From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
| Benchmark |
MOTA |
MOTP |
MODA |
MODP |
| CAR |
90.69 % |
86.60 % |
90.76 % |
89.41 % |
| Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
| CAR |
95.42 % |
96.50 % |
95.96 % |
37748 |
1368 |
1810 |
12.30 % |
44360 |
663 |
| Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
| CAR |
83.08 % |
6.46 % |
10.46 % |
23 |
64 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.