From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
71.97 % |
71.89 % |
72.53 % |
76.92 % |
83.82 % |
75.89 % |
88.54 % |
86.72 % |
PEDESTRIAN |
39.81 % |
35.47 % |
44.90 % |
38.45 % |
59.46 % |
48.53 % |
63.17 % |
71.24 % |
Benchmark |
TP |
FP |
FN |
CAR |
30400 |
3992 |
1162 |
PEDESTRIAN |
12402 |
10748 |
2568 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
84.66 % |
85.06 % |
85.01 % |
121 |
71.46 % |
PEDESTRIAN |
41.45 % |
64.56 % |
42.48 % |
239 |
22.46 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
70.77 % |
19.23 % |
10.00 % |
289 |
PEDESTRIAN |
23.02 % |
40.55 % |
36.43 % |
1144 |
Benchmark |
# Dets |
# Tracks |
CAR |
31562 |
797 |
PEDESTRIAN |
14970 |
385 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.