Method 
     Setting 
     Code 
     Fl-bg 
     Fl-fg 
     Fl-all Density 
     Runtime 
     Environment 
      
   
    1 
     SEA-Flow3D + Monster  1.48 %  2.62 % 
      1.69 % 100.00 % 
     0.07 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    2 
     ARFlow  1.75 % 
      2.63 % 
      1.91 % 
     100.00 % 
     0.35 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    3 
     MEMFOF code  1.78 % 
      2.86 % 
      1.97 % 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    V. Bargatin, E. Chistov, A. Yakovenko and D. Vatolin:  MEMFOF: High-Resolution Training for 
Memory-Efficient Multi-Frame Optical Flow 
Estimation . arXiv preprint arXiv:2506.23151 2025. 
    
   
    4 
     TDFlow  1.88 % 
      2.59 % 
      2.01 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    5 
     DF  1.90 % 
      2.58 % 
      2.02 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    6 
     WAFT-DAv2-a2  1.87 % 
      2.74 % 
      2.03 % 
     100.00 % 
     0.24 s 
     NVIDIA RTX3090 
      
   
     
   
    7 
     SEA-Flow3D+gannet  1.63 % 
      4.00 % 
      2.06 % 
     100.00 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    8 
     CCMR+ code  1.89 % 
      2.88 % 
      2.07 % 
     100.00 % 
     1.5 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    A. Jahedi, M. Luz, M. Rivinius and A. Bruhn:  CCMR: High Resolution Optical Flow Estimation via Coarse-to-Fine Context-Guided Motion Reasoning . WACV 2024. 
    
   
    9 
     MS-RAFT-3D+ code  1.83 % 
      3.33 % 
      2.10 % 
     100.00 % 
     3 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    J. Schmid, A. Jahedi, N. Senn and A. Bruhn:  MS-RAFT-3D: A Multi-Scale Architecture for Recurrent Image-Based Scene Flow . IEEE International Conference on Image Processing (ICIP) 2025. 
    
   
    10 
     WAFT-Twins-a2  1.97 % 
      2.79 % 
      2.12 % 
     100.00 % 
     0.29 s 
     NVIDIA RTX3090 
      
   
     
   
    11 
     DPFlow code  2.06 % 
      2.40 %  2.12 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Morimitsu, X. Zhu, R. Cesar-Jr., X. Ji and X. Yin:  DPFlow: Adaptive Optical Flow 
Estimation with a Dual-Pyramid Framework . CVPR 2025. 
    
   
    12 
     WAFT-DINOv3-a2  1.95 % 
      2.95 % 
      2.13 % 
     100.00 % 
     0.21 s 
     NVIDIA RTX3090 
      
   
     
   
    13 
     SplatFlow3D code  1.78 % 
      3.80 % 
      2.14 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    B. Wang, Y. Zhang, J. Li, Y. Yu, Z. Sun, L. Liu and D. Hu:  SplatFlow: Learning Multi-frame Optical Flow via Splatting . International Journal of Computer Vision 2024. 
    
   
    14 
     TSA_ code  1.93 % 
      3.21 % 
      2.16 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    15 
     OAMaskFlow  1.62 % 
      4.66 % 
      2.17 % 
     100.00 % 
     0.5  s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    16 
     CamLiRAFT code  1.64 % 
      4.57 % 
      2.18 % 
     100.00 % 
     1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang:  Learning Optical Flow and Scene Flow 
with Bidirectional Camera-LiDAR Fusion . TPAMI 2023. 
    
   
    17 
     MS_RAFT+_corr_RVC code  2.07 % 
      2.69 % 
      2.18 % 
     100.00 % 
     0.65 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    A. Jahedi, M. Luz, M. Rivinius, L. Mehl and A. Bruhn:  High Resolution Multi-Scale RAFT . International Journal of Computer Vision (IJCV) 2023. 
    
   
    18 
     GeoViT  2.08 % 
      2.75 % 
      2.20 % 
     100.00 % 
     0.61 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    19 
     Flow-Anything (SEA) code  2.13 % 
      2.60 % 
      2.21 % 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Y. Liang, Y. Fu, Y. Hu, W. Shao, J. Liu and D. Zhang:  Flow-Anything: Learning Real-World Optical 
Flow Estimation from Large-Scale Single-view 
Images . arXiv preprint arXiv:2506.07740 2025. 
    
   
    20 
     DDVM  1.97 % 
      3.46 % 
      2.24 % 
     100.00 % 
       
       
      
   
    S. Saxena, C. Herrmann, J. Hur, A. Kar, M. Norouzi, D. Sun and D. Fleet:  The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation . NeurIPS 2023. 
    
   
    21 
     RFlow3D+monster  2.00 % 
      3.83 % 
      2.33 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    22 
     RFlow3D  2.00 % 
      3.83 % 
      2.33 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    23 
     SDFlowNet  2.27 % 
      2.85 % 
      2.37 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    24 
     CamLiRAFT-NR code  2.03 % 
      3.98 % 
      2.38 % 
     100.00 % 
     1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang:  Learning Optical Flow and Scene Flow 
with Bidirectional Camera-LiDAR Fusion . arXiv preprint arXiv:2303.12017 2023. 
    
   
    25 
     CamLiFlow code  1.79 % 
      5.12 % 
      2.40 % 
     100.00 % 
     1.2 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    H. Liu, T. Lu, Y. Xu, J. Liu, W. Li and L. Chen:  CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint 
Optical Flow and Scene Flow Estimation . CVPR 2022. 
    
   
    26 
     GMFlow+ code  2.29 % 
      2.89 % 
      2.40 % 
     100.00 % 
     0.2 s 
     GPU (Python) 
      
   
    H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao and A. Geiger:  Unifying Flow, Stereo and Depth 
Estimation . arXiv preprint arXiv:2211.05783 2022. 
    
   
    27 
     PAFlow  2.04 % 
      4.03 % 
      2.40 % 
     100.00 % 
     0.53 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    28 
     CroCo-Flow code  2.05 % 
      3.98 % 
      2.40 % 
     100.00 % 
     3s 
     NVIDIA A100 
      
   
    P. Weinzaepfel, T. Lucas, V. Leroy, Y. Cabon, V. Arora, R. Br\'egier, G. Csurka, L. Antsfeld, B. Chidlovskii and J. Revaud:  CroCo v2: Improved Cross-view Completion 
Pre-training for Stereo Matching and Optical Flow . ICCV 2023. 
    
   
    29 
     DIP code  2.31 % 
      3.00 % 
      2.43 % 
     100.00 % 
     0.15 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    Z. Zheng, N. Nie, Z. Ling, P. Xiong, J. Liu, H. Wang and J. Li:  DIP: Deep Inverse Patchmatch for High-
Resolution Optical Flow . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2022. 
    
   
    30 
     MemFlow-T code  2.28 % 
      3.22 % 
      2.45 % 
     100.00 % 
       
       
      
   
    Q. Dong and Y. Fu:  MemFlow: Optical Flow Estimation and 
Prediction with Memory . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition 2024. 
    
   
    31 
     RAFT-it+_RVC code  2.36 % 
      2.87 % 
      2.46 % 
     100.00 % 
     0.14 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    D. Sun, C. Herrmann, F. Reda, M. Rubinstein, D. Fleet and W. Freeman:  Disentangling Architecture and Training for 
Optical Flow . ECCV 2022. 
    
   
    32 
     EMSFlow  2.36 % 
      2.97 % 
      2.47 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    33 
     MotionFlow+  2.37 % 
      2.97 % 
      2.48 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    34 
     M-FUSE code  1.98 % 
      4.74 % 
      2.48 % 
     100.00 % 
     1.3 s 
     GPU 
      
   
    L. Mehl, A. Jahedi, J. Schmalfuss and A. Bruhn:  M-FUSE: Multi-frame Fusion for Scene Flow Estimation . Proc. Winter Conference on Applications of Computer Vision (WACV) 2023. 
    
   
    35 
     RAFT-3D-MF  2.00 % 
      4.73 % 
      2.49 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    36 
     SemFlow  2.40 % 
      3.02 % 
      2.51 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    37 
     RigidMask+ISF code  2.03 % 
      4.85 % 
      2.54 % 
     100.00 % 
     3.3 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    G. Yang and D. Ramanan:  Learning to Segment Rigid Motions from Two 
Frames . CVPR 2021. 
    
   
    38 
     MemFlow code  2.37 % 
      3.40 % 
      2.56 % 
     100.00 % 
       
       
      
   
    Q. Dong and Y. Fu:  MemFlow: Optical Flow Estimation and 
Prediction with Memory . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition 2024. 
    
   
    39 
     RAFT-OCTC  2.54 % 
      2.80 % 
      2.58 % 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    J. Jeong, J. Lin, F. Porikli and N. Kwak:  Imposing Consistency for Optical Flow 
Estimation (Qualcomm AI Research) . CVPR 2022. 
    
   
    40 
     APCAFlow  2.47 % 
      3.14 % 
      2.59 % 
     100.00 % 
     0.20 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    41 
     MotionFlow  2.50 % 
      3.08 % 
      2.61 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Wang, C. Zhang, C. Zhen, H. Chen, L. Ge and K. Lu:  MotionFlow: Joint Motion Priors and 
Appearance Enhancement for High-Accuracy Optical 
Flow Estimation . ICASSP 2025 . 
    
   
    42 
     RAFT-3D (CroCo)  2.19 % 
      4.58 % 
      2.62 % 
     100.00 % 
     1.5 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    43 
     GMFlow_RVC code  2.55 % 
      2.98 % 
      2.63 % 
     100.00 % 
     0.2 s 
     GPU (Python) 
      
   
    H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao and A. Geiger:  Unifying Flow, Stereo and Depth 
Estimation . arXiv preprint arXiv:2211.05783 2022. 
    
   
    44 
     RobustFlow  2.54 % 
      3.23 % 
      2.67 % 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    45 
     FlowFormer code  2.54 % 
      3.38 % 
      2.69 % 
     100.00 % 
      0.3 s 
     GPU  (Python) 
      
   
    Z. Huang, X. Shi, C. Zhang, Q. Wang, K. Cheung, H. Qin, J. Dai and H. Li:  FlowFormer: A Transformer Architecture for 
Optical Flow . European conference on computer 
vision 2022. 
    
   
    46 
     AnyFlow  2.60 % 
      3.10 % 
      2.69 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    H. Jung, Z. Hui, L. Luo, H. Yang, F. Liu, S. Yoo, R. Ranjan and D. Demandolx:  AnyFlow: Arbitrary Scale Optical Flow with 
Implicit Neural Representation . arXiv preprint arXiv:2303.16493 2023. 
    
   
    47 
     RPKNet code  2.70 % 
      2.74 % 
      2.71 % 
     100.00 % 
     0.6 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Morimitsu, X. Zhu, X. Ji and X. Yin:  Recurrent Partial Kernel Network for 
Efficient Optical Flow Estimation . AAAI 2024. 
    
   
    48 
     GMFlowNet code  2.56 % 
      3.64 % 
      2.75 % 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    S. Zhao, L. Zhao, Z. Zhang, E. Zhou and D. Metaxas:  Global Matching with Overlapping Attention 
for Optical Flow Estimation . CVPR 2022. 
    
   
    49 
     MatchFlow(R) code  2.59 % 
      3.54 % 
      2.76 % 
     100.00 % 
     0.26 s 
     GPU (Python) 
      
   
    Q. Dong, C. Cao and Y. Fu:  Rethinking Optical Flow from Geometric 
Matching Consistent  
Perspective . Proceedings of the IEEE/CVF 
Conference on Computer 
Vision and Pattern Recognition 2023. 
    
   
    50 
     MatchFlow(G) code  2.61 % 
      3.48 % 
      2.77 % 
     100.00 % 
     0.3 s 
     GPU (Python) 
      
   
    Q. Dong, C. Cao and Y. Fu:  Rethinking Optical Flow from Geometric Matching Consistent  
Perspective . Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition 2023. 
    
   
    51 
     SeparableFlow code  2.56 % 
      3.75 % 
      2.78 % 
     100.00 % 
     0.5 s 
     GPU 
      
   
    F. Zhang, O. Woodford, V. Prisacariu and P. Torr:  Separable Flow: Learning Motion Cost 
Volumes for Optical Flow Estimation . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2021. 
    
   
    52 
     Omni-Flow  2.67 % 
      3.31 % 
      2.78 % 
     100.00 % 
     0.39 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    53 
     MS_RAFT  2.66 % 
      3.41 % 
      2.80 % 
     100.00 % 
     0.3 s 
     GPU: Nvidia A100 (Python) 
      
   
    A. Jahedi, L. Mehl, M. Rivinius and A. Bruhn:  Multi-Scale Raft: Combining Hierarchical Concepts for Learning-Based Optical Flow Estimation . IEEE International Conference on Image Processing (ICIP) 2022. 
    
   
    54 
     FlowDiffuser code  2.39 % 
      4.71 % 
      2.82 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    A. Luo, X. Li, F. Yang, J. Liu, H. Fan and S. Liu:  FlowDiffuser: Advancing Optical Flow 
Estimation with Diffusion Models . In Proc. CVPR 2024. 
    
   
    55 
     KPA-Flow  2.59 % 
      3.83 % 
      2.82 % 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    A. Luo, F. Yang, X. Li and S. Liu:  Learning Optical Flow With Kernel Patch 
Attention . In Proc. CVPR 2022. 
    
   
    56 
     SSTM_T [MV]  2.75 % 
      3.43 % 
      2.87 % 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (C/C++) 
      
   
    F. Ferede and M. Balasubramanian:  SSTM: Spatiotemporal recurrent 
transformers for multi-frame optical flow 
estimation . Neurocomputing 2023. 
    
   
    57 
     SSTM++_ttt [mv]  2.71 % 
      3.66 % 
      2.89 % 
     100.00 % 
     0.3 s 
     GPU @ >3.5 Ghz (Python) 
      
   
    F. Ferede and M. Balasubramanian:  SSTM: Spatiotemporal recurrent 
transformers for multi-frame optical flow 
estimation . Neurocomputing 2023. 
    
   
    58 
     PerdFlow  2.75 % 
      3.68 % 
      2.92 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    59 
     SF2SE3 code  2.23 % 
      6.05 % 
      2.93 % 
     100.00 % 
     2.7 s 
     GPU @ >3.5 Ghz (Python) 
      
   
    L. Sommer, P. Schröppel and T. Brox:  SF2SE3: Clustering Scene Flow into SE (3)-Motions via Proposal and Selection . DAGM German Conference on Pattern Recognition 2022. 
    
   
    60 
     SSTMT++-tt-main [mv] code  2.78 % 
      3.64 % 
      2.94 % 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    F. Ferede and M. Balasubramanian:  SSTM: Spatiotemporal Recurrent 
Transformers for Multi-frame Optical Flow 
Estimation . arXiv preprint arXiv:2304.14418 2023. 
    
   
    61 
     SplatFlow code  2.81 % 
      3.60 % 
      2.96 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    B. Wang, Y. Zhang, J. Li, Y. Yu, Z. Sun, L. Liu and D. Hu:  SplatFlow: Learning Multi-frame Optical Flow via Splatting . International Journal of Computer Vision 2024. 
    
   
    62 
     DEQ-Flow-H code  2.82 % 
      3.59 % 
      2.96 % 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    S. Bai, Z. Geng, Y. Savani and Z. Kolter:  Deep Equilibrium Optical Flow 
Estimation . CVPR 2022. 
    
   
    63 
     AGFlow code  2.57 % 
      4.85 % 
      2.99 % 
     100.00 % 
     0.2 s 
     8 cores @ 2.5 Ghz (Python) 
      
   
    A. Luo, F. Yang, K. Luo, X. Li, H. Fan and S. Liu:  Learning Optical Flow with Adaptive Graph 
Reasoning . AAAI 2022. 
    
   
    64 
     CSFlow code  2.90 % 
      3.40 % 
      3.00 % 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Shi, Y. Zhou, K. Yang, X. Yin and K. Wang:  CSFlow: Learning Optical Flow via Cross 
Strip Correlation for Autonomous Driving . arXiv preprint arXiv:2202.00909 2022. 
    
   
    65 
     CRAFT code  2.87 % 
      3.68 % 
      3.02 % 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    X. Sui, S. Li, X. Geng, Y. Wu, X. Xu, Y. Liu, R. Goh and H. Zhu:  CRAFT: Cross-Attentional Flow Transformers 
for Robust Optical Flow . CVPR 2022. 
    
   
    66 
     MODFlow  2.89 % 
      3.59 % 
      3.02 % 
     100.00 % 
     0.12 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    67 
     RAFT-A code  3.01 % 
      3.17 % 
      3.04 % 
     100.00 % 
     0.7 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    D. Sun, D. Vlasic, C. Herrmann, V. Jampani, M. Krainin, H. Chang, R. Zabih, W. Freeman and C. Liu:  AutoFlow: Learning a Better Training Set 
for Optical Flow . CVPR 2021. 
    
   
    68 
     RAFT+AOIR  2.80 % 
      4.13 % 
      3.04 % 
     100.00 % 
     10 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    L. Mehl, C. Beschle, A. Barth and A. Bruhn:  An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation . SSVM 2021. 
    
