Method

Track Integrated Neural Networks [TINN]
[Anonymous Submission]

Submitted on 5 Apr. 2025 13:25 by
[Anonymous Submission]

Running time:0.01 s
Environment:2 cores @ 3.0 Ghz (Python)

Method Description:
to be
Parameters:
0.4
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 90.91 % 85.63 % 91.66 % 88.27 %
PEDESTRIAN 60.90 % 75.37 % 62.19 % 92.24 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 94.02 % 98.55 % 96.23 % 36596 540 2328 4.85 % 46627 1732
PEDESTRIAN 69.96 % 90.46 % 78.90 % 16364 1725 7027 15.51 % 20801 980

Benchmark MT PT ML IDS FRAG
CAR 86.92 % 10.62 % 2.46 % 259 454
PEDESTRIAN 43.99 % 39.52 % 16.49 % 299 904

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker