Method

Kalman-based Multi-Object Tracking with Adaptive Uncertainty Learning [K-MOT-AUL]


Submitted on 17 Apr. 2025 09:59 by
Mengjun Chen (BIT)

Running time:1 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
/
Parameters:
/
Latex Bibtex:
/

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 90.76 % 85.83 % 91.09 % 88.46 %
PEDESTRIAN 63.48 % 74.92 % 64.13 % 92.17 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 93.08 % 99.02 % 95.96 % 36376 360 2705 3.24 % 44742 1267
PEDESTRIAN 71.15 % 91.39 % 80.01 % 16619 1565 6740 14.07 % 21337 562

Benchmark MT PT ML IDS FRAG
CAR 83.08 % 14.00 % 2.92 % 112 363
PEDESTRIAN 42.61 % 40.21 % 17.18 % 149 841

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker