From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
68.10 % |
84.88 % |
69.19 % |
88.15 % |
PEDESTRIAN |
39.14 % |
76.77 % |
39.65 % |
93.93 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
72.62 % |
98.78 % |
83.70 % |
27212 |
335 |
10262 |
3.01 % |
29388 |
1764 |
PEDESTRIAN |
42.39 % |
95.01 % |
58.62 % |
9897 |
520 |
13452 |
4.67 % |
10781 |
451 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
43.85 % |
40.15 % |
16.00 % |
375 |
732 |
PEDESTRIAN |
14.78 % |
40.21 % |
45.02 % |
118 |
650 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.