From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
92.26 % |
87.18 % |
92.49 % |
89.68 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
95.44 % |
97.93 % |
96.67 % |
37500 |
792 |
1791 |
7.12 % |
44884 |
876 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
86.00 % |
11.69 % |
2.31 % |
80 |
172 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.