   
    69 
     BHSFlow code  3.06 % 
      3.05 % 
      3.06 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    70 
     RAFT code  2.87 % 
      3.98 % 
      3.07 % 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    Z. Teed and J. Deng:  RAFT: Recurrent All-Pairs Field Transforms 
for Optical Flow . ECCV 2020. 
    
   
    71 
     SSTM++_thes_[mv]  2.83 % 
      4.16 % 
      3.08 % 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    F. Ferede:  Multi-Frame Optical Flow Estimation Using Spatio-Temporal Transformers . 2022. 
    
   
    72 
     AMFlow  3.00 % 
      3.60 % 
      3.11 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    73 
     PRAFlow_RVC  2.82 % 
      4.40 % 
      3.11 % 
     100.00 % 
     0.5 s 
     GPU @ NVIDIA RTX 2080Ti  (Python) 
      
   
    Z. Wan, Y. Mao and Y. Dai:  PRAFlow_RVC: Pyramid Recurrent All-
Pairs Field Transforms for Optical Flow Estimation 
in Robust Vision Challenge 2020 . 2020. 
    
   
    74 
     DPCTF-F  3.01 % 
      3.58 % 
      3.11 % 
     100.00 % 
     0.07 s 
     GPU @ 2.5 Ghz (C/C++) 
      
   
    Y. Deng, J. Xiao, S. Zhou and J. Feng:  Detail Preserving Coarse-to-Fine Matching 
for Stereo Matching and Optical Flow . IEEE Transactions on Image Processing 2021. 
    
   
    75 
     SSTM_thes_[mv]  2.93 % 
      4.02 % 
      3.13 % 
     100.00 % 
     0.3 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    F. Ferede:  Multi-Frame Optical Flow Estimation Using Spatio-Temporal Transformers . 2022. 
    
   
    76 
     RAFT-3D  2.69 % 
      5.70 % 
      3.23 % 
     100.00 % 
     2 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    Z. Teed and J. Deng:  RAFT-3D: Scene Flow using Rigid-Motion 
Embeddings . arXiv preprint arXiv:2012.00726 2020. 
    
   
    77 
     LinearFlow_lr  3.13 % 
      4.11 % 
      3.31 % 
     100.00 % 
     0.45 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    78 
     PPAC-HD3 code  3.09 % 
      4.50 % 
      3.35 % 
     100.00 % 
     0.19 s 
     NVIDIA GTX 1080 Ti 
      
   
    A. Wannenwetsch and S. Roth:  Probabilistic Pixel-Adaptive Refinement Networks . CVPR 2020. 
    
   
    79 
     Scale-flow code  3.26 % 
      3.79 % 
      3.36 % 
     100.00 % 
     0.8 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Ling, Q. Sun, Z. Ren, Y. Liu, H. Wang and Z. Wang:  Scale-flow: Estimating 3D Motion from 
Video . Proceedings of the 30th ACM 
International Conference on Multimedia 2022. 
    
   
    80 
     Contflow_lr  3.08 % 
      4.63 % 
      3.36 % 
     100.00 % 
     0.5 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    81 
     MPI-Flow code  2.91 % 
      5.43 % 
      3.36 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    Y. Liang, J. Liu, D. Zhang and Y. Fu:  Mpi-flow: Learning realistic optical flow 
with multiplane images . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2023. 
    
   
    82 
     RAFT-TF_RVC  3.45 % 
      3.81 % 
      3.52 % 
     100.00 % 
     0.7 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    D. Sun, C. Herrmann, V. Jampani, M. Krainin, F. Cole, A. Stone, R. Jonschkowski, R. Zabih, W. Freeman and C. Liu:  A TensorFlow implementation of RAFT . 2020. 
    
   
    83 
     UberATG-DRISF  2.67 % 
      7.66 % 
      3.58 % 
     100.00 % 
     0.75 s 
     CPU+GPU @ 2.5 Ghz (Python) 
      
   
    W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun:  Deep Rigid Instance Scene Flow . CVPR 2019. 
    
   
    84 
     RAPIDFlow code  3.67 % 
      3.51 % 
      3.64 % 
     100.00 % 
     0.04 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Morimitsu, X. Zhu, R. Cesar-Jr, X. Ji and X. Yin:  RAPIDFlow: {Recurrent Adaptable 
Pyramids with Iterative Decoding} for Efficient 
Optical Flow Estimation . ICRA 2024. 
    
   
    85 
     GMFlow code  3.65 % 
      4.46 % 
      3.80 % 
     100.00 % 
     0.071 s 
     A100 GPU (Python) 
      
   
    H. Xu, J. Zhang, J. Cai, H. Rezatofighi and D. Tao:  GMFlow: Learning Optical Flow via Global 
Matching . Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition 2022. 
    
   
    86 
     Stereo expansion code  3.50 % 
      5.62 % 
      3.89 % 
     100.00 % 
     2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    G. Yang and D. Ramanan:  Upgrading Optical Flow to 3D Scene Flow 
through Optical Expansion . CVPR 2020. 
    
   
    87 
     VCN code  3.50 % 
      5.62 % 
      3.89 % 
     100.00 % 
     0.18 s 
     Titan X Pascal 
      
   
    G. Yang and D. Ramanan:  Volumetric Correspondence Networks for 
Optical Flow . NeurIPS 2019. 
    
   
    88 
     VCN+LCV  code  3.47 % 
      5.78 % 
      3.89 % 
     100.00 % 
     0.26 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    T. Xiao, J. Yuan, D. Sun, Q. Wang, X. Zhang, K. Xu and M. Yang:  Learnable Cost Volume using the 
Cayley Representation . Proceedings of the European 
Conference on Computer Vision (ECCV) 2020. 
    
   
    89 
     Binary TTC  3.51 % 
      5.63 % 
      3.89 % 
     100.00 % 
     2 s 
     GPU @ 1.0 Ghz (Python) 
      
   
    A. Badki, O. Gallo, J. Kautz and P. Sen:  Binary TTC: A Temporal Geofence for Autonomous 
Navigation . The IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) 2021. 
    
   
    90 
     MonoComb  3.51 % 
      5.63 % 
      3.89 % 
     100.00 % 
     0.58 s 
     RTX 2080 Ti 
      
   
    R. Schuster, C. Unger and D. Stricker:  MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow . ACM Computer Science in Cars Symposium (CSCS) 2020. 
    
   
    91 
     MaskFlownet code  3.70 % 
      4.93 % 
      3.92 % 
     100.00 % 
     0.06 s 
     NVIDIA TITAN Xp 
      
   
    S. Zhao, Y. Sheng, Y. Dong, E. Chang and Y. Xu:  MaskFlownet: Asymmetric Feature Matching 
with Learnable Occlusion Mask . Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR) 2020. 
    
   
    92 
     PRichFlow  3.92 % 
      3.94 % 
      3.93 % 
     100.00 % 
     0.1 s 
     TITAN X MAXWELL 
      
   
    X. Wang, D. Zhu, J. Song, Y. Liu, J. Li and X. Zhang:  Richer Aggregated Features for Optical Flow Estimation with Edge-aware Refinement . . 
    
   
    93 
     HD^3-Flow code  3.39 % 
      6.39 % 
      3.93 % 
     100.00 % 
     0.10 s 
     NVIDIA Pascal Titan XP 
      
   
    Z. Yin, T. Darrell and F. Yu:  Hierarchical Discrete Distribution Decomposition 
for Match Density Estimation . CVPR 2019. 
    
   
    94 
     RAFT+LCT-Flow code  3.42 % 
      6.45 % 
      3.97 % 
     100.00 % 
     0.65 s 
     GPU @ 1.5 Ghz (Python + C/C++) 
      
   
    J. Chen:   Motion Estimation with L0 norm 
Regularization (Extended Version) .  IEEE 7th International Conference on 
  Virtual Reality(ICVR) 2021. 
    
   
    95 
     LiteFlowNet3-S code  4.21 % 
      3.93 % 
      4.15 % 
     100.00 % 
     0.07s 
     GTX 1080 (slower than Titan X Pascal) 
      
   
    T. Hui and C. Loy:  LiteFlowNet3: Resolving Correspondence
Ambiguity for More Accurate Optical Flow 
Estimation . European Conference on Computer Vision
(ECCV) 2020. 
    
   
    96 
     MaskFlownet-S code  4.03 % 
      5.39 % 
      4.27 % 
     100.00 % 
     0.03 s 
     NVIDIA TITAN Xp 
      
   
    S. Zhao, Y. Sheng, Y. Dong, E. Chang and Y. Xu:  MaskFlownet: Asymmetric Feature Matching 
with Learnable Occlusion Mask . Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR) 2020. 
    
