From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
79.17 % |
83.93 % |
80.39 % |
87.26 % |
PEDESTRIAN |
48.51 % |
74.62 % |
50.64 % |
93.34 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
83.40 % |
98.65 % |
90.39 % |
31702 |
435 |
6308 |
3.91 % |
35195 |
1247 |
PEDESTRIAN |
57.56 % |
89.86 % |
70.17 % |
13442 |
1517 |
9909 |
13.64 % |
17405 |
477 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
56.92 % |
34.00 % |
9.08 % |
422 |
880 |
PEDESTRIAN |
25.43 % |
41.24 % |
33.33 % |
494 |
1219 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.