Method

GCANet [GCANet]
[Anonymous Submission]

Submitted on 10 Jul. 2025 22:58 by
[Anonymous Submission]

Running time:0.04 s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
Depth completion is a popular research direction
in the
field of depth estimation. The fusion of color and
depth features
is the critical challenge in this task, mainly due
to the asymmetry
between the rich scene details in color images and
the sparse pixels
in depth maps. To tackle this issue, we design an
efficient Gated Cross-
Attention Network that propagates confidence via a
gating mechanism,
simultaneously extracting and refining key
information in both color and
depth branches to achieve local spatial feature
fusion. Additionally, we
incorporate a Transformer-based attention network
in low-dimensional
space to effectively fuse global features and
increase the network’s
receptive field. At the same time, we use the Ray
Tune mechanism
with the AsyncHyperBandScheduler and the
HyperOptSearch algorithm
to automatically search for the optimal number of
module iterations,
which also allows us to achieve performance
comparable to state-of-the-
art methods. We conduct experiments on both
Parameters:
-
Latex Bibtex:
-

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 2.14 0.97 707.53 213.04
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 2.81 0.72 806.36 167.13
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 2.53 0.91 633.41 86.33
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 2.20 1.55 1155.94 445.51
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 3.27 1.71 587.66 247.66
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 2.82 1.50 516.54 216.48
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 3.74 1.02 856.64 180.18
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 4.98 1.29 607.32 176.66
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 3.70 1.40 712.85 175.68
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 2.75 0.76 768.54 169.79
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 2.00 1.11 732.75 218.38
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 1.90 1.36 754.34 408.27
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 2.43 1.11 1176.28 412.54
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 4.61 1.88 1031.32 267.88
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 1.25 0.82 651.75 200.28
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 1.74 0.90 548.64 150.96
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 3.99 1.45 499.48 171.17
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 1.28 0.72 520.36 173.28
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 1.25 0.65 556.10 167.95
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 1.54 0.85 590.53 245.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 1.15 0.84 677.61 222.77
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker