Method

MOT Tracking with Non-local [on] [CATrack]


Submitted on 4 Mar. 2023 01:04 by
LB X (Shandong university of technology)

Running time:0.0515s
Environment:GPU

Method Description:
Parameters:
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
PEDESTRIAN 48.91 % 44.18 % 54.34 % 47.33 % 72.13 % 57.22 % 77.58 % 78.67 %

Benchmark TP FP FN
PEDESTRIAN 14317 8833 875

Benchmark MOTA MOTP MODA IDSW sMOTA
PEDESTRIAN 57.25 % 74.50 % 58.06 % 189 41.48 %

Benchmark MT rate PT rate ML rate FRAG
PEDESTRIAN 30.93 % 36.43 % 32.65 % 488

Benchmark # Dets # Tracks
PEDESTRIAN 15192 382

This table as LaTeX


This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker