Method

Context-aware Iterative Geometry Encoding Volume [CA-IGEV]
https://github.com/FiredTable/Polar3D

Submitted on 26 Jan. 2026 09:46 by
Junzhuo Zhou (Northwestern Polytechnical University)

Running time:0.05 s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
Stereo matching algorithms struggle to adapt to
highly reflective and textureless surfaces
Propose a lightweight, learnable context-aware group
correlation computation module: CAGWC
Parameters:
The model was implemented using the PyTorch deep
learning framework, and all experiments were
conducted on NVIDIA RTX 4090 GPUs. For training
the stereo matching network, the AdamW optimizer
was employed, with gradients of learnable
parameters clipped to the range of [-1, 1]. When
training on the SceneFlow dataset, the total
number of training steps was set to 200k, using a
one-cycle learning rate scheduling policy with an
initial learning rate of $2\times10^{-4}$. For
training on the KITTI dataset, the model was
initialized with weights pre-trained on SceneFlow
and then fine-tuned on the KITTI dataset for 60k
steps, also using a one-cycle learning rate
scheduler with an initial learning rate of
$1\times10^{-4}$. For all experiments, the batch
size was set to 12. Input images were randomly
cropped to a size of 256 $\times$ 768 pixels, and
data augmentation techniques such as asymmetric
color augmentation and spatial augmentation were
applied. During training, 22 update iterations
were
Latex Bibtex:

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Object Scene Flow for Autonomous Vehicles (CVPR 2015), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

Error D1-bg D1-fg D1-all
All / All 1.29 3.08 1.58
All / Est 1.29 3.08 1.58
Noc / All 1.18 3.05 1.49
Noc / Est 1.18 3.05 1.49
This table as LaTeX

Test Image 0

Error D1-bg D1-fg D1-all
All / All 1.53 0.94 1.45
All / Est 1.53 0.94 1.45
Noc / All 1.52 0.94 1.44
Noc / Est 1.52 0.94 1.44
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

Error D1-bg D1-fg D1-all
All / All 1.78 5.31 2.17
All / Est 1.78 5.31 2.17
Noc / All 1.71 5.31 2.12
Noc / Est 1.71 5.31 2.12
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

Error D1-bg D1-fg D1-all
All / All 2.29 7.75 2.56
All / Est 2.29 7.75 2.56
Noc / All 2.16 7.75 2.44
Noc / Est 2.16 7.75 2.44
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

Error D1-bg D1-fg D1-all
All / All 1.80 2.40 1.86
All / Est 1.80 2.40 1.86
Noc / All 1.77 2.40 1.83
Noc / Est 1.77 2.40 1.83
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

Error D1-bg D1-fg D1-all
All / All 0.45 4.75 1.16
All / Est 0.45 4.75 1.16
Noc / All 0.42 4.75 1.15
Noc / Est 0.42 4.75 1.15
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

Error D1-bg D1-fg D1-all
All / All 1.67 1.88 1.69
All / Est 1.67 1.88 1.69
Noc / All 1.60 1.88 1.63
Noc / Est 1.60 1.88 1.63
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

Error D1-bg D1-fg D1-all
All / All 2.01 2.30 2.04
All / Est 2.01 2.30 2.04
Noc / All 2.06 2.30 2.08
Noc / Est 2.06 2.30 2.08
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

Error D1-bg D1-fg D1-all
All / All 0.24 2.89 0.76
All / Est 0.24 2.89 0.76
Noc / All 0.25 2.89 0.77
Noc / Est 0.25 2.89 0.77
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

Error D1-bg D1-fg D1-all
All / All 0.27 2.52 0.69
All / Est 0.27 2.52 0.69
Noc / All 0.27 2.52 0.68
Noc / Est 0.27 2.52 0.68
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

Error D1-bg D1-fg D1-all
All / All 0.27 1.43 0.56
All / Est 0.27 1.43 0.56
Noc / All 0.27 1.50 0.57
Noc / Est 0.27 1.50 0.57
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

Error D1-bg D1-fg D1-all
All / All 0.94 2.70 1.34
All / Est 0.94 2.70 1.34
Noc / All 0.95 2.70 1.35
Noc / Est 0.95 2.70 1.35
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

Error D1-bg D1-fg D1-all
All / All 0.50 0.69 0.53
All / Est 0.50 0.69 0.53
Noc / All 0.50 0.69 0.53
Noc / Est 0.50 0.69 0.53
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

Error D1-bg D1-fg D1-all
All / All 0.60 1.23 0.65
All / Est 0.60 1.23 0.65
Noc / All 0.45 1.23 0.50
Noc / Est 0.45 1.23 0.50
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

Error D1-bg D1-fg D1-all
All / All 0.53 0.12 0.48
All / Est 0.53 0.12 0.48
Noc / All 0.52 0.12 0.47
Noc / Est 0.52 0.12 0.47
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

Error D1-bg D1-fg D1-all
All / All 1.35 0.11 1.33
All / Est 1.35 0.11 1.33
Noc / All 1.24 0.11 1.22
Noc / Est 1.24 0.11 1.22
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

Error D1-bg D1-fg D1-all
All / All 2.39 0.08 2.18
All / Est 2.39 0.08 2.18
Noc / All 2.44 0.08 2.22
Noc / Est 2.44 0.08 2.22
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

Error D1-bg D1-fg D1-all
All / All 3.36 0.33 2.92
All / Est 3.36 0.33 2.92
Noc / All 3.17 0.33 2.75
Noc / Est 3.17 0.33 2.75
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

Error D1-bg D1-fg D1-all
All / All 0.92 0.31 0.86
All / Est 0.92 0.31 0.86
Noc / All 0.90 0.31 0.84
Noc / Est 0.90 0.31 0.84
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

Error D1-bg D1-fg D1-all
All / All 4.19 1.37 2.85
All / Est 4.19 1.37 2.85
Noc / All 4.10 1.37 2.79
Noc / Est 4.10 1.37 2.79
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

Error D1-bg D1-fg D1-all
All / All 0.70 0.89 0.72
All / Est 0.70 0.89 0.72
Noc / All 0.70 0.89 0.72
Noc / Est 0.70 0.89 0.72
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker