From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.69 % |
86.85 % |
91.77 % |
89.57 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.19 % |
98.58 % |
96.33 % |
37198 |
536 |
2295 |
4.82 % |
42882 |
668 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
87.23 % |
4.46 % |
8.31 % |
26 |
80 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.