From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
| 
  
    | Benchmark | MOTA | MOTP | MODA | MODP |  
    | CAR | 89.60 % | 85.04 % | 89.96 % | 87.80 % |  
  
    | Benchmark | recall | precision | F1 | TP | FP | FN | FAR | #objects | #trajectories |  
    | CAR | 93.37 % | 97.73 % | 95.50 % | 36630 | 851 | 2603 | 7.65 % | 45566 | 1296 |  
  This table as LaTeX
    | Benchmark | MT | PT | ML | IDS | FRAG |  
    | CAR | 82.31 % | 15.38 % | 2.31 % | 123 | 331 |  
 
 | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.