % 36.85 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
137 mdab 41.04 % 56.10 % 36.74 % 0.02 s 1 core @ 2.5 Ghz (Python)
138 PFF3D
This method makes use of Velodyne laser scans.
code 40.99 % 48.75 % 38.99 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
139 MMLAB LIGA-Stereo
This method uses stereo information.
code 40.98 % 53.16 % 38.12 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
140 DensePointPillars 40.62 % 48.97 % 38.14 % 0.03 s GPU @ 2.5 Ghz (Python)
141 UniCuboid 40.07 % 52.95 % 36.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
142 LPCG-Monoflex code 39.79 % 56.60 % 35.42 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
143 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 39.76 % 50.30 % 36.90 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
144 SS3D 39.60 % 53.72 % 35.40 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
145 SemanticVoxels 38.95 % 45.59 % 37.21 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
146 MonoLiG code 38.92 % 52.66 % 35.05 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
147 SeSame-voxel w/score code 38.87 % 46.62 % 36.58 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
148 geo-pillars 38.59 % 46.71 % 36.37 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
149 DPM-VOC+VP 37.79 % 52.91 % 33.27 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
150 StereoDistill 37.58 % 48.49 % 34.41 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
151 EQ-PVRCNN code 36.49 % 43.67 % 34.67 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
152 CG-Stereo
This method uses stereo information.
36.47 % 48.23 % 32.77 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
153 TANet code 36.21 % 42.54 % 34.39 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
154 YOLOStereo3D
This method uses stereo information.
code 35.62 % 48.99 % 31.58 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
155 SCNet
This method makes use of Velodyne laser scans.
35.49 % 44.50 % 33.38 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
156 MonoDTR 35.11 % 49.41 % 31.41 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
157 BirdNet+
This method makes use of Velodyne laser scans.
code 35.01 % 41.84 % 33.03 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
158 MonoEF 34.63 % 47.45 % 31.01 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
159 sensekitti code 34.26 % 41.03 % 31.51 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
160 PointPillars_mmdet3d 33.65 % 40.90 % 31.50 % 0.03 s 1 core @ 2.5 Ghz (Python)
161 D4LCN code 33.62 % 46.73 % 28.71 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
162 DDMP-3D 33.35 % 46.12 % 28.45 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
163 SparsePool code 33.35 % 43.86 % 29.99 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
164 SparsePool code 33.29 % 43.52 % 30.01 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
165 LSVM-MDPM-sv 33.01 % 45.60 % 29.27 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
166 SeSame-pillar code 32.73 % 40.30 % 30.56 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
167 PointRGBNet 32.57 % 43.08 % 29.17 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
168 AVOD
This method makes use of Velodyne laser scans.
code 32.19 % 42.54 % 29.09 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
169 Complexer-YOLO
This method makes use of Velodyne laser scans.
32.13 % 37.32 % 28.94 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
170 RPN+BF code 32.12 % 41.19 % 28.83 % 0.6 s GPU @ 2.5 Ghz (Matlab + C/C++)
L. Zhang, L. Lin, X. Liang and K. He: Is Faster R-CNN Doing Well for Pedestrian Detection?. ECCV 2016.
171 DMF
This method uses stereo information.
32.00 % 39.86 % 30.12 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
172 CMKD code 31.97 % 42.60 % 29.13 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
173 M3D-RPN code 31.88 % 44.33 % 28.55 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
174 Point-GNN
This method makes use of Velodyne laser scans.
code 31.86 % 39.16 % 29.65 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
175 SubCat 31.26 % 42.31 % 27.39 % 1.2 s 6 cores @ 2.5 Ghz (Matlab + C/C++)
E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mobile Vision 2014.
176 SeSame-pillar w/scor code 30.83 % 38.16 % 28.98 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
177 Fade-kd 30.50 % 38.03 % 28.83 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
178 Aug3D-RPN 29.75 % 40.50 % 25.96 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
179 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 29.56 % 36.76 % 28.10 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
180 SeSame-point w/score code 28.86 % 39.33 % 26.47 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
181 RT3D-GMP
This method uses stereo information.
28.75 % 40.81 % 25.13 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
182 CMAN 28.16 % 40.27 % 24.82 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
183 Cube R-CNN code 28.07 % 34.26 % 25.14 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
184 CIE 27.84 % 37.65 % 25.24 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
185 PGD-FCOS3D code 27.61 % 40.20 % 24.29 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
186 FMF-occlusion-net 26.28 % 38.13 % 22.91 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
187 AMNet+DDAD15M code 25.45 % 33.83 % 22.95 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
188 MonoFRD 24.92 % 33.47 % 22.38 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
189 DFR-Net 24.88 % 35.75 % 21.72 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
190 DSGN
This method uses stereo information.
code 24.32 % 31.21 % 23.09 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
191 ACF 24.31 % 32.23 % 21.70 % 1 s 1 core @ 3.5 Ghz (Matlab + C/C++)
P. Doll\'ar, R. Appel, S. Belongie and P. Perona: Fast Feature Pyramids for Object Detection. PAMI 2014.
192 PS-SVDM 24.19 % 33.74 % 21.63 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
193 PS-fld code 23.67 % 32.84 % 21.40 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
194 SGM3D code 23.54 % 33.73 % 20.50 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
195 AMNet code 23.48 % 31.60 % 21.10 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
196 PS-SVDM 23.28 % 32.63 % 20.76 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
197 Fade 3D code 23.24 % 30.04 % 21.82 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
198 multi-task CNN 22.80 % 30.30 % 20.47 % 25.1 ms GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.
199 ACF-MR 22.61 % 29.23 % 20.08 % 0.6 s 1 core @ 3.5 Ghz (C/C++)
R. Rajaram, E. Ohn-Bar and M. Trivedi: Looking at Pedestrians at Different Scales: A Multi-resolution Approach and Evaluations. T-ITS 2016.
200 OC Stereo
This method uses stereo information.
code 22.02 % 31.36 % 20.20 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
201 BirdNet
This method makes use of Velodyne laser scans.
21.83 % 27.12 % 20.56 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
202 MonoNeRD code 20.54 % 28.43 % 18.36 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
203 DPM-C8B1
This method uses stereo information.
19.17 % 27.79 % 16.48 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
204 ESGN
This method uses stereo information.
19.17 % 26.02 % 16.90 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
205 RefinedMPL 17.26 % 25.83 % 15.41 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
206 CaDDN code 17.13 % 24.45 % 15.79 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
207 RT3DStereo
This method uses stereo information.
15.34 % 21.41 % 13.23 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
208 CPD++(unsupervised) code 10.69 % 12.16 % 10.20 % 0.1 s GPU @ >3.5 Ghz (Python)
209 CPD(unsupervised) code 5.31 % 6.68 % 4.89 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
210 GATE3D code 0.80 % 1.15 % 0.86 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
211 DA3D+KM3D+v2-99 code 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
212 DA3D+KM3D code 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
213 DA3D code 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
Table as LaTeX | Only published Methods


Cyclists


Method Setting Code Moderate Easy Hard Runtime Environment
1 ImagePG 85.95 % 91.94 % 78.58 % 1 s 1 core @ 2.5 Ghz (C/C++)
2 TED code 84.08 % 92.46 % 78.07 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
3 CasA++ code 83.98 % 92.24 % 78.05 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
4 UPIDet code 83.78 % 89.86 % 76.98 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
5 LoGoNet code 83.51 % 89.90 % 77.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
6 CasA code 82.95 % 92.71 % 76.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
7 SpaA 81.91 % 91.73 % 75.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
8 RangeIoUDet
This method makes use of Velodyne laser scans.
81.24 % 90.24 % 74.49 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
9 MPC3DNet 81.24 % 88.04 % 74.58 % 0.05 s GPU @ 1.5 Ghz (Python)
10 HMFI code 81.13 % 89.09 % 74.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
11 MLF-DET 81.07 % 87.17 % 73.92 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
12 USVLab BSAODet code 80.87 % 86.64 % 73.87 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
13 CAT-Det 80.25 % 87.79 % 73.41 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
14 RagNet3D code 80.23 % 89.25 % 73.69 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang: Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection. Available at SSRN 4979473 .
