From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
65.61 % |
66.87 % |
64.99 % |
69.94 % |
84.34 % |
67.50 % |
85.75 % |
85.58 % |
PEDESTRIAN |
40.58 % |
40.06 % |
41.42 % |
43.75 % |
68.89 % |
45.87 % |
66.48 % |
78.04 % |
Benchmark |
TP |
FP |
FN |
CAR |
28024 |
6368 |
495 |
PEDESTRIAN |
13188 |
9962 |
1515 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
77.90 % |
83.76 % |
80.05 % |
739 |
64.66 % |
PEDESTRIAN |
48.00 % |
74.23 % |
50.42 % |
560 |
33.33 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
56.15 % |
34.46 % |
9.38 % |
588 |
PEDESTRIAN |
25.43 % |
41.24 % |
33.33 % |
939 |
Benchmark |
# Dets |
# Tracks |
CAR |
28519 |
984 |
PEDESTRIAN |
14703 |
421 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.