From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
| 
  
    | Benchmark | MOTA | MOTP | MODA | MODP |  
    | CAR | 78.15 % | 79.46 % | 78.24 % | 83.87 % |  
    | PEDESTRIAN | 46.62 % | 71.45 % | 46.89 % | 92.02 % |  
  
    | Benchmark | recall | precision | F1 | TP | FP | FN | FAR | #objects | #trajectories |  
    | CAR | 83.22 % | 96.78 % | 89.49 % | 31854 | 1061 | 6421 | 9.54 % | 35742 | 775 |  
    | PEDESTRIAN | 55.25 % | 87.33 % | 67.68 % | 12874 | 1867 | 10427 | 16.78 % | 16525 | 299 |  
  This table as LaTeX
    | Benchmark | MT | PT | ML | IDS | FRAG |  
    | CAR | 57.23 % | 29.54 % | 13.23 % | 31 | 207 |  
    | PEDESTRIAN | 26.12 % | 39.86 % | 34.02 % | 63 | 666 |  
 
 | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.