15 EQ-PVRCNN code 80.09 % 88.92 % 73.79 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
16 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 80.05 % 88.52 % 74.20 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
17 HINTED code 79.73 % 86.59 % 73.13 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
18 WWW 79.70 % 87.29 % 70.82 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
19 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 79.70 % 86.43 % 72.96 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
20 PDV code 79.34 % 88.66 % 72.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
21 vsis-PHNet 79.33 % 90.53 % 74.11 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
22 DPFusion code 78.97 % 88.56 % 69.98 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
23 PASS-PV-RCNN-Plus 78.82 % 86.15 % 72.28 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
24 M3DeTR code 78.80 % 87.21 % 71.88 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
25 BVIFusion+ 78.77 % 88.03 % 72.02 % 0.09 s 1 core @ 2.5 Ghz (Python)
26 IA-SSD (single) code 78.34 % 88.78 % 71.63 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
27 PHNetc 78.34 % 89.21 % 73.27 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
28 HotSpotNet 78.31 % 85.79 % 71.24 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
29 PG-RCNN code 78.30 % 87.89 % 71.76 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
30 dsvd+vx 77.68 % 91.83 % 70.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
31 FIRM-Net_SCF+ 77.53 % 89.53 % 70.52 % 0.07 s 1 core @ 2.5 Ghz (Python)
32 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 77.52 % 88.70 % 70.41 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
33 DFAF3D 77.41 % 86.98 % 70.42 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
34 FIRM-Net-SCF 77.29 % 89.45 % 70.33 % 0.07 s 1 core @ 2.5 Ghz (Python)
35 PointPainting
This method makes use of Velodyne laser scans.
76.92 % 87.33 % 68.21 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
36 3ONet 76.91 % 88.98 % 69.85 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
37 GraphAlign(ICCV2023) code 76.81 % 84.53 % 71.90 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
38 F-ConvNet
This method makes use of Velodyne laser scans.
code 76.71 % 86.39 % 66.92 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
39 P2V-RCNN 76.52 % 88.21 % 69.90 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
40 CGML 76.40 % 85.45 % 70.98 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
41 VLGCL_NoText code 76.19 % 85.49 % 70.95 % 0.3 s 1 core @ 2.5 Ghz (Python)
42 SA V1 76.01 % 86.88 % 69.23 % 0.5 s GPU @ 2.5 Ghz (Python)
43 Voxel RCNN* code 75.99 % 87.14 % 69.38 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
44 CAIA_PRO code 75.64 % 86.57 % 69.16 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
45 ACFNet 75.34 % 86.11 % 70.41 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
46 Fast-CLOCs 74.74 % 89.54 % 67.54 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
47 SVGA-Net 74.64 % 84.62 % 67.64 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
48 New_VLGCL code 74.61 % 80.69 % 70.50 % 0.4 s 1 core @ 2.5 Ghz (Python)
49 ACDet code 74.52 % 88.21 % 68.33 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
50 SVFMamba code 74.33 % 83.36 % 68.05 % N/A s 1 core @ 2.5 Ghz (C/C++)
51 Voxel RCNN-Focal* code 74.14 % 81.58 % 68.93 % 0.2 s 1 core @ 2.5 Ghz (Python)
52 LumiNet code 74.03 % 87.99 % 67.13 % 0.1 s 1 core @ 2.5 Ghz (Python)
53 MSFASA-3DNet 73.69 % 85.31 % 67.38 % 0.03 s GPU @ 2.5 Ghz (Python)
54 VPFNet code 73.62 % 82.08 % 65.27 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
55 SFA_IGCL_Focalsconv* code 73.55 % 80.36 % 67.90 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
56 DVFENet 73.43 % 85.32 % 66.87 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
57 FocalsConv* 73.37 % 83.11 % 68.60 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
58 SRDL 73.21 % 85.22 % 66.45 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
59 RobusTor3D 73.11 % 81.86 % 68.44 % ... s 1 core @ 2.5 Ghz (C/C++)
60 L-AUG 73.07 % 83.69 % 67.72 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
61 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 72.81 % 85.94 % 65.84 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
62 SIF 72.73 % 84.96 % 64.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
63 XView 72.70 % 87.59 % 64.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
64 FromVoxelToPoint code 72.62 % 86.71 % 65.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
65 CEF code 72.40 % 86.21 % 67.25 % 0.03 s 1 core @ 2.5 Ghz (Python)
66 EOTL code 72.37 % 82.07 % 62.06 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
67 H^23D R-CNN code 72.20 % 85.09 % 65.25 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
68 SeSame-point code 71.88 % 83.97 % 65.00 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
69 HMNet 71.60 % 85.16 % 65.66 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
70 2025AAAI-SSLfusion code 71.48 % 81.57 % 65.19 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
71 XPillars
This method makes use of Velodyne laser scans.
71.45 % 82.29 % 66.65 % 0.02 s GPU @ 2.5 Ghz (Python)
72 ... code 71.40 % 80.90 % 66.55 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
73 work6_new1 71.12 % 83.86 % 64.85 % 0.5 s GPU @ 2.5 Ghz (Python)
74 S-AT GCN 71.04 % 82.31 % 65.13 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
75 R2Pfusion-Det 70.51 % 82.65 % 63.37 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
76 NoText_VLGCL code 70.33 % 82.33 % 64.77 % 0.2 s 1 core @ 2.5 Ghz (Python)
77 CS3D 70.32 % 83.25 % 63.84 % 0.5 s 1 core @ 2.5 Ghz (Python)
78 MGAF-3DSSD code 70.16 % 86.28 % 62.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
79 IA-SSD (multi) code 70.13 % 84.82 % 65.13 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
80 PCNet3D++ 69.59 % 82.16 % 63.42 % 0.5 s GPU @ 3.5 Ghz (Python)
81 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 69.54 % 82.18 % 62.98 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
82 SeSame-voxel code 69.21 % 86.97 % 62.47 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
83 T-SSD 68.83 % 83.84 % 64.41 % 0.04 1 core @ 2.0 Ghz (C/C++)
84 DensePointPillars 68.75 % 81.53 % 62.55 % 0.03 s GPU @ 2.5 Ghz (Python)
85 ARPNET 68.72 % 82.61 % 62.00 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
86 PointPillars
This method makes use of Velodyne laser scans.
code 68.55 % 83.79 % 61.71 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
87 DSFNet 68.54 % 80.09 % 61.85 % 0.5 s GPU @ 2.5 Ghz (Python)
88 geo-pillars 67.88 % 80.70 % 61.40 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
89 EPNet++ 67.26 % 79.81 % 61.75 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
90 M3DNet 66.63 % 78.69 % 60.18 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
91 TANet code 66.37 % 81.15 % 60.10 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
92 PointRGBNet 65.68 % 79.64 % 59.48 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
93 Fade-kd 64.57 % 78.65 % 58.66 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
94 PFF3D
This method makes use of Velodyne laser scans.
code 64.06 % 78.02 % 58.06 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
95 PointPillars_mmdet3d 63.69 % 78.34 % 57.51 % 0.03 s 1 core @ 2.5 Ghz (Python)
96 SeSame-pillar code 63.61 % 75.66 % 57.48 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
97 SubCNN 63.36 % 71.97 % 55.42 % 2 s GPU @ 3.5 Ghz (Python + C/C++)
Y. Xiang, W. Choi, Y. Lin and S. Savarese: Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.
98 PiFeNet code 62.62 % 77.54 % 55.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
99 Pose-RCNN 62.02 % 75.74 % 53.99 % 2 s >8 cores @ 2.5 Ghz (Python)
M. Braun, Q. Rao, Y. Wang and F. Flohr: Pose-RCNN: Joint object detection and pose estimation using 3D object proposals. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on 2016.
100 SCNet
This method makes use of Velodyne laser scans.
61.11 % 77.77 % 54.82 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
101 DMF
This method uses stereo information.
60.85 % 71.83 % 54.58 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
102 BirdNet+
This method makes use of Velodyne laser scans.
code 59.44 % 67.52 % 54.27 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
103 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
59.07 % 73.67 % 52.52 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
104 AVOD-FPN
This method makes use of Velodyne laser scans.
code 58.70 % 69.21 % 53.47 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
105 Deep3DBox 58.56 % 68.31 % 50.30 % 1.5 s GPU @ 2.5 Ghz (C/C++)
A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka: 3D Bounding Box Estimation Using Deep Learning and Geometry. CVPR 2017.
106 3DOP
This method uses stereo information.
code 58.45 % 72.24 % 51.91 % 3s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
107 Complexer-YOLO
This method makes use of Velodyne laser scans.
58.28 % 65.41 % 54.27 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
108 Fade 3D code 57.98 % 73.50 % 52.62 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
109 DD3D code 57.42 % 73.60 % 50.90 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
110 DeepStereoOP 56.55 % 69.36 % 49.37 % 3.4 s GPU @ 3.5 Ghz (Matlab + C/C++)
C. Pham and J. Jeon: Robust Object Proposals Re-ranking for Object Detection in Autonomous Driving Using Convolutional Neural Networks. Signal Processing: Image Communiation 2017.
