Method

CrossTracker [CrossTracker]


Submitted on 2 Jul. 2025 04:31 by
xin li (Beijing University of Aeronautics and Astronautics)

Running time:0.01 s
Environment:1 core @ 2.5 Ghz (Python)

Method Description:
CrossTracker
Parameters:
CrossTracker
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 92.26 % 87.18 % 92.49 % 89.68 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 95.44 % 97.93 % 96.67 % 37500 792 1791 7.12 % 44884 876

Benchmark MT PT ML IDS FRAG
CAR 86.00 % 11.69 % 2.31 % 80 172

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker