From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
77.75 % |
77.89 % |
78.20 % |
81.42 % |
86.22 % |
82.24 % |
86.73 % |
86.96 % |
PEDESTRIAN |
54.48 % |
52.01 % |
57.31 % |
57.53 % |
70.06 % |
63.85 % |
70.09 % |
78.30 % |
Benchmark |
TP |
FP |
FN |
CAR |
31996 |
2396 |
484 |
PEDESTRIAN |
17393 |
5757 |
1617 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
90.35 % |
85.42 % |
91.63 % |
440 |
76.79 % |
PEDESTRIAN |
67.38 % |
74.24 % |
68.15 % |
178 |
48.02 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
82.31 % |
14.62 % |
3.08 % |
165 |
PEDESTRIAN |
45.36 % |
32.30 % |
22.34 % |
445 |
Benchmark |
# Dets |
# Tracks |
CAR |
32480 |
783 |
PEDESTRIAN |
19010 |
273 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.