From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.84 % |
86.88 % |
91.93 % |
89.55 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.39 % |
98.53 % |
96.41 % |
37286 |
557 |
2218 |
5.01 % |
43087 |
676 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
87.38 % |
4.62 % |
8.00 % |
30 |
54 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.