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Figure 1. 3D Dense Reconstruction and Rendering from Different SLAM Systems. On the Replica dataset [50], we compare to dense
RGB-D SLAM method NICE-SLAM [75], and monocular SLAM approaches COLMAP [47], DROID-SLAM [58], and our proposed
NICER-SLAM.

Abstract

Neural implicit representations have recently become
popular in simultaneous localization and mapping (SLAM),
especially in dense visual SLAM. However, existing works
either rely on RGB-D sensors or require a separate monoc-
ular SLAM approach for camera tracking, and fail to pro-
duce high-fidelity 3D dense reconstructions. To address
these shortcomings, we present NICER-SLAM, a dense
RGB SLAM system that simultaneously optimizes for cam-
era poses and a hierarchical neural implicit map repre-
sentation, which also allows for high-quality novel view
synthesis. To facilitate the optimization process for map-
ping, we integrate additional supervision signals includ-
ing easy-to-obtain monocular geometric cues and optical
flow, and also introduce a simple warping loss to further
enforce geometric consistency. Moreover, to further boost
performance in complex large-scale scenes, we also pro-
pose a local adaptive transformation from signed distance
functions (SDFs) to density in the volume rendering equa-
tion. On multiple challenging indoor and outdoor datasets,
NICER-SLAM demonstrates strong performance in dense
mapping, novel view synthesis, and tracking, even com-
petitive with recent RGB-D SLAM systems. Project page:
https://nicer-slam.github.io/ .

1. Introduction

Simultaneous localization and mapping (SLAM) is a funda-
mental computer vision problem with wide applications in
autonomous driving, robotics, mixed reality, and more. Nu-
merous dense visual SLAM methods have been developed
over the years [35, 36, 48, 62, 63], offering real-time dense
reconstructions of indoor scenes. However, most of these
approaches rely on RGB-D sensors and fail on outdoor
scenes or when depth sensors are not available. Moreover,
these systems struggle with estimating plausible geome-
try in unobserved regions. A handful of dense monocular
SLAM systems [2, 9, 73] have emerged in the deep learning
era, taking sorely RGB sequences as input. They leverage
their monocular depth prediction networks to somewhat fill
in unobserved regions. Nevertheless, these systems are typ-
ically only applicable to small indoor scenes with limited
camera movements.

The rapid advancements in neural implicit representa-
tions or neural fields [65] have demonstrated powerful per-
formance in end-to-end differentiable dense visual SLAM.
iMAP [53] first shows the potential of neural implicit rep-
resentations in dense RGB-D SLAM, but it is only limited
to room-size datasets. NICE-SLAM [75] introduces a hier-
archical implicit encoding to perform mapping and camera
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tracking in much larger indoor scenes. Although follow-up
works [20, 23, 27, 31, 40, 67] build upon NICE-SLAM and
iMAP from different angles, these methods still rely heav-
ily on the depth input from RGB-D sensors, limiting their
applicability to outdoor scenes.

Very recently, a handful of concurrent works (available
as pre-prints) attempt to apply neural implicit representa-
tions for RGB-only SLAM [7, 46]. However, their tracking
and mapping pipelines are independent of each other as they
rely on different scene representations for these tasks. Both
approaches directly depend on the state-of-the-art visual
odometry methods [33, 58] for camera tracking, while us-
ing neural radiance fields (NeRFs) only for mapping. More-
over, they both only output and evaluate the rendered depth
maps and color images, so no dense 3D model of a scene is
produced. This raises an interesting research question:

Can we build a unified dense SLAM system with a neural
implicit scene representation for both tracking and

mapping from a monocular RGB video?

Compared to RGB-D SLAM, RGB-only SLAM is more
challenging for multiple reasons. 1) Depth ambiguity: Of-
ten multiple potential correspondences align well with the
color observations, especially in textureless regions. Hence,
stronger geometric priors are required for both mapping
and tracking optimizations. 2) Harder 3D reconstruction:
The presence of ambiguity causes surface estimation to be
less localized, leading to harder optimization and increased
sampling efforts. 3) Optimization convergence: The opti-
mization is less constrained and more complex - resulting
in slower convergence.

