From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
63.18 % |
58.71 % |
68.49 % |
60.84 % |
85.52 % |
72.91 % |
85.02 % |
86.34 % |
PEDESTRIAN |
38.00 % |
31.55 % |
45.91 % |
33.00 % |
74.80 % |
49.43 % |
74.64 % |
80.16 % |
Benchmark |
TP |
FP |
FN |
CAR |
24074 |
10318 |
391 |
PEDESTRIAN |
9693 |
13457 |
521 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
67.29 % |
84.77 % |
68.86 % |
542 |
56.63 % |
PEDESTRIAN |
38.52 % |
76.52 % |
39.62 % |
255 |
28.69 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
43.85 % |
39.85 % |
16.31 % |
465 |
PEDESTRIAN |
15.46 % |
38.83 % |
45.70 % |
585 |
Benchmark |
# Dets |
# Tracks |
CAR |
24465 |
1040 |
PEDESTRIAN |
10214 |
396 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.