From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
  
    | Benchmark | 
     MOTA | 
     MOTP | 
     MODA | 
     MODP | 
    
   
    | CAR | 
     85.70 % | 
     85.48 % | 
     85.98 % | 
     88.42 % | 
    
   
    | PEDESTRIAN | 
     46.33 % | 
     72.54 % | 
     47.82 % | 
     91.78 % | 
    
  
  
    | Benchmark | 
     recall | 
     precision | 
     F1 | 
     TP | 
     FP | 
     FN | 
     FAR | 
     #objects | 
     #trajectories | 
    
   
    | CAR | 
     89.51 % | 
     97.81 % | 
     93.48 % | 
     34556 | 
     772 | 
     4049 | 
      6.94 % | 
     39939 | 
     1308 | 
    
   
    | PEDESTRIAN | 
     56.25 % | 
     87.27 % | 
     68.40 % | 
     13076 | 
     1908 | 
     10172 | 
     17.15 % | 
     16669 | 
     858 | 
    
  
  
    | Benchmark | 
     MT | 
     PT | 
     ML | 
     IDS | 
     FRAG | 
    
   
    | CAR | 
     71.85 % | 
     24.15 % | 
      4.00 % | 
     98 | 
     372 | 
    
   
    | PEDESTRIAN | 
     23.37 % | 
     47.77 % | 
     28.87 % | 
     345 | 
     1111 | 
    
  
This table as LaTeX
 
  | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.