From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
| Benchmark |
MOTA |
MOTP |
MODA |
MODP |
| CAR |
89.86 % |
86.94 % |
89.99 % |
89.55 % |
| Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
| CAR |
94.91 % |
96.32 % |
95.61 % |
37462 |
1433 |
2011 |
12.88 % |
44156 |
1157 |
| Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
| CAR |
87.54 % |
11.23 % |
1.23 % |
42 |
367 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.