Novel View Synthesis

Novel View Appearance Synthesis (50% Drop Rate)


We select 5 static scenes with a driving distance of ∼ 50 meters each for evaluating NVS at a 50% drop rate. We select one frame every ∼ 0.8 meters driving distance (corresponding to the overall average distance between frames) to avoid redundancy when the vehicle is slow. We release 50% of the frames for training and retain 50% for evaluation. Our evaluation table ranks all methods according to the peak signal-to-noise ratio (PSNR). We also evaluate structural similarity index (SSIM) and perceptual smilarity (LPIPS).

Method Setting Code PSNR SSIM LPIPS Runtime Environment
1 HUGS 23.38 0.870 0.121 0.02 s 1 core @ 2.5 Ghz (C/C++)
2 MVSRegNeRF 22.48 0.829 0.256 2 s 1 core @ 2.5 Ghz (C/C++)
F. Bian, S. Xiong, R. Yi and L. Ma: Multi-view stereo-regulated NeRF for urban scene novel view synthesis. The Visual Computer 2024.
3 PointNeRF++ code 22.44 0.828 0.212 20 s 1 core @ 2.5 Ghz (C/C++)
W. Sun, E. Trulls, Y. Tseng, S. Sambandam, G. Sharma, A. Tagliasacchi and K. Yi: PointNeRF++: A multi-scale, point-based Neural Radiance Field. European Conference on Computer Vision 2024.
4 PNF 22.07 0.820 0.221 15 s GPU @ 2.5 Ghz (Python)
A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. Guibas, A. Tagliasacchi, F. Dellaert and T. Funkhouser: Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation. CVPR 2022.
5 mip-NeRF code 21.54 0.778 0.365 10 s 1 core @ 2.5 Ghz (Python)
J. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla and P. Srinivasan: Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. ICCV 2021.
6 NeRF
This method uses stereo information.
code 21.18 0.779 0.343 10 s 1 core @ 2.5 Ghz (Python)
B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi and R. Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020.
7 FVS code 20.00 0.790 0.193 0.2 s 1 core @ 2.5 Ghz (C/C++)
G. Riegler and V. Koltun: Free View Synthesis. ECCV 2020.
8 PBNR code 19.91 0.811 0.191 0.1 s 1 core @ 2.5 Ghz (C/C++)
G. Kopanas, J. Philip, T. Leimkühler and G. Drettakis: Point-Based Neural Rendering with Per-View Optimization. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 2021.
9 Point-NeRF code 19.44 0.796 0.266 1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli and U. Neumann: Point-nerf: Point-based neural radiance fields. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022.
10 PCL
This method uses stereo information.
12.81 0.576 0.549 0.2 s 1 core @ 2.5 Ghz (C/C++)
Y. Liao, J. Xie and A. Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. ARXIV 2021.
Table as LaTeX | Only published Methods





eXTReMe Tracker