To tackle these challenges, we introduce NICER-SLAM,
an implicit-based RGB SLAM system that is end-to-end op-
timizable for both accurate dense reconstruction and track-
ing in both indoor and outdoor environments. Additionally,
our system also excels in novel view synthesis, but unlike
NeRF, no camera poses (e.g., from separate SfM/SLAM
systems like COLMAP) are required. Our key ideas are
outlined as follows. First, we present coarse-to-fine hierar-
chical feature grids with small MLPs to model SDFs and
colors, which yields detailed 3D reconstructions and high-
fidelity renderings. Second, to facilitate the optimization of
neural implicit map representations, we integrate additional
supervision signals, including easy-to-obtain monocular ge-
ometric cues and optical flow. We also introduce a sim-
ple warping loss to further enhance geometry consistency.
We observe that these regularizations significantly disam-
biguate optimization, enabling our framework to work ro-
bustly with only RGB input. Third, to better fit the sequen-
tial input for large-scale scenes, we propose a locally adap-
tive transformation from SDF to density.
In summary, we make the following contributions:
• We present NICER-SLAM, one of the first dense RGB-

only SLAM that is end-to-end optimizable for both dense
mapping and tracking, and also allows for high-quality
novel view synthesis.

• We introduce a hierarchical neural implicit encoding for
SDF representations, various geometric and motion regu-
larizations, along with a locally adaptive SDF to volume
density transformation. We demonstrate strong perfor-
mances in mapping, and novel view synthesis and track-
ing on both indoor and outdoor datasets, even competitive
with recent RGB-D SLAM methods.

2. Related Work

Dense Visual SLAM. SLAM is an active field in both in-
dustry and academia, especially in the past two decades.
While sparse visual SLAM algorithms [14, 21, 33, 34] es-
timate accurate camera poses and only have sparse point
clouds as the map representation, dense visual SLAM ap-
proaches focus on recovering a dense map of a scene. In
general, dense map representations are categorized as ei-
ther view-centric or world-centric. The first often rep-
resents 3D geometry as depth maps for keyframes, in-
cluding the seminal work DTAM [36], and many follow-
ups [2, 9, 22, 52, 56–59, 73, 74]. On the other hand, world-
centric maps anchor the 3D geometry of a full scene in uni-
form world coordinates and represent as surfels [48, 63] or
occupancies/TSDF values in the voxel grids [3, 11, 35, 38].
Our work also uses a world-centric map representation, but
instead of explicitly representing surfaces, we store latent
codes in multi-resolution voxel grids. This allows us to
not only obtain high-quality geometry at low grid resolu-
tions, but also attain plausible geometry estimation for un-
observed regions.

Neural Implicit-based SLAM. Neural implicit represen-
tations [65] have delivered impressive results in numer-
ous tasks, including reconstruction [4, 18, 28, 29, 37, 41,
43, 68], scene completion [19, 26, 42], novel view synthe-
sis [30, 32, 45, 64, 72], etc. Regarding SLAM-related appli-
cations, some works [1, 6, 8, 25, 61, 70] attempt to jointly
optimize a NeRF and camera poses, but they are limited to
small objects or minor camera movements. A series of re-
cent works [7, 46] relax such constraints, but rely on state-
of-the-art SLAM systems like ORB-SLAM and DROID-
SLAM to obtain camera poses, primarily focusing on novel
view synthesis without producing 3D dense reconstruction.

iMAP [53] and NICE-SLAM [75] are the first two uni-
fied SLAM pipelines using neural implicit representations
for both mapping and camera tracking. iMAP’s applica-
tion is limited to small scenes due to a single MLP as the
scene representation, whereas NICE-SLAM handles much
larger indoor environments using hierarchical feature grids
and tiny MLPs. Many follow-up works improve upon
these two works from various perspectives, including effi-
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Figure 2. System Overview. Our method takes only an RGB stream as input and outputs both the camera poses as well as a learned
hierarchical scene representation for geometry and colors. To realize an end-to-end joint mapping and tracking, we render predicted colors,
depths, normals and optimize wrt. the input RGB and monocular cues. Moreover, we further enforce the geometric consistency with an
RGB warping loss and an optical flow loss.

cient scene representation [20, 23], fast optimziation [67],
add IMU measurements [27], or different shape representa-
tions [31, 40]. However, all of them require RGB-D inputs,
limiting their outdoor applications or when only RGB sen-
sors are accessible. In contrast, given only RGB sequences
as input, our system provides high-quality 3D reconstruc-
tion and accurate camera poses simultaneously.

