Method

EnLife-MOT [EnLife-MOT]


Submitted on 17 Apr. 2025 16:14 by
kai li (xxx)

Running time:N/A s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
N/A
Parameters:
N/A
Latex Bibtex:
N/A

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 91.36 % 86.99 % 91.44 % 89.62 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 93.82 % 98.64 % 96.17 % 36973 509 2436 4.58 % 42002 681

Benchmark MT PT ML IDS FRAG
CAR 86.77 % 5.08 % 8.15 % 25 58

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker