From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
| 
  
    | Benchmark | MOTA | MOTP | MODA | MODP |  
    | CAR | 86.27 % | 85.41 % | 86.40 % | 88.32 % |  
  
    | Benchmark | recall | precision | F1 | TP | FP | FN | FAR | #objects | #trajectories |  
    | CAR | 91.26 % | 96.65 % | 93.88 % | 35857 | 1244 | 3433 | 11.18 % | 42732 | 1803 |  
  This table as LaTeX
    | Benchmark | MT | PT | ML | IDS | FRAG |  
    | CAR | 77.38 % | 19.69 % | 2.92 % | 45 | 585 |  
 
 | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.