A concurrent work DIM-SLAM [24] presents a neural
implicit-based RGB SLAM system in a similar spirit to
ours. However, their use of simple color and warping losses
leads to less robust results, requiring per-dataset parameter
tuning and repeated experiment runs to achieve satisfactory
results. In contrast, NICER-SLAM facilitates optimization
by incorporating additional supervision signals, eliminating
the need for any tuning across different datasets. In addi-
tion, this enhancement also enables us to achieve superior
3D reconstruction and novel view synthesis results.

3. Method

We provide an overview of the NICER-SLAM pipeline
in Fig. 2. Taking an RGB video as input, we simultaneously
estimate accurate 3D scene geometry and colors, as well as
camera tracking all through an end-to-end optimization pro-
cess. The scene geometry and appearance are represented
using hierarchical neural implicit representations (Sec. 3.1).
Leveraging the NeRF-like differentiable volume rendering,
we render color, depth, and normal values for every pixel
(Sec. 3.2), they facilitate end-to-end joint optimization for
camera pose, scene geometry, and color (Sec. 3.3).

3.1. Hierarchical Neural Implicit Representations

Coarse-level Geometric Representation. The design of
the coarse-level geometric representation is to efficiently
model the coarse scene geometry (objects without geomet-
ric details) and the scene layout (e.g. walls, floors), even
under partial observations. To achieve this, we represent the
normalized scene as a dense voxel grid with a 32× 32× 32
resolution, and maintain an optimizable 32-dim feature in
each voxel. Given a 3D point x ∈ R3 in the space, we use
a small MLP f coarse with a single 64-dim hidden layer to
determine its base SDF value scoarse ∈ R and a geometric
feature zcoarse ∈ R32 as:

scoarse, zcoarse = f coarse(γ(x),Φcoarse(x)
)
, (1)

where γ is a fixed positional encoding [30, 55] that maps
the coordinate to higher dimension. Following [68, 69, 71],
we set the level for positional encoding to 6. Φcoarse(x) rep-
resents the feature grid Φcoarse tri-linearly interpolated at the
point x.

Fine-level Geometric Representation. Moving be-
yond the coarse-level representation, capturing the high-
frequency geometric details of a scene is vital. We
model these details as residual SDF values, utilizing multi-
resolution feature grids and an MLP decoder [5, 32, 54,
75]. Specifically, we apply multi-resolution dense feature
grids {Φfine

l }L1 with respective resolutions Rl, as detailed
in Eq. (2). These resolutions are sampled in geometric
space [32] to combine features at different frequencies:

Rl := bRminb
lc, b := exp

(
lnRmax − lnRmin

L− 1

)
, (2)



where Rmin, Rmax correspond to the lowest and highest res-
olution, respectively. Here we consider Rmin = 32, Rmax =
128, in total L = 8 levels, with a feature dimension of 4 at
each level.

Now, to model the residual SDF values for a point x, we
extract and concatenate the tri-linearly interpolated features
at each level, and input them to an MLP ffine with 3 hidden
layers of size 64:

( ∆s, zfine ) = ffine(γ(x), {Φfine
l (x)}

)
, (3)

where zfine ∈ R32 is the geometric feature for x at the fine
level. The final predicted SDF value ŝ for x is obtained by
adding the coarse-level base SDF value scoarse to the fine-
level residual SDF ∆s:

ŝ = scoarse + ∆s . (4)

Color Representation. Besides 3D geometry, we also pre-
dict color values such that our mapping and camera track-
ing can be optimized also with color losses. Moreover, as
an additional application, we can also render images from
novel views. Inspired by [32], we encode colors with an-
other multi-resolution feature grid {Φcolor

l }L1 and a decoder
f color parameterized with a 2-layer MLP of size 64. The
number of feature grid levels is now L = 16, with a feature
dimension of 2 at each level. We adjust the minimum and
maximum resolution to Rmin = 16 and Rmax = 2048. The
per-point color value is modelled as:

ĉ = f color(x, n̂, γ(v), zcoarse, zfine, {Φcolor
l (x)}

)
. (5)

where n̂ refers to the normal at point x calculated from ŝ
in Eq. (4) and γ(v) is the viewing direction with positional
encoding with a level of 4, following [69, 71].

