Our evaluation table ranks all methods according to the confidence weighted mean intersection-over-union (mIoU). The weighted IoU of one class can be defined as \(\text{IoU} = \frac{\sum_{i\in{\{\text{TP}\}}}c_{i}}{\sum_{i\in{\{\text{TP, FP, FN}\}}}c_{i}}\) where \(\{\text{TP}\}\) and \(\{\text{TP, FP, FN}\}\) are the set of image pixels in the intersection and the union of the class label, respectively. \(c_i \in [0, 1]\) denotes the confidence value at pixel \(i\). In constrast to standard evaluation where \(c_i=1\) for all pixels, we adopt confidence weighted evaluation metrics leveraging the uncertainty to take into account the ambiguity in our automatically generated annotations.

**mIoU class:**mean Intersection over Union over classes**mIoU category:**mean Intersection over Union over categories