   
    97 
     LiteFlowNet3 code  4.23 % 
      4.59 % 
      4.29 % 
     100.00 % 
     0.07s 
     GTX 1080 (slower than Titan X Pascal) 
      
   
    T. Hui and C. Loy:  LiteFlowNet3: Resolving Correspondence 
Ambiguity for More Accurate Optical Flow 
Estimation . European Conference on Computer Vision 
(ECCV) 2020. 
    
   
    98 
     SwiftFlow  3.92 % 
      6.22 % 
      4.34 % 
     100.00 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Wang, Y. Liu, H. Huang, Y. Pan, W. Yu, J. Jiang, D. Lyu, M. Bocus, M. Liu, I. Pitas and others:  ATG-PVD: Ticketing parking 
violations on a drone . European Conference on Computer 
Vision 2020. 
    
   
    99 
     LiteFlowNet2 code  4.38 % 
      4.59 % 
      4.42 % 
     100.00 % 
     0.0486 s 
     GTX 1080 (slower than Titan X Pascal) 
      
   
    T. Hui, X. Tang and C. Loy:  A Lightweight Optical Flow CNN - 
Revisiting Data 
Fidelity and Regularization . TPAMI 2020. 
    
   
    100 
     RAFT+LCV code  4.04 % 
      6.16 % 
      4.43 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    T. Xiao, J. Yuan, D. Sun, Q. Wang, X. Zhang, K. Xu and M. Yang:  Learnable Cost Volume using the 
Cayley Representation . Proceedings of the European 
Conference on Computer Vision (ECCV) 2020. 
    
   
    101 
     ScopeFlow code  4.44 % 
      4.49 % 
      4.45 % 
     100.00 % 
     -1 s 
     Nvidia GPU 
      
   
    A. Bar-Haim and L. Wolf:  ScopeFlow: Dynamic Scene Scoping for 
Optical Flow . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2020. 
    
   
    102 
     MFF  4.52 % 
      4.25 % 
      4.47 % 
     100.00 % 
     0.05 s 
     NVIDIA Pascal Titan X (Python) 
      
   
    Z. Ren, O. Gallo, D. Sun, M. Yang, E. Sudderth and J. Kautz:  A Fusion Approach for Multi-Frame 
Optical 
Flow Estimation . IEEE Winter Conference on 
Applications of Computer Vision 2019. 
    
   
    103 
     PMC-PWC code  4.58 % 
      4.12 % 
      4.50 % 
     100.00 % 
     TBD s 
     GPU @ 2.5 Ghz (Python) 
      
   
    C. Zhang, C. Feng, Z. Chen, W. Hu and M. Li:  Parallel multiscale context-based edge-
preserving optical flow estimation with occlusion 
detection . Signal Processing: Image 
Communication 2022. 
    
   
    104 
     ACOSF  3.40 % 
      9.52 % 
      4.51 % 
     100.00 % 
     5 min 
     1 core @ 3.0 Ghz (Matlab + C/C++) 
      
   
    C. Li, H. Ma and Q. Liao:  Two-Stage Adaptive Object Scene Flow Using 
Hybrid CNN-CRF Model . International Conference on Pattern 
Recognition (ICPR) 2020. 
    
   
    105 
     ISF  4.21 % 
      6.83 % 
      4.69 % 
     100.00 % 
     10 min 
     1 core @ 3 Ghz (C/C++) 
      
   
    A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger:  Bounding Boxes, Segmentations and Object 
Coordinates: How Important is Recognition for 3D 
Scene Flow Estimation in Autonomous Driving 
Scenarios? . International Conference on Computer 
Vision (ICCV) 2017. 
    
   
    106 
     IRR-PWC code  4.92 % 
      4.62 % 
      4.86 % 
     100.00 % 
     0.18 s 
     NVIDIA GTX 1080 Ti 
      
   
    J. Hur and S. Roth:  Iterative Residual Refinement for 
Joint Optical Flow and Occlusion Estimation . CVPR 2019. 
    
   
    107 
     PWC-Net+ code  4.91 % 
      4.88 % 
      4.91 % 
     100.00 % 
     0.03 s 
     NVIDIA Pascal Titan X 
      
   
    D. Sun, X. Yang, M. Liu and J. Kautz:  Models Matter, So Does Training: An 
Empirical Study of CNNs for Optical Flow 
Estimation . arXiv preprint arXiv:1809.05571 2018. 
    
   
    108 
     Separable-Sim2real  4.46 % 
      7.78 % 
      5.06 % 
     100.00 % 
     0.25 s 
     GPU 
      
   
    F. Zhang, O. Woodford, V. Prisacariu and P. Torr:  Separable Flow: Learning Motion Cost 
Volumes for Optical Flow Estimation . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2021. 
    
   
    109 
     STaRFlow code  5.07 % 
      5.23 % 
      5.10 % 
     100.00 % 
     0.24  s 
     GPU @ 2.0 Ghz (Python) 
      
   
    P. Godet, A. Boulch, A. Plyer and G. Besnerais:  STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation . ICPR 2020. 
    
   
    110 
     SMURF code  4.46 % 
      8.86 % 
      5.26 % 
     100.00 % 
     .2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    A. Stone, D. Maurer, A. Ayvaci, A. Angelova and R. Jonschkowski:  SMURF: Self-Teaching Multi-Frame 
Unsupervised RAFT With Full-Image Warping . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2021. 
    
   
    111 
     OSF+TC  4.34 % 
      9.67 % 
      5.31 % 
     100.00 % 
     50 min 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    M. Neoral and J. Šochman:  Object Scene Flow with Temporal 
Consistency . 22nd Computer Vision Winter 
Workshop (CVWW) 2017. 
    
   
    112 
     SSF  4.20 % 
     10.81 % 
      5.40 % 
     100.00 % 
     5 min 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
   
    Z. Ren, D. Sun, J. Kautz and E. Sudderth:  Cascaded Scene Flow Prediction using 
Semantic Segmentation . International Conference on 3D Vision 
(3DV) 2017. 
    
   
    113 
     SemARFlow code  4.58 % 
      9.30 % 
      5.43 % 
     100.00 % 
     0.0168s 
     GPU @ 2.5 Ghz (Python) 
      
   
    S. Yuan, S. Yu, H. Kim and C. Tomasi:  SemARFlow: Injecting Semantics into 
Unsupervised Optical Flow Estimation for Autonomous 
Driving . ICCV 2023. 
    
   
    114 
     LiteFlowNet code  5.58 % 
      5.09 % 
      5.49 % 
     100.00 % 
     0.0885 s 
     GTX 1080 (slower than Titan X Pascal) 
      
   
    T. Hui, X. Tang and C. Loy:  LiteFlowNet: A Lightweight 
Convolutional Neural Network for Optical Flow 
Estimation . Proceedings of IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR) 2018. 
    
   
    115 
     PRSM code  4.33 % 
     10.80 % 
      5.50 % 
     100.00 % 
     300 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    C. Vogel, K. Schindler and S. Roth:  3D Scene Flow Estimation with a
Piecewise Rigid Scene Model . ijcv 2015. 
    
   
    116 
     FDFlowNet  5.35 % 
      6.62 % 
      5.58 % 
     100.00 % 
     0.02 s 
     NVIDIA GTX 1080 Ti 
      
   
    L. Kong and J. Yang:  FDFlowNet: Fast Optical Flow Estimation 
using a Deep Lightweight Network . IEEE International Conference on 
Image Processing (ICIP) 2020. 
    
   
    117 
     AL-OF_r0.2 code  4.67 % 
     10.29 % 
      5.69 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    S. Yuan, X. Sun, H. Kim, S. Yu and C. Tomasi:  Optical Flow Training Under Limited Label Budget via Active 
Learning . ECCV 2022. 
    
   
    118 
     LSM_FLOW_RVC code  4.67 % 
     10.40 % 
      5.70 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    C. Tang, L. Yuan and P. Tan:  LSM: Learning Subspace Minimization for Low-Level Vision . IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) 2020. 
    
   
    119 
     M2Flow code  4.64 % 
     10.64 % 
      5.73 % 
     100.00 % 
     0.09 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Sun, G. Chen and Z. Hou:  M2Flow: A Motion Information Fusion 
Framework for Enhanced Unsupervised Optical Flow 
Estimation in Autonomous Driving . Proceedings of the AAAI Conference on 
Artificial Intelligence 2025. 
    
   
    120 
     Sun-RAFT  5.18 % 
      8.23 % 
      5.74 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    121 
     OSF 2018 code  4.02 % 
     14.14 % 
      5.86 % 
     100.00 % 
     390 s 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
   
    M. Menze, C. Heipke and A. Geiger:  Object Scene Flow . ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018. 
    
   
    122 
     IRR-PWC_RVC code  5.19 % 
      8.92 % 
      5.87 % 
     100.00 % 
     0.18 s 
     NVIDIA GTX 1080 Ti 
      
   
    J. Hur and S. Roth:  Iterative Residual Refinement for 
Joint Optical Flow and Occlusion Estimation . CVPR 2019. 
    
   
    123 
     SelFlow  5.12 % 
      9.41 % 
      5.90 % 
     100.00 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    P. Liu, M. Lyu, I. King and J. Xu:  SelFlow: Self-Supervised Learning of Optical 
Flow . CVPR 2019. 
    
   
    124 
     SENSE code  5.90 % 
      6.37 % 
      5.98 % 
     100.00 % 
     0.32s 
     GPU, GTX 2080Ti 
      
   
    H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz:  SENSE: A Shared Encoder Network for Scene-Flow 
Estimation . The IEEE International Conference on Computer 
Vision (ICCV) 2019. 
    
   
    125 
     DTF_SENSE  5.90 % 
      6.41 % 
      5.99 % 
     100.00 % 
     0.76 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    R. Schuster, C. Unger and D. Stricker:  A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021. 
    
   
    126 
     PWC-Net code  6.14 % 
      5.98 % 
      6.12 % 
     100.00 % 
     0.03 s 
     NVIDIA Pascal Titan X 
      
   
    D. Sun, X. Yang, M. Liu and J. Kautz:  PWC-Net: CNNs for Optical 
Flow Using Pyramid, Warping, and Cost Volume . CVPR 2018. 
    
   
    127 
     OSF code  4.21 % 
     15.49 % 
      6.26 % 
     100.00 % 
     50 min 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    M. Menze and A. Geiger:  Object Scene Flow for Autonomous Vehicles . Conference on Computer Vision and Pattern Recognition (CVPR) 2015. 
    
   
    128 
     CoT-AMFlow  5.83 % 
      8.30 % 
      6.28 % 
     100.00 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Wang, R. Fan and M. Liu:  CoT-AMFlow: Adaptive Modulation Network 
with Co-Teaching Strategy for Unsupervised Optical 
Flow Estimation . Conference on Robot Learning (CoRL) 2020. 
    
   
    129 
     ADFactory code  6.13 % 
      8.35 % 
      6.54 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    H. Ling, Q. Sun, Y. Sun, X. Xu and X. Li:  ADFactory: An Effective Framework for 
Generalizing Optical Flow with NeRF . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition 2024. 
    
   
    130 
     MDFlow  5.72 % 
     10.34 % 
      6.56 % 
     100.00 % 
     0.03 s 
     NVIDIA GTX 1080 Ti 
      
   
    L. Kong and J. Yang:  MDFlow: Unsupervised Optical Flow Learning 
by Reliable Mutual Knowledge Distillation . IEEE Transactions on Circuits and Systems 
for Video Technology 2022. 
    
   
    131 
     FastFlowNet code  6.29 % 
      7.78 % 
      6.56 % 
     100.00 % 
     0.01 s 
     NVIDIA GTX 1080 Ti 
      
   
    L. Kong, C. Shen and J. Yang:  FastFlowNet: A Lightweight Network for Fast 
Optical Flow Estimation . 2021 IEEE International Conference on 
Robotics and Automation (ICRA) 2021. 
    
   
    132 
     Muun-RAFT  5.65 % 
     12.03 % 
      6.81 % 
     100.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    133 
     FlowNet2 code  7.24 % 
      5.60 % 
      6.94 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (C/C++) 
      
   
    E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox:  FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks . IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017. 
    
   
    134 
     VCN_RVC code  5.33 % 
     14.97 % 
      7.08 % 
     100.00 % 
     0.36 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    G. Yang and D. Ramanan:  Volumetric Correspondence Networks for
Optical Flow . NeurIPS 2019. 
    
   
    135 
     DWARF  6.67 % 
     10.11 % 
      7.29 % 
     100.00 % 
     0.14s - 1.43s 
     TitanXP - JetsonTX2 
      
   
    F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia:  Learning end-to-end scene flow by 
distilling single tasks knowledge . Thirty-Fourth AAAI Conference on 
Artificial Intelligence (AAAI-20) 2020. 
    
   
    136 
     CNNF+PMBP  5.64 % 
     14.96 % 
      7.33 % 
     100.00 % 
     45 min 
     1 cores @ 3.5 Ghz (C/C++) 
      
   
    F. Zhang and B. Wah:  Fundamental Principles on Learning New 
Features for Effective Dense Matching . IEEE Transactions on Image 
Processing 2018. 
    
   
    137 
     MDFlow-Fast  6.42 % 
     11.90 % 
      7.42 % 
     100.00 % 
     0.01 s 
     NVIDIA GTX 1080 Ti 
      
   
    L. Kong and J. Yang:  MDFlow: Unsupervised Optical Flow Learning 
by Reliable Mutual Knowledge Distillation . IEEE Transactions on Circuits and Systems 
for Video Technology 2022. 
    
   
    138 
     MirrorFlow code  6.24 % 
     12.95 % 
      7.46 % 
     100.00 % 
     11 min 
     4 core @ 2.2 Ghz (C/C++) 
      
   
    J. Hur and S. Roth:  MirrorFlow: Exploiting Symmetries 
in Joint Optical Flow and Occlusion Estimation . ICCV 2017. 
    
   
    139 
     UnFlow code  6.38 % 
     12.36 % 
      7.46 % 
     100.00 % 
     0.12 s 
     GPU @ 1.5 Ghz (Python + C/C++) 
      
   
    S. Meister, J. Hur and S. Roth:  UnFlow: Unsupervised Learning of Optical 
Flow with a Bidirectional Census Loss . AAAI 2018. 
    
   
    140 
     ContinualFlow_ROB  5.90 % 
     14.99 % 
      7.55 % 
     100.00 % 
     0.15 s 
     GPU - NVidia 1080Ti 
      
   
    M. Neoral, J. Šochman and J. Matas:  Continual Occlusions and Optical Flow 
Estimation . 14th Asian Conference on Computer 
Vision (ACCV) 2018. 
    
   
    141 
     PWC-Net_RVC code  7.12 % 
     10.29 % 
      7.69 % 
     100.00 % 
     0.03 s 
     NVIDIA Pascal Titan X 
      
   
    D. Sun, X. Yang, M. Liu and J. Kautz:  PWC-Net: CNNs for Optical Flow 
Using Pyramid, Warping, and Cost Volume . CVPR 2018. 
    
   
    142 
     NccFLow  6.43 % 
     14.67 % 
      7.93 % 
     100.00 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    G. Wang, S. Ren and H. Wang:  NccFlow: Unsupervised Learning of Optical 
Flow With Non-occlusion from Geometry . arXiv preprint arXiv:2107.03610 2021. 
    
   
    143 
     SDF  5.75 % 
     18.38 % 
      8.04 % 
     100.00 % 
     TBA 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    M. Bai*, W. Luo*, K. Kundu and R. Urtasun:  Exploiting Semantic Information and Deep 
Matching for Optical Flow . ECCV 2016. 
    
   
    144 
     Flow2Stereo  6.84 % 
     13.46 % 
      8.04 % 
     100.00 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    P. Liu, I. King, M. Lyu and J. Xu:  Flow2Stereo: Effective Self-Supervised 
Learning of Optical Flow and Stereo Matching . CVPR 2020. 
    
   
    145 
     UnsupSimFlow code  7.06 % 
     13.36 % 
      8.21 % 
     100.00 % 
     0.03 s 
     8 cores @ 3.0 Ghz (Python + C/C++) 
      
   
    W. Im, T. Kim and S. Yoon:  Unsupervised Learning of Optical Flow 
with Deep Feature Similarity . The European Conference on Computer 
Vision (ECCV) 2020. 
    
   
    146 
     Self-SuperFlow-ft  6.82 % 
     15.27 % 
      8.36 % 
     100.00 % 
     0.13 s 
     GTX 1080 Ti 
      
   
    K. Bendig, R. Schuster and D. Stricker:  Self-SuperFlow: Self-supervised Scene Flow Prediction in 
Stereo Sequences . International Conference on Image Processing (ICIP) 2022. 
    
   
    147 
     UFlow code  7.01 % 
     14.75 % 
      8.41 % 
     100.00 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    R. Jonschkowski, A. Stone, J. Barron, A. Gordon, K. Konolige and A. Angelova:  What Matters in Unsupervised Optical 
Flow . ECCV 2020. 
    
   
    148 
     Mono-SF  6.67 % 
     16.48 % 
      8.45 % 
     100.00 % 
     41 s 
     1 core @ 3.5 Ghz (Matlab + C/C++) 
      
   
    F. Brickwedde, S. Abraham and R. Mester:  Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes . Proc. of International Conference on Computer Vision (ICCV) 2019. 
    
   
    149 
     PWOC-3D code  7.70 % 
     11.96 % 
      8.47 % 
     100.00 % 
     0.13 s 
     GTX 1080 Ti 
      
   
    R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker:  PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation . Intelligent Vehicles Symposium (IV) 2019. 
    