3.2. Volume Rendering

Following recent works on implicit-based 3D reconstruc-
tion [39, 60, 69] and dense visual SLAM [53, 75], we opti-
mize our scene representation from Sec. 3.1 using differen-
tiable volume rendering. For rendering a pixel, we cast a ray
r from the camera center o through the pixel along its nor-
malized view direction v. N points are then sampled along
the ray, denoted as xi = o + tiv, and their predicted SDFs
and color values are ŝi and ĉi. We transform the SDFs ŝi to
density values σi as in [69]:

σβ(s) =

{
1
2β exp

(
s
β

)
if s ≤ 0

1
β

(
1− 1

2 exp
(
− s

β

))
if s > 0 ,

(6)

where β ∈ R is a learnable parameter. As in [30], we cal-
culate the color Ĉ for the current ray r as:

Ĉ =

N∑

i=1

Ti αi ĉi Ti =

i−1∏

j=1

(1− αj)

αi = 1− exp (−σiδi) ,

(7)

where Ti and αi correspond to transmittance and alpha
value of sample point i along ray r, and δi is the distance
between neighboring sample points. In a similar manner,
we also compute the depth D̂ and normal N̂ of the surface
intersecting the ray as:

D̂ =

N∑

i=1

Ti αi ti N̂ =

N∑

i=1

Ti αi n̂i . (8)

Locally Adaptive Transformation. The parameter β in
Eq. (6) serves as a modifier of the smoothing amount around
an object’s surface during the volume rendering process.
As the network gains certainty about the object’s surface,
the value of β gradually decreases, leading to sharper and
faster reconstructions. VolSDF [69] models β as a global
parameter for small object-level scenes. However, for our
application involving sequential input within complex in-
door and outdoor scenes, a globally optimizable β proves to
be sub-optimal (ablation study in supplementary).

Instead, we propose to assign β values locally to model
locally adaptive transformation in Eq. (6). More specifi-
cally, we partition the scene into a voxel grid and maintain
a counter to track the number of point samples in it during
mapping. We set the grid size to 643 (see ablation in supple-
mentary). Next, we employ a heuristic approach to convert
the local point counter Tp into the β value:

β = c0 · exp(−c1 · Tp) + c2 . (9)

This transformation was derived by correlating the decreas-
ing trend of β wrt. the voxel count under the setting of
global input as in [69, 71], and fitting an exponential curve.
The curve fitting results are illustrated in the supplemental.

3.3. End-to-End Joint Mapping and Tracking

From purely sequential RGB input, end-to-end joint map-
ping and tracking present significant challenges. This is
due to the high degrees of ambiguity particularly in large
complex scenes with many textureless and sparsely covered
regions. To enable this process under our neural scene rep-
resentation, we propose to constrain the optimization with
the following losses.

RGB Rendering Loss. Eq. (7) connects the 3D neural
scene representation with 2D observations, allowing us to
optimize the scene representation with a simple RGB re-
construction loss:

Lrgb =
∑

r∈R
‖Ĉ(r)− C(r)‖1 , (10)

R are randomly sampled pixels, and C is the pixel color.

RGB Warping Loss. To enforce geometry consistency
from only color inputs, we utilize a simple per-pixel warp-
ing loss. For any pixel in frame m, denoted as rm, we first



render its depth value using Eq. (8) and unproject it to 3D.
We then project it to the nearby keyframe n using intrinsics
and extrinsics of frame n. The projected pixel in frame n is
denoted as rm→n. The warping loss is defined as:

Lwarp =
∑

rm∈R

∑

n∈Km

‖C(rm)− C(rm→n)‖1 , (11)

where Km denotes the keyframe list for the current frame
m, excluding frame m itself. We mask out the pixels that
are projected outside the image boundary of frame n. Note
that unlike [12] that optimize neural implicit surfaces with
patch warping, we observe that simply performing warping
on randomly sampled pixels is more efficient without per-
formance drop.

Optical Flow Loss. The RGB rendering and warping loss
are only point-wise terms that are prone to local minima.
Therefore, we incorporate regional smoothness priors via
optical flow estimates. Suppose the sample pixel in frame
m as rm and the projected pixel as rn, the loss will be:

Lflow =
∑

rm∈R

∑

n∈Km

‖(rm − rn)− GM(rm→n)‖1 , (12)

GM(rm→n) denotes the estimated optical flow from [66].

Monocular Depth Loss. Given RGB input, one can easily
obtain geometric cues (such as depths or normals) via an
off-the-shelf monocular predictor [13]. Inspired by [71], we
also include this information in the optimization to guide the
neural implicit surface reconstruction. More specifically, to
enforce depth consistency between our rendered expected
depths D̂ and the monocular depths D̄, we use the loss [44]:

Ldepth =
∑

r∈R
‖(wD̂(r) + q)− D̄(r)‖

2
, (13)

where w, q ∈ R are the scale and shift used to align D̂ and
D̄, since D̄ is only known up to an unknown scale. We
solve for w and q per image with least squares, which has a
closed-form solution.

Monocular Normal Loss. Another geometric cue that is
complementary to the monocular depth is surface normal,
a local cue that captures more geometric details. Similar
to [71], we impose consistency on the volume-rendered nor-
mal N̂ and the monocular normals N̄ from [13]:

Lnormal =
∑

r∈R
‖N̂(r)− N̄(r)‖1

+‖1− N̂(r)>N̄(r)‖1 .

(14)

Eikonal Loss. In addition, we add the Eikonal loss [16] to
regularize the output SDF values ŝ:

Leikonal =
∑

x∈X
(‖∇ŝ(x)‖2 − 1)2 , (15)

where X represents a set of uniformly sampled near-surface
points.

Optimization Scheme. We provide details on how to opti-
mize the scene geometry and appearance in the form of our
hierarchical representation, and also the camera poses.

Mapping: To optimize the scene representation mentioned
in Sec. 3.1, we uniformly sample M pixels/rays in total
from the current frame and selected keyframes. The opti-
mization is performed in a 3-stage process similar to [75]
but employs the following loss:

L=Lrgb + 0.5Lwarp + 0.001Lflow

+ 0.1Ldepth + 0.05Lnormal + 0.1Leikonal
(16)

At the first stage, we treat the coarse-level base SDF value
scoarse in Eq. (1) as the final SDF value ŝ, and optimize
the coarse feature grid Φcoarse, coarse MLP parameters of
f coarse, and color MLP parameters of f color with Eq. (16).
Upon reaching 25% of the total number of iterations, we
switch to using Eq. (4) as the final SDF value, soenabling
the joint optimization of the fine-level feature grids {Φfine

l }
and fine-level MLP ffine. At 75% mark, we conduct a local
bundle adjustment (BA) with Eq. (16), extending the op-
timization to color feature grids {Φcolor

l } and the extrinsic
parameters of K selected mapping frames.

Camera Tracking: In parallel to mapping, we optimize the
camera pose (rotation and translation) of the current frame,
while keeping the hierarchical scene representation fixed.
This is achieved by sampling Mt pixels from the current
frame and use purely the RGB rendering loss in Eq. (10)
for 100 iterations.

4. Experiments
We evaluate qualitative and quantitative comparisons
against state-of-the-art (SOTA) SLAM frameworks on both
synthetic and real-world datasets in Sec. 4.1. A comprehen-
sive ablation study supporting our design choices is pro-
vided in the supplementary material.

Datasets. We evaluate on the synthetic Replica dataset [50],
where RGB-(D) images are rendered with the official
renderer. To assess the performance in real-world in-
door/outdoor scenarios, we also compare on the challenging
dataset 7-Scenes [49] known for its low-resolution images
with severe motion blur, and a self-captured outdoor (SCO)
dataset, captured with Azure Kinect, comprising 6 diverse
scenes, ranging from 800 to 2700 frames. COLMAP is used
to obtain intrinsic parameters for the 7-Scenes and SCO
datasets. For comparisons and discussions on ScanNet and
TUM RGB-D dataset, see the supplementary material.

Baselines. We compare NICER-SLAM with 10 meth-
ods. (a) SOTA neural implicit RGB-D SLAM system



rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input

N
IC

E
-S

L
A

M Acc.[cm]↓ 3.53 3.60 3.03 5.56 3.35 4.71 3.84 3.35 3.87
Comp.[cm]↓ 3.40 3.62 3.27 4.55 4.03 3.94 3.99 4.15 3.87
Comp.Rat.[<5cm %]↑ 86.05 80.75 87.23 79.34 82.13 80.35 80.55 82.88 82.41
Normal Cons.[%]↑ 91.92 91.36 90.79 89.30 88.79 88.97 87.18 91.17 89.93

Vo
x-

Fu
si

on

Acc.[cm]↓ 2.53 1.69 3.33 2.20 2.21 2.72 4.16 2.48 2.67
Comp.[cm]↓ 2.81 2.51 4.03 8.75 7.36 4.19 3.26 3.49 4.55
Comp.Rat.[<5cm %]↑ 91.52 91.34 86.78 81.99 82.03 85.45 87.13 86.53 86.59
Normal Cons.[%]↑ 94.14 93.28 91.71 90.52 88.95 91.54 91.03 92.67 91.73

RGB input

C
O

L
M

A
P Acc.[cm]↓ 3.87 27.29 5.41 5.21 12.69 4.28 5.29 5.45 8.69

Comp.[cm]↓ 4.78 23.90 17.42 12.98 12.35 4.96 16.17 4.41 12.12
Comp.Rat.[<5cm %]↑ 83.08 22.89 64.47 72.59 69.52 81.12 64.38 82.92 67.62
Normal Cons.[%]↑ 72.49 60.10 69.42 69.91 74.04 71.84 71.49 71.75 70.13

TA
N

D
E

M

Acc.[cm]↓ 6.76 7.81 5.60 5.00 4.66 10.68 7.34 6.97 6.85
Comp.[cm]↓ 9.00 7.99 12.27 15.30 14.46 12.63 10.50 10.38 11.57
Comp.Rat.[<5cm %]↑ 52.81 56.58 55.71 57.88 54.18 49.19 44.82 47.60 52.35
Normal Cons.[%]↑ 78.26 77.73 82.06 82.14 79.48 79.73 79.68 82.80 80.24

N
eR

F-
SL

A
M Acc.[cm]↓ 11.84 10.62 11.86 9.32 14.40 11.54 16.31 11.11 12.13

Comp.[cm]↓ 5.63 5.88 9.22 13.29 10.17 6.95 7.81 5.26 8.03
Comp.Rat.[<5cm %]↑ 61.13 68.19 47.85 37.64 56.17 66.20 55.67 61.86 56.84
Normal Cons.[%]↑ 63.39 53.31 57.52 64.09 57.13 57.06 59.73 58.59 58.85

D
IM

-S
L

A
M

∗ Acc.[cm]↓ 14.19 9.56 8.41 10.16 7.86 16.50 13.01 13.08 11.60
Comp.[cm]↓ 6.24 6.45 12.17 5.95 8.33 8.28 6.77 8.62 7.85
Comp.Rat.[<5cm %]↑ 69.77 66.30 51.21 74.16 62.10 54.92 63.88 55.43 62.22
Normal Cons.[%]↑ 77.69 82.16 78.89 81.44 79.41 73.68 77.09 78.05 78.55

D
R

O
ID

-S
L

A
M Acc.[cm]↓ 12.18 8.35 3.26 3.01 2.39 5.66 4.49 4.65 5.50

Comp.[cm]↓ 8.96 6.07 16.01 16.19 16.20 15.56 9.73 9.63 12.29
Comp.Rat.[<5cm %]↑ 60.07 76.20 61.62 64.19 60.63 56.78 61.95 67.51 63.62
Normal Cons.[%]↑ 72.81 74.71 79.21 77.53 78.57 75.79 77.69 76.38 76.59