111 MonoLiG code 54.91 % 76.10 % 47.58 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
112 SeSame-voxel w/score code 54.49 % 66.51 % 49.51 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
113 Mix-Teaching code 54.00 % 70.90 % 46.66 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
114 Mono3D code 53.96 % 67.33 % 47.91 % 4.2 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. CVPR 2016.
115 AVOD
This method makes use of Velodyne laser scans.
code 51.05 % 64.81 % 45.12 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
116 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 50.94 % 69.92 % 47.01 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
117 IDEAL-M3D 60% 50.82 % 68.10 % 43.58 % 0.04 s 1 core @ 2.5 Ghz (Python)
118 MonOri code 50.13 % 65.05 % 43.51 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
119 FRCNN+Or code 49.53 % 63.45 % 43.65 % 0.09 s Titan Xp GPU
C. Guindel, D. Martin and J. Armingol: Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding. IEEE Intelligent Transportation Systems Magazine 2018.
C. Guindel, D. Martin and J. Armingol: Joint Object Detection and Viewpoint Estimation using CNN features. IEEE International Conference on Vehicular Electronics and Safety (ICVES) 2017.
120 MonoPSR code 49.32 % 58.63 % 43.05 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
121 StereoDistill 48.99 % 65.65 % 43.14 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
122 MonoFlex 47.91 % 65.51 % 40.40 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
123 HomoLoss(monoflex) code 47.36 % 62.89 % 40.55 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
124 MonoLSS 47.09 % 65.31 % 41.74 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
125 MonoAFKD 46.76 % 64.39 % 41.36 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
126 MonoLSPF 46.36 % 61.55 % 41.25 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
127 QD-3DT
This is an online method (no batch processing).
code 46.24 % 64.64 % 40.58 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
128 DSGN++
This method uses stereo information.
code 45.94 % 57.93 % 41.93 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
129 MonoHPE-Mask 45.64 % 62.82 % 38.87 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
130 MonoHPE 45.61 % 62.82 % 40.26 % 0.04 s 1 core @ 2.5 Ghz (Python)
131 MonoDDE 45.58 % 63.91 % 39.29 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
132 LPCG-Monoflex code 45.24 % 63.07 % 39.28 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
133 MonoUNI code 45.21 % 62.21 % 38.28 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
134 MMLAB LIGA-Stereo
This method uses stereo information.
code 45.13 % 63.89 % 39.23 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
135 monodle code 45.12 % 61.84 % 37.95 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
136 BirdNet
This method makes use of Velodyne laser scans.
45.03 % 62.69 % 41.88 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
137 MonOAPC 44.74 % 60.40 % 38.01 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
138 AM 44.03 % 59.88 % 39.11 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
139 SparsePool code 43.50 % 59.77 % 39.36 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
140 MonoDTR 42.45 % 56.40 % 36.32 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
141 UniCuboid 41.71 % 60.19 % 36.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
142 sensekitti code 41.14 % 47.48 % 35.07 % 4.5 s GPU @ 2.5 Ghz (Python + C/C++)
B. Yang, J. Yan, Z. Lei and S. Li: Craft Objects from Images. CVPR 2016.
143 CG-Stereo
This method uses stereo information.
40.64 % 60.24 % 35.55 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
144 MonoRCNN++ code 39.84 % 56.32 % 34.82 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
145 MonoPair 39.47 % 53.36 % 33.95 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
146 MDD-M3D-X 39.08 % 54.99 % 34.69 % 0.01 s 1 core @ 2.5 Ghz (Python)
147 CMKD code 38.70 % 56.46 % 34.00 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
148 DEVIANT code 38.46 % 57.64 % 32.76 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
149 monospb 37.94 % 54.36 % 32.68 % 0.01 s 1 core @ 2.5 Ghz (Python)
150 temp 36.00 % 55.88 % 30.77 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
151 Disp R-CNN (velo)
This method uses stereo information.
code 35.93 % 52.35 % 31.09 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
152 Disp R-CNN
This method uses stereo information.
code 35.92 % 52.37 % 31.08 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
153 MonoCoP 35.67 % 51.99 % 32.11 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
154 GUPNet code 35.03 % 55.03 % 31.18 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
155 Shift R-CNN (mono) code 34.77 % 51.95 % 31.10 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
156 DDStereo
This method uses stereo information.
