From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
77.02 % |
76.49 % |
78.14 % |
81.13 % |
86.47 % |
82.21 % |
89.11 % |
88.20 % |
PEDESTRIAN |
63.64 % |
64.17 % |
64.75 % |
71.49 % |
74.82 % |
69.28 % |
82.12 % |
81.78 % |
Benchmark |
TP |
FP |
FN |
CAR |
33463 |
3297 |
1026 |
PEDESTRIAN |
18122 |
2575 |
1655 |
Benchmark |
MOTSA |
MOTSP |
MODSA |
IDSW |
sMOTSA |
CAR |
87.89 % |
86.91 % |
88.24 % |
130 |
75.97 % |
PEDESTRIAN |
78.89 % |
79.10 % |
79.56 % |
140 |
60.59 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
76.43 % |
19.52 % |
4.05 % |
566 |
PEDESTRIAN |
68.89 % |
25.56 % |
5.56 % |
539 |
Benchmark |
# Dets |
# Tracks |
CAR |
34489 |
759 |
PEDESTRIAN |
19777 |
419 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.