From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
  
    | Benchmark | 
     MOTA | 
     MOTP | 
     MODA | 
     MODP | 
    
   
    | CAR | 
     85.04 % | 
     85.13 % | 
     85.09 % | 
     88.11 % | 
    
   
    | PEDESTRIAN | 
     42.32 % | 
     64.89 % | 
     43.33 % | 
     89.69 % | 
    
  
  
    | Benchmark | 
     recall | 
     precision | 
     F1 | 
     TP | 
     FP | 
     FN | 
     FAR | 
     #objects | 
     #trajectories | 
    
   
    | CAR | 
     89.77 % | 
     96.69 % | 
     93.11 % | 
     34634 | 
     1184 | 
     3945 | 
     10.64 % | 
     39512 | 
     926 | 
    
   
    | PEDESTRIAN | 
     54.05 % | 
     84.15 % | 
     65.82 % | 
     12634 | 
     2379 | 
     10741 | 
     21.39 % | 
     15911 | 
     365 | 
    
  
  
    | Benchmark | 
     MT | 
     PT | 
     ML | 
     IDS | 
     FRAG | 
    
   
    | CAR | 
     70.92 % | 
     20.77 % | 
      8.31 % | 
     15 | 
     256 | 
    
   
    | PEDESTRIAN | 
     21.99 % | 
     42.61 % | 
     35.40 % | 
     233 | 
     1141 | 
    
  
This table as LaTeX
 
  | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.