From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
  
    | Benchmark | 
     MOTA | 
     MOTP | 
     MODA | 
     MODP | 
    
   
    | CAR | 
     79.99 % | 
     82.46 % | 
     80.99 % | 
     86.02 % | 
    
  
  
    | Benchmark | 
     recall | 
     precision | 
     F1 | 
     TP | 
     FP | 
     FN | 
     FAR | 
     #objects | 
     #trajectories | 
    
   
    | CAR | 
     84.51 % | 
     98.04 % | 
     90.77 % | 
     32156 | 
     642 | 
     5896 | 
      5.77 % | 
     35250 | 
     1099 | 
    
  
  
    | Benchmark | 
     MT | 
     PT | 
     ML | 
     IDS | 
     FRAG | 
    
   
    | CAR | 
     62.15 % | 
     32.31 % | 
      5.54 % | 
     343 | 
     938 | 
    
  
This table as LaTeX
 
  | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.