From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
  
    | Benchmark | 
     MOTA | 
     MOTP | 
     MODA | 
     MODP | 
    
   
    | CAR | 
     87.74 % | 
     84.55 % | 
     88.92 % | 
     87.46 % | 
    
   
    | PEDESTRIAN | 
     53.22 % | 
     73.69 % | 
     54.93 % | 
     91.74 % | 
    
  
  
    | Benchmark | 
     recall | 
     precision | 
     F1 | 
     TP | 
     FP | 
     FN | 
     FAR | 
     #objects | 
     #trajectories | 
    
   
    | CAR | 
     93.52 % | 
     96.67 % | 
     95.07 % | 
     36710 | 
     1266 | 
     2545 | 
     11.38 % | 
     47508 | 
     2082 | 
    
   
    | PEDESTRIAN | 
     67.13 % | 
     85.12 % | 
     75.06 % | 
     15701 | 
     2745 | 
     7689 | 
     24.68 % | 
     24523 | 
     1129 | 
    
  
  
    | Benchmark | 
     MT | 
     PT | 
     ML | 
     IDS | 
     FRAG | 
    
   
    | CAR | 
     84.77 % | 
     13.38 % | 
      1.85 % | 
     404 | 
     607 | 
    
   
    | PEDESTRIAN | 
     33.68 % | 
     47.77 % | 
     18.56 % | 
     395 | 
     1035 | 
    
  
This table as LaTeX
 
  | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.