   
    150 
     FlowFields++ code  7.31 % 
     13.83 % 
      8.49 % 
     100.00 % 
     29 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker:  FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation . International Conference on Image Processing (ICIP) 2018. 
    
   
    151 
     DFF  8.55 % 
      8.98 % 
      8.63 % 
     100.00 % 
     0.8 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    152 
     Multi-Mono-SF-ft code  7.54 % 
     14.05 % 
      8.72 % 
     100.00 % 
     0.06 s 
     NVIDIA GTX 1080 Ti 
      
   
    J. Hur and S. Roth:  Self-Supervised Multi-Frame 
Monocular Scene Flow . CVPR 2021. 
    
   
    153 
     MR-Flow code  6.86 % 
     17.91 % 
      8.86 % 
     100.00 % 
     8 min 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
   
    J. Wulff, L. Sevilla-Lara and M. Black:  Optical Flow in Mostly Rigid Scenes . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2017. 
    
   
    154 
     DTF_PWOC  7.37 % 
     16.42 % 
      9.01 % 
     100.00 % 
     0.38 s 
     RTX 2080 Ti 
      
   
    R. Schuster, C. Unger and D. Stricker:  A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021. 
    
   
    155 
     SFF++  7.97 % 
     14.10 % 
      9.08 % 
     100.00 % 
     78 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
   
    R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker:  SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation . International Journal of Computer Vision (IJCV) 2019. 
    
   
    156 
     FSF+MS  6.53 % 
     20.72 % 
      9.11 % 
     100.00 % 
     2.7 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
   
    T. Taniai, S. Sinha and Y. Sato:  Fast Multi-frame Stereo Scene Flow 
with Motion Segmentation . IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR 2017) 2017. 
    
   
    157 
     JFS  7.85 % 
     14.97 % 
      9.14 % 
     100.00 % 
     13 min 
     1 core @ 3.2 Ghz (C/C++) 
      
   
    J. Hur and S. Roth:  Joint Optical Flow and Temporally 
Consistent Semantic Segmentation . ECCV Workshops 2016. 
    
   
    158 
     FF++_ROB  7.82 % 
     15.33 % 
      9.18 % 
     100.00 % 
     29 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker:  FlowFields++: Accurate Optical Flow Correspondences Meet Robust Interpolation . International Conference on Image Processing (ICIP) 2018. 
    
   
    159 
     ImpPB+SPCI code  7.70 % 
     16.25 % 
      9.25 % 
     100.00 % 
     60 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    T. Schuster, L. Wolf and D. Gadot:  Optical Flow Requires Multiple Strategies 
(but only one network) . CVPR 2017. 
    
   
    160 
     SfM-PM  6.94 % 
     19.94 % 
      9.30 % 
     100.00 % 
     69 s 
     3 cores @ 3.6 Ghz (C/C++) 
      
   
    D. Maurer, N. Marniok, B. Goldluecke and A. Bruhn:  Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimation . ECCV 2018. 
    
   
    161 
     PR-Sceneflow code  6.94 % 
     20.24 % 
      9.36 % 
     100.00 % 
     150 s 
     4 core @ 3.0 Ghz (Matlab + C/C++) 
      
   
    C. Vogel, K. Schindler and S. Roth:  Piecewise Rigid Scene Flow . ICCV 2013. 
    
   
    162 
     DDFlow+LCV  7.83 % 
     16.31 % 
      9.37 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    T. Xiao, J. Yuan, D. Sun, Q. Wang, X. Zhang, K. Xu and M. Yang:  Learnable Cost Volume using the 
Cayley Representation . Proceedings of the European 
Conference on Computer Vision (ECCV) 2020. 
    
   
    163 
     DDFlow  7.95 % 
     16.77 % 
      9.55 % 
     100.00 % 
     0.06 s 
     GPU @ >3.5 Ghz (Python + C/C++) 
      
   
    P. Liu, I. King, M. Lyu and J. Xu:  DDFlow: Learning Optical Flow with Unlabeled 
Data Distillation . AAAI 2019. 
    
   
    164 
     SelFlow  7.73 % 
     18.34 % 
      9.65 % 
     100.00 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    P. Liu, M. Lyu, I. King and J. Xu:  SelFlow: Self-Supervised Learning of Optical 
Flow . CVPR 2019. 
    
   
    165 
     EMR-MSF  7.78 % 
     19.25 % 
      9.86 % 
     100.00 % 
     0.25 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    Z. Jiang and M. Okutomi:  EMR-MSF: Self-Supervised Recurrent 
Monocular Scene Flow Exploiting Ego-Motion 
Rigidity . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2023. 
    
   
    166 
     SOF code  8.11 % 
     18.16 % 
      9.93 % 
     100.00 % 
     6 min 
     1 core @ 2.5 Ghz (Matlab) 
      
   
    L. Sevilla-Lara, D. Sun, V. Jampani and M. Black:  Optical Flow with Semantic Segmentation and 
Localized Layers . CVPR 2016. 
    
   
    167 
     ProFlow  8.44 % 
     17.90 % 
     10.15 % 
     100.00 % 
     112 s 
     GPU+CPU @ 3.6 Ghz (Python + C/C++) 
      
   
    D. Maurer and A. Bruhn:  ProFlow: Learning to Predict Optical Flow . BMVC 2018. 
    
   
    168 
     DCFlow code  8.04 % 
     19.84 % 
     10.18 % 
     100.00 % 
     8.6 s 
     GPU @ 3.0 Ghz (Matlab + C/C++) 
      
   
    J. Xu, R. Ranftl and V. Koltun:  Accurate  Optical Flow via Direct 
Cost Volume Processing . CVPR 2017. 
    
   
    169 
     FlowFieldCNN  8.91 % 
     16.06 % 
     10.21 % 
     100.00 % 
     23 s 
     GPU/CPU 4 core @ 3.5 Ghz (C/C++) 
      
   
    C. Bailer, K. Varanasi and D. Stricker:  CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss . CVPR 2017. 
    
   
    170 
     RicFlow  9.27 % 
     14.88 % 
     10.29 % 
     100.00 % 
     5 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    Y. Hu, Y. Li and R. Song:  Robust Interpolation of Correspondences for 
Large Displacement Optical Flow . CVPR 2017. 
    
   
    171 
     SPS+FF++ code  9.09 % 
     15.91 % 
     10.33 % 
     100.00 % 
     36 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    R. Schuster, O. Wasenmüller and D. Stricker:  Dense Scene Flow from Stereo Disparity and Optical Flow . ACM Computer Science in Cars Symposium (CSCS) 2018. 
    
   
    172 
     SceneFFields  8.29 % 
     19.85 % 
     10.39 % 
     100.00 % 
     65 s 
     4 cores @ 3.7 Ghz (C/C++) 
      
   
    R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker:  SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences . IEEE Winter Conference on Applications of Computer Vision (WACV) 2018. 
    
   
    173 
     ProFlow_ROB  8.56 % 
     18.71 % 
     10.40 % 
     100.00 % 
     112  s 
     GPU+CPU @ 3.6 Ghz (Python + C/C++) 
      
   
    D. Maurer and A. Bruhn:  ProFlow: Learning to Predict Optical Flow . BMVC 2018. 
    
   
    174 
     DIP-Flow-DF  8.61 % 
     19.25 % 
     10.54 % 
     100.00 % 
     104s 
     2 cores @ 3.6 Ghz (C/C++) 
      
   
    D. Maurer, M. Stoll and A. Bruhn:  Directional Priors for Multi-Frame Optical Flow . BMVC 2018. 
    
   
    175 
     DF+OIR  8.73 % 
     19.18 % 
     10.63 % 
     100.00 % 
     3 min 
     1 core @ 3.5 Ghz (Matlab + C/C++) 
      
   
    D. Maurer, M. Stoll and A. Bruhn:  Order-Adaptive and Illumination Aware Variational Optical Flow Refinement . BMVC 2017. 
    
   
    176 
     RAFT-MSF++  7.02 % 
     27.89 % 
     10.81 % 
     100.00 % 
     0.09 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    177 
     Self-Mono-SF-ft code 10.13 % 
     14.04 % 
     10.84 % 
     100.00 % 
     0.09 s 
     NVIDIA GTX 1080 Ti 
      
   
    J. Hur and S. Roth:  Self-Supervised Monocular Scene 
Flow Estimation . CVPR 2020. 
    
   
    178 
     FlowFields+  9.69 % 
     16.82 % 
     10.98 % 
     100.00 % 
     28s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    C. Bailer, B. Taetz and D. Stricker:  Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation . . 
    
   
    179 
     PGM-G  9.24 % 
     19.06 % 
     11.02 % 
     100.00 % 
     5.05 s 
     1 core @ 3.1 Ghz (C/C++) 
      
   
    Y. Li:  Pyramidal Gradient Matching for 
Optical Flow Estimation . CoRR 2017. 
    
   
    180 
     CSF  8.72 % 
     22.38 % 
     11.20 % 
     100.00 % 
     80 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert:  A Continuous Optimization Approach for 
Efficient and Accurate Scene Flow . European Conf. on Computer Vision 
(ECCV) 2016. 
    
   
    181 
     DiscreteFlow code  9.96 % 
     17.03 % 
     11.25 % 
     100.00 % 
     3 min 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
   
    M. Menze, C. Heipke and A. Geiger:  Discrete Optimization for Optical Flow . German Conference on Pattern 
Recognition (GCPR) 2015. 
    
   
    182 
     DIP-Flow-CPM  9.35 % 
     19.89 % 
     11.26 % 
     100.00 % 
     52 s 
     2 core @ 3.6 Ghz (C/C++) 
      
   
    D. Maurer, M. Stoll and A. Bruhn:  Directional Priors for Multi-Frame Optical Flow . BMVC 2018. 
    
   
    183 
     HCSH  9.39 % 
     22.05 % 
     11.69 % 
     100.00 % 
     3.5 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    J. Fan, Y. Wang and L. Guo:  Hierarchical coherency sensitive hashing and interpolation with 
RANSAC for large displacement optical flow . Computer Vision and Image Understanding 2018. 
    
   
    184 
     SGM&FlowFie+ 10.38 % 
     17.97 % 
     11.75 % 
     91.79 % 
     29 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker:  Combining Stereo Disparity and Optical Flow for Basic Scene Flow . Commercial Vehicle Technology Symposium (CVTS) 2018. 
    
   
    185 
     PatchBatch code 10.06 % 
     22.29 % 
     12.28 % 
     100.00 % 
     50 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    D. Gadot and L. Wolf:  PatchBatch: a Batch Augmented Loss for 
Optical Flow . The IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) 2016. 
    
   
    186 
     DDF code 10.44 % 
     21.32 % 
     12.41 % 
     100.00 % 
     ~1 min 
     GPU @ 2.5 Ghz (C/C++) 
      
   
    F. G\"uney and A. Geiger:  Deep Discrete Flow . Asian Conference on Computer Vision 
(ACCV) 2016. 
    
   
    187 
     UJG code 11.21 % 
     20.08 % 
     12.82 % 
     100.00 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    J. Li, J. Zhao, S. Song and T. Feng:  Unsupervised Joint Learning of Depth, 
Optical Flow, Ego-motion from Video . arXiv preprint arXiv:2105.14520 2021. 
    
   
    188 
     Self-SuperFlow 11.18 % 
     24.17 % 
     13.54 % 
     100.00 % 
     0.13 s 
     GTX 1080 Ti 
      
   
    K. Bendig, R. Schuster and D. Stricker:  Self-SuperFlow: Self-supervised Scene Flow Prediction in 
Stereo Sequences . International Conference on Image Processing (ICIP) 2022. 
    
   
    189 
     IntrpNt-df code 11.67 % 
     22.09 % 
     13.56 % 
     100.00 % 
     3 min 
     GPU @ 2.5 Ghz (Python) 
      
   
    S. Zweig and L. Wolf:  InterpoNet, a Brain Inspired Neural 
Network for Optical Flow Dense Interpolation . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2017. 
    
   
    190 
     SegFlow(d0=3) 12.41 % 
     19.39 % 
     13.68 % 
     100.00 % 
     6.6 s 
     1 core @ >3.5 Ghz (C/C++) 
      
   
    J. Chen, Z. Cai, J. Lai and X. Xie:  Efficient Segmentation-based PatchMatch for 
Large displacement Optical 
Flow Estimation . IEEE TCSVT 2018. 
    
   
    191 
     Multi-Mono-SF code 11.72 % 
     22.83 % 
     13.74 % 
     100.00 % 
     0.06 s 
     NVIDIA GTX 1080 Ti 
      
   
    J. Hur and S. Roth:  Self-Supervised Multi-Frame 
Monocular Scene Flow . CVPR 2021. 
    
   
    192 
     PCOF-LDOF  9.24 % 
     34.40 % 
     13.80 % 
     100.00 % 
     50 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais:  A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo . German Conference on Pattern Recognition 2016. 
    
   
    193 
     CPM-Flow code 12.77 % 
     18.71 % 
     13.85 % 
     100.00 % 
     4.2 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    Y. Hu, R. Song and Y. Li:  Efficient Coarse-to-Fine PatchMatch for 
Large 
Displacement Optical Flow . CVPR 2016. 
    
   
    194 
     Back2FutureFlow(UFO) code 12.49 % 
     20.00 % 
     13.85 % 
     100.00 % 
     0.12 s 
     GPU @ 2.5 Ghz (LUA/Torch) 
      
   
    J. Janai, F. Güney, A. Ranjan, M. Black and A. Geiger:  Unsupervised Learning of Multi-Frame Optical Flow with Occlusions . Proc. of the European Conf. on Computer Vision (ECCV) 2018. 
    
   
    195 
     OmegaNet 11.14 % 
     26.10 % 
     13.86 % 
     100.00 % 
     0.01 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    F. Tosi, F. Aleotti, P. Ramirez, M. Poggi, S. Salti, L. Di Stefano and S. Mattoccia:  Distilled semantics for comprehensive scene understanding from videos . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2020. 
    
   
    196 
     IntrpNt-cpm code 12.10 % 
     22.73 % 
     14.03 % 
     100.00 % 
     5.6 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    S. Zweig and L. Wolf:  InterpoNet, a Brain Inspired Neural 
Network for Optical Flow Dense Interpolation . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2017. 
    
   
    197 
     HiLM code 13.32 % 
     17.45 % 
     14.07 % 
     100.00 % 
     8 sec 
     P6000 (C/C++) 
      
   
    M. Fathy, Q. Tran, M. Zia, P. Vernaza and M. Chandraker:  Hierarchical Metric Learning and Matching for 2D and 3D Geometric Correspondences . European Conference on Computer Vision (ECCV) 2018. 
    
   
    198 
     SPM-BP 12.86 % 
     20.33 % 
     14.22 % 
     100.00 % 
     10 s 
     2 cores @ 2.5 Ghz (C/C++) 
      
   
    Y. Li, D. Min, M. Brown, M. Do and J. Lu:  SPM-BP: Sped-up PatchMatch Belief Propagation for 
Continuous MRFs . Proceedings of the IEEE International 
Conference on Computer Vision 2015. 
    
   
    199 
     FullFlow 12.97 % 
     20.58 % 
     14.35 % 
     100.00 % 
     4 min 
     4 cores @ >3.5 Ghz (Matlab and C++) 
      
   
    Q. Chen and V. Koltun:  Full Flow: Optical Flow Estimation By 
Global Optimization over Regular Grids . CVPR 2016. 
    
   
    200 
     IntrpNt-dm code 12.88 % 
     22.41 % 
     14.61 % 
     100.00 % 
     15 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    S. Zweig and L. Wolf:  InterpoNet, a Brain Inspired Neural 
Network for Optical Flow Dense Interpolation . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2017. 
    
   
    201 
     SGM+SF 13.36 % 
     21.78 % 
     14.89 % 
     100.00 % 
     45 min 
     16 core @ 3.2 Ghz (C/C++) 
      
   
    H. Hirschmüller:  Stereo Processing by Semiglobal Matching 
and Mutual Information . PAMI 2008. SphereFlow: 6 
DoF Scene Flow from RGB-D Pairs . CVPR 2014. 
    
   
    202 
     EPC++ (stereo) 13.24 % 
     22.70 % 
     14.96 % 
     100.00 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia and A. Yuille:  Every Pixel Counts ++: Joint Learning of 
Geometry and Motion with 3D Holistic Understanding . IEEE transactions on pattern analysis and 
machine intelligence 2019. 
    
   
    203 
     PPM code 15.09 % 
     18.91 % 
     15.78 % 
     100.00 % 
     17.3 s 
     1 core @ 2.5 Ghz (C/Chttps://github.c++) 
      
   
    F. Kuang:  PatchMatch algorithms for motion 
estimation and stereo reconstruction . 2017. 
    
   
    204 
     SODA-Flow 13.93 % 
     25.45 % 
     16.02 % 
     100.00 % 
     96 s 
     2 cores @ 3.5 Ghz (C/C++) 
      
   
    D. Maurer, M. Stoll, S. Volz, P. Gairing and A. Bruhn:  A Comparison of Isotropic and Anisotropic Second Order Regularisers for Optical Flow . SSVM 2017. 
    
   
    205 
     OAR-Flow 14.33 % 
     24.03 % 
     16.09 % 
     100.00 % 
     100 s 
     2 cores @ 3.5 Ghz (C/C++) 
      
   
    D. Maurer, M. Stoll and A. Bruhn:  Order-Adaptive Regularisation for Variational Optical Flow: Global, Local and in Between . SSVM 2017. 
    
   
    206 
     MotionSLIC code  6.19 % 
     63.03 % 
     16.50 % 
     100.00 % 
     30 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
   
    K. Yamaguchi, D. McAllester and R. Urtasun:  Robust Monocular Epipolar Flow Estimation . CVPR 2013. 
    
   
    207 
     EpicFlow code 15.00 % 
     24.34 % 
     16.69 % 
     100.00 % 
     15 s 
     1 core @ >3.5 Ghz (C/C++) 
      
   
    J. Revaud, P. Weinzaepfel, Z. Harchaoui and C. Schmid:  EpicFlow: Edge-Preserving
Interpolation of Correspondences for Optical
Flow . CVPR 2015 - IEEE Conference on
Computer Vision \& Pattern Recognition 2015. 
    
   
    208 
     Self-Mono-SF code 15.98 % 
     20.85 % 
     16.86 % 
     100.00 % 
     0.09 s 
     NVIDIA GTX 1080 Ti 
      
   
    J. Hur and S. Roth:  Self-Supervised Monocular Scene 
Flow Estimation . CVPR 2020. 
    
   
    209 
     3DFlow 15.13 % 
     25.02 % 
     16.92 % 
     100.00 % 
     448s 
      Matlab with embedded C++ code 
      
   
    J. Chen, Z. Cai, J. Lai and X. Xie:  A Filtering Based Framework for Optical 
Flow Estimation . IEEE TCSVT 2018. 
    
   
    210 
     DeepFlow code 16.47 % 
     26.80 % 
     18.35 % 
     100.00 % 
     17 s 
     1 core @ >3.5 Ghz (Python + C/C++) 
      
   
    P. Weinzaepfel, J. Revaud, Z. Harchaoui and C. Schmid:  DeepFlow: Large displacement optical
flow with deep matching . IEEE Intenational Conference on
Computer Vision (ICCV) 2013. 
    
   
    211 
     PCOF + ACTF  9.77 % 
     57.63 % 
     18.45 % 
     100.00 % 
     0.08 s 
     GPU @ 2.0 Ghz (C/C++) 
      
   
    M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais:  A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo . German Conference on Pattern Recognition 2016. 
    
   
    212 
     SegFlow(d0=11) 19.02 % 
     18.05 % 
     18.84 % 
     100.00 % 
     4.5 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    J. Chen, Z. Cai, J. Lai and X. Xie:  Efficient Segmentation-based PatchMatch for 
Large displacement Optical 
Flow Estimation . IEEE TCSVT 2018. 
    
   
    213 
     DMF_ROB code 19.32 % 
     25.60 % 
     20.46 % 
     100.00 % 
     150 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    P. Weinzaepfel, J. Revaud, Z. Harchaoui and C. Schmid:  DeepFlow: Large displacement optical flow with deep matching . ICCV - IEEE International Conference on Computer Vision 2013. 
    
   
    214 
     IIOF-NLDP 19.40 % 
     28.20 % 
     20.99 % 
     100.00 % 
     350 s 
     4 cores @ 3.5 Ghz (Matlab + C/C++) 
      
   
    D. Trinh, W. Blondel and C. Daul:  A General Form of Illumination-
Invariant Descriptors in Variational Optical Flow 
Estimation . IEEE Int. Conf. on Image 
Processing (ICIP) 2017. 
    
   
    215 
     CPNFlow 23.41 % 
     23.39 % 
     23.40 % 
     100.00 % 
     0.1 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    Y. Yang and S. Soatto:  Conditional prior networks for optical flow . Proceedings of the European Conference on Computer 
Vision (ECCV) 2018. 
    
   
    216 
     SGM+C+NL code 23.03 % 
     38.80 % 
     25.89 % 
     99.90 % 
     4.5 min 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    H. Hirschmüller:  Stereo Processing by Semiglobal Matching and Mutual Information . PAMI 2008. A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them . IJCV 2013. 
    
   
    217 
     3DG-DVO 20.62 % 
     52.74 % 
     26.44 % 
     100.00 % 
     0.04 s 
     GPU @ 1.5 Ghz (Python) 
      
   
     
   
    218 
     SPyNet code 23.64 % 
     40.58 % 
     26.71 % 
     100.00 % 
     0.16 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    A. Ranjan and M. Black:  Optical Flow Estimation using a 
Spatial Pyramid Network . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 2017. 
    
   
    219 
     DWBSF 30.13 % 
     26.68 % 
     29.50 % 
     100.00 % 
     7 min 
     4 cores @ 3.5 Ghz (C/C++) 
      
   
    C. Richardt, H. Kim, L. Valgaerts and C. Theobalt:  Dense Wide-Baseline Scene Flow 
From Two Handheld Video Cameras . 3DV 2016. 
    
   
    220 
     SGM+LDOF code 30.41 % 
     27.62 % 
     29.90 % 
     99.94 % 
     86 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    H. Hirschmüller:  Stereo Processing by Semiglobal Matching and Mutual Information . PAMI 2008. Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation . PAMI 2011. 
    
   
    221 
     HS code 30.49 % 
     48.25 % 
     33.71 % 
     100.00 % 
     2.6 min 
     1 core @ 3.0 Ghz (Matlab) 
      
   
    D. Sun, S. Roth and M. Black:  A Quantitative Analysis of Current
Practices in Optical Flow Estimation
and The Principles Behind Them . 2014. 
    
   
    222 
     GCSF code 38.12 % 
     37.77 % 
     38.05 % 
     100.00 % 
     2.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Cech, J. Sanchez-Riera and R. Horaud:  Scene Flow Estimation by growing Correspondence Seeds . CVPR 2011. 
    
   
    223 
     DB-TV-L1 code 38.67 % 
     44.94 % 
     39.81 % 
     100.00 % 
     16 s 
     1 core @ 2.5 Ghz (Matlab) 
      
   
    C. Zach, T. Pock and H. Bischof:  A Duality Based Approach for Realtime TV-
L1 Optical Flow . DAGM 2007. 
    
   
    224 
     VSF code 41.15 % 
     41.85 % 
     41.28 % 
     100.00 % 
     125 min 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    F. Huguet and F. Devernay:  A Variational Method for Scene Flow Estimation from Stereo Sequences . ICCV 2007. 
    
   
    225 
     HAOF code 41.52 % 
     47.66 % 
     42.63 % 
     100.00 % 
     16.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    T. Brox, A. Bruhn, N. Papenberg and J. Weickert:  High accuracy optical flow estimation
based on a theory for warping . ECCV 2004. 
    
   
    226 
     TVL1_ROB code 42.85 % 
     47.99 % 
     43.79 % 
     100.00 % 
     3 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
   
    J. Sánchez Pérez, E. Meinhardt-Llopis and G. Facciolo:  TV-L1 Optical Flow Estimation . Image Processing On Line 2013. 
    
   
    227 
     PolyExpand 43.77 % 
     55.90 % 
     45.97 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    G. Farneback:  Two-Frame Motion Estimation Based on Polynomial Expansion . SCIA 2003. 
    
   
    228 
     CU-Model 54.59 % 
     59.36 % 
     55.46 % 
     100.00 % 
     0.99 s 
     GPU @ 1.5 Ghz (Python) 
      
   
     
   
    229 
     H+S_ROB code 62.55 % 
     74.96 % 
     64.80 % 
     100.00 % 
     8 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
   
    E. Meinhardt-Llopis, J. Sánchez Pérez and D. Kondermann:  Horn-Schunck Optical Flow with a Multi-Scale Strategy . Image Processing On Line 2013. 
    
   
    230 
     Stereo-RSSF code 65.47 % 
     71.92 % 
     66.64 % 
     10.75 % 
     2.5 s 
     8 core @ 2.5 Ghz (Matlab) 
      
   
    E. Salehi, A. Aghagolzadeh and R. Hosseini:  Stereo-RSSF: stereo robust sparse scene-flow estimation . The Visual Computer 2023. 
    
   
    231 
     Pyramid-LK code 66.72 % 
     75.32 % 
     68.28 % 
     100.00 % 
     1.5 min 
     1 core @ 2.5 Ghz (Matlab) 
      
   
    J. Bouguet:  Pyramidal implementation of the Lucas
Kanade feature tracker . Intel 2000. 
    
   
    232 
     MEDIAN 85.07 % 
     92.33 % 
     86.39 % 
     99.92 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    233 
     AVERAGE 86.38 % 
     91.57 % 
     87.32 % 
     99.92 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++)