From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
76.00 % |
87.90 % |
86.90 % |
88.20 % |
89.50 % |
PEDESTRIAN |
60.50 % |
78.80 % |
79.10 % |
79.50 % |
93.10 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
91.00 % |
97.00 % |
93.90 % |
33463 |
1026 |
3297 |
9.20 % |
49091 |
1029 |
PEDESTRIAN |
87.50 % |
91.60 % |
89.50 % |
18117 |
1660 |
2580 |
15.00 % |
27230 |
640 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
76.40 % |
19.50 % |
4.10 % |
130 |
509 |
PEDESTRIAN |
68.90 % |
25.60 % |
5.60 % |
140 |
465 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.