34.60 % 51.22 % 31.16 % 0.02 s GPU @ 2.5 Ghz (Python)
157 SparsePool code 34.56 % 43.33 % 31.09 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
158 MonoRUn code 34.36 % 49.04 % 30.22 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
159 SPG_mini
This method makes use of Velodyne laser scans.
code 34.28 % 36.23 % 32.09 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
160 MonoMH code 34.13 % 51.00 % 29.36 % 0.04 s 1 core @ 2.5 Ghz (Python)
161 BtcDet
This method makes use of Velodyne laser scans.
code 33.94 % 35.79 % 31.90 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
162 fdaa11 33.90 % 50.91 % 28.96 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
163 Plane-Constraints code 32.87 % 48.36 % 28.52 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
164 Point-GNN
This method makes use of Velodyne laser scans.
code 32.37 % 36.29 % 29.81 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
165 MonoEF 32.19 % 43.70 % 27.93 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
166 MonoCLUE 31.74 % 47.86 % 27.18 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
167 D4LCN code 31.70 % 48.03 % 26.99 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
168 OPA-3D code 31.64 % 45.97 % 27.92 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
169 M3D-RPN code 31.09 % 48.11 % 26.10 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
170 Aug3D-RPN 30.01 % 42.60 % 24.74 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
171 DDMP-3D 29.53 % 46.42 % 25.91 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
172 MonoGeo code 29.44 % 43.04 % 25.39 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
173 MonoCLUE_all 28.44 % 42.13 % 24.66 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
174 PS-fld code 27.99 % 41.21 % 24.75 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
175 SS3D 27.79 % 42.95 % 24.26 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
176 CMAN 27.63 % 42.58 % 23.14 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
177 AMNet+DDAD15M code 27.07 % 40.75 % 23.54 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
178 MonoFRD 26.87 % 39.05 % 24.09 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
179 AMNet code 24.99 % 37.82 % 21.68 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
180 DFR-Net 24.85 % 38.60 % 21.86 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
181 Cube R-CNN code 23.98 % 29.00 % 21.67 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
182 mdab 23.84 % 35.49 % 21.15 % 0.02 s 1 core @ 2.5 Ghz (Python)
183 SeSame-pillar w/scor code 21.79 % 19.53 % 20.12 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
184 CPD++(unsupervised) code 21.26 % 28.13 % 17.94 % 0.1 s GPU @ >3.5 Ghz (Python)
185 DSGN
This method uses stereo information.
code 20.28 % 29.76 % 19.13 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
186 MonoNeRD code 20.13 % 30.64 % 18.19 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
187 CaDDN code 19.96 % 30.35 % 17.38 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
188 PS-SVDM 19.50 % 29.75 % 17.08 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
189 PS-SVDM 19.46 % 30.41 % 16.67 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
190 LSVM-MDPM-sv 19.15 % 26.05 % 18.02 % 10 s 4 cores @ 3.0 Ghz (C/C++)
P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan: Object Detection with Discriminatively Trained Part-Based Models. PAMI 2010.
A. Geiger, C. Wojek and R. Urtasun: Joint 3D Estimation of Objects and Scene Layout. NIPS 2011.
191 PGD-FCOS3D code 19.10 % 31.75 % 16.59 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
192 OC Stereo
This method uses stereo information.
code 18.99 % 29.07 % 16.40 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
193 DPM-VOC+VP 18.92 % 27.97 % 17.43 % 8 s 1 core @ 2.5 Ghz (C/C++)
B. Pepik, M. Stark, P. Gehler and B. Schiele: Multi-view and 3D Deformable Part Models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2015.
194 CIE 17.52 % 24.39 % 15.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
195 SGM3D code 16.50 % 25.51 % 15.09 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
196 RT3D-GMP
This method uses stereo information.
16.18 % 23.91 % 14.23 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
197 RefinedMPL 16.02 % 26.54 % 13.20 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
198 FMF-occlusion-net 15.24 % 23.82 % 13.84 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
199 DPM-C8B1
This method uses stereo information.
14.64 % 23.93 % 13.09 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++)
J. Yebes, L. Bergasa and M. García-Garrido: Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes. Sensors 2015.
J. Yebes, L. Bergasa, R. Arroyo and A. Lázaro: Supervised learning and evaluation of KITTI's cars detector with DPM. IV 2014.
200 SeSame-point w/score code 10.17 % 12.39 % 9.31 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
201 ESGN
This method uses stereo information.
7.73 % 12.50 % 6.80 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
202 CPD(unsupervised) code 4.97 % 7.07 % 4.49 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
203 RT3DStereo
This method uses stereo information.
3.88 % 5.46 % 3.54 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
204 GATE3D code 0.26 % 0.00 % 0.44 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
205 DA3D+KM3D+v2-99 code 0.00 % 0.00 % 0.00 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
206 DA3D+KM3D code 0.00 % 0.00 % 0.00 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
207 DA3D code 0.00 % 0.00 % 0.00 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
Table as LaTeX | Only published Methods


Related Datasets

Citation

When using this dataset in your research, we will be happy if you cite us:
@inproceedings{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker