Method

SOMT [SOMT]


Submitted on 14 Jul. 2025 14:32 by
wang naibang (Tsinghua university)

Running time:1 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
.
Parameters:
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
CAR 78.84 % 77.50 % 80.77 % 81.05 % 86.26 % 83.45 % 89.87 % 87.04 %
PEDESTRIAN 53.33 % 51.44 % 55.56 % 56.27 % 71.21 % 60.20 % 73.25 % 78.58 %

Benchmark TP FP FN
CAR 31875 2517 440
PEDESTRIAN 16858 6292 1435

Benchmark MOTA MOTP MODA IDSW sMOTA
CAR 90.77 % 85.61 % 91.40 % 216 77.44 %
PEDESTRIAN 65.34 % 74.54 % 66.62 % 296 46.81 %

Benchmark MT rate PT rate ML rate FRAG
CAR 84.15 % 12.92 % 2.92 % 269
PEDESTRIAN 44.67 % 38.83 % 16.50 % 664

Benchmark # Dets # Tracks
CAR 32315 888
PEDESTRIAN 18293 491

This table as LaTeX


This figure as: png pdf

This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker