From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
| Benchmark |
MOTA |
MOTP |
MODA |
MODP |
| CAR |
90.48 % |
86.20 % |
90.91 % |
88.75 % |
| Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
| CAR |
95.87 % |
95.98 % |
95.92 % |
36787 |
1542 |
1585 |
13.86 % |
44730 |
1137 |
| Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
| CAR |
86.15 % |
10.46 % |
3.38 % |
148 |
230 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.