N
IC

E
R

-S
L

A
M Acc.[cm]↓ 2.53 3.93 3.40 5.49 3.45 4.02 3.34 3.03 3.65

Comp.[cm]↓ 3.04 4.10 3.42 6.09 4.42 4.29 4.03 3.87 4.16
Comp.Rat.[<5cm %]↑ 88.75 76.61 86.10 65.19 77.84 74.51 82.01 83.98 79.37
Normal Cons.[%]↑ 93.00 91.52 92.38 87.11 86.79 90.19 90.10 90.96 90.27

Table 1. Reconstruction Results on the Replica dataset. Best
results are highlighted as first , second , and third . NICER-
SLAM performs the best among RGB SLAM methods, and is
on par with RGB-D methods. DIM-SLAM* indicates our re-
implementation. Note that we do not report the numbers from
DIM-SLAM paper because they cull meshes differently. Please
refer to the supp. mat. for discussion.

NICE-SLAM [75] and Vox-Fusion [67], (b) concurrent neu-
ral implicit RGB SLAM system DIM-SLAM [24]/DIM-
SLAM*1, NeRF-SLAM [46] and Orbeez-SLAM [7], (c)
classic SLAM methods COLMAP [47] and DSO [14],
and (d) SOTA dense monocular SLAM systems DROID-
SLAM [58] and TANDEM [22]. For camera tracking eval-
uation, we also compare with DROID-SLAM∗, which does
not perform the final global bundle adjustment and loop clo-
sure (identical to our NICER-SLAM setting). For DROID-
SLAM’s 3D reconstruction, we run TSDF fusion with their
predicted depths of keyframes.

Metrics. For camera tracking, we follow the conventional
monocular SLAM evaluation pipeline where the estimated
trajectory is aligned to the GT using evo [17], and then

1DIM-SLAM code was only partially released upon the submission
deadline. We faithfully re-implemented the entire pipeline with extensive
discussion with the authors.

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input

N
IC

E
-S

L
A

M
E

xt
ra

-
po

la
te PSNR ↑ 23.83 22.61 21.97 25.78 25.30 18.50 22.82 25.26 23.26

SSIM ↑ 0.788 0.813 0.858 0.887 0.842 0.826 0.862 0.875 0.844
LPIPS ↓ 0.284 0.249 0.218 0.209 0.145 0.242 0.190 0.191 0.216

In
te

r-
po

la
te PSNR ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42

SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vo
x-

Fu
si

on
E

xt
ra

-
po

la
te PSNR ↑ 23.45 20.83 18.38 23.28 24.48 17.50 23.06 24.84 21.98

SSIM ↑ 0.765 0.773 0.747 0.751 0.762 0.727 0.824 0.851 0.775
LPIPS ↓ 0.280 0.272 0.282 0.235 0.169 0.292 0.232 0.212 0.247

In
te

r-
po

la
te PSNR ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41

SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

RGB input

N
eR

F-
SL

A
M

E
xt

ra
-

po
la

te PSNR ↑ 17.34 19.00 15.18 17.50 19.59 12.79 13.97 17.66 16.63
SSIM ↑ 0.699 0.738 0.642 0.704 0.672 0.639 0.718 0.787 0.700
LPIPS ↓ 0.301 0.228 0.242 0.289 0.187 0.295 0.298 0.254 0.262

In
te

r-
po

la
te PSNR ↑ 16.45 19.62 21.17 21.44 20.86 15.49 15.11 18.96 18.64

SSIM ↑ 0.576 0.700 0.754 0.773 0.747 0.731 0.688 0.790 0.720
LPIPS ↓ 0.330 0.177 0.170 0.335 0.229 0.251 0.282 0.241 0.252

D
IM

-S
L

A
M

∗

E
xt

ra
-

po
la

te PSNR ↑ 21.03 21.38 17.38 24.82 24.96 17.34 19.54 21.43 20.99
SSIM ↑ 0.702 0.768 0.698 0.822 0.803 0.680 0.752 0.783 0.751
LPIPS ↓ 0.372 0.303 0.344 0.251 0.182 0.362 0.311 0.295 0.303

In
te

r-
po

la
te PSNR ↑ 18.48 26.19 24.95 30.16 31.75 21.36 21.22 23.65 24.72

SSIM ↑ 0.622 0.765 0.788 0.856 0.882 0.744 0.751 0.797 0.776
LPIPS ↓ 0.422 0.283 0.291 0.234 0.185 0.304 0.293 0.256 0.284

D
R

O
ID

-S
L

A
M

E
xt

ra
-

po
la

te PSNR ↑ 18.25 18.65 13.49 16.13 10.31 14.78 15.53 15.71 15.36
SSIM ↑ 0.737 0.793 0.786 0.760 0.650 0.800 0.797 0.800 0.765
LPIPS ↓ 0.352 0.283 0.299 0.298 0.286 0.300 0.302 0.311 0.304

In
te

r-
po

la
te PSNR ↑ 21.41 24.04 22.08 23.59 21.29 20.64 20.22 20.22 21.69

SSIM ↑ 0.693 0.786 0.826 0.868 0.863 0.828 0.808 0.819 0.812
LPIPS ↓ 0.329 0.270 0.228 0.232 0.207 0.231 0.234 0.237 0.246

N
IC

E
R

-S
L

A
M

E
xt

ra
-

po
la

te PSNR ↑ 25.64 23.69 22.62 25.88 22.56 21.46 24.42 25.15 23.93
SSIM ↑ 0.810 0.820 0.871 0.885 0.828 0.863 0.888 0.887 0.857
LPIPS ↓ 0.254 0.233 0.200 0.193 0.160 0.203 0.175 0.192 0.201

In
te

r-
po

la
te PSNR ↑ 25.33 23.92 26.12 28.54 25.86 21.95 26.13 25.47 25.41

SSIM ↑ 0.751 0.771 0.831 0.866 0.852 0.820 0.856 0.865 0.827
LPIPS ↓ 0.250 0.215 0.176 0.172 0.178 0.195 0.162 0.177 0.191

Table 2. Novel View Synthesis Evaluation on the Replica
dataset. Best results are shown as first , second , and third .
We outperform all baselines, including those utilizing depth in-
puts. Note that while NeRF-SLAM reported excellent rendering
performance on training views, its large tracking errors lead to its
less impressive performance in test views.

evaluate (ATE RMSE) [51]. To evaluate scene geometry,
we use Accuracy, Completion, Completion Ratio, and Nor-
mal Consistency. The reconstructed meshes from monoc-
ular SLAM systems are aligned to the GT mesh using the
ICP tool from [15]. We also use PSNR, SSIM and LPIPS
for novel view synthesis evaluation.

4.1. Mapping, Tracking and Rendering Evaluations

Evaluation on Replica [50]. In evaluating scene ge-
ometry on Replica (see Table 1), our method surpasses
all RGB-only methods by a noticeable margin, and even
shows competitive results against RGB-D SLAM ap-
proaches like NICE-SLAM and Vox-Fusion. Note that the
recent works NeRF-SLAM/Orbeez-SLAM/TANDEM use
DROID-SLAM/ORB-SLAM2/DSO as tracking frontends
to obtain more accurate camera poses, but our system still
yields better reconstructions even with our simple end-to-



NICE-SLAM Vox-Fusion COLMAP TANDEM NeRF-SLAM DIM-SLAM∗ DROID-SLAM NICER-SLAM GT
RGB-D input RGB input

Figure 3. 3D Reconstruction Results on the Replica Dataset [50]. The second row shows zoom-in views for better comparison.

NICE-SLAM Vox-Fusion TANDEM NeRF-SLAM DIM-SLAM∗ DROID-SLAM NICER-SLAM GT
RGB-D input RGB input

Figure 4. Novel View Synthesis Results on the Replica the Dataset [50]. The second row shows zoom-in renderings for better compari-
son. Note that we selected novel viewpoints far from the training views (extrapolation).

NICE-SLAM Vox-Fusion COLMAP TANDEM Orbeez-SLAM DIM-SLAM∗ DROID-SLAM NICER-SLAM GT
RGB-D input RGB input

Figure 5. 3D Reconstruction Results on the 7-Scenes Dataset [49]. The second row shows zoomed-in normal maps. It is apparent that
the quality of the scene representation is substantially worse for the other RGB-based methods despite their better tracking accuracy.

end tracking. Fig. 3 shows that NICER-SLAM can produce
the most visually appealing reconstructions. Note that for
DIM-SLAM, due to their use of simple warping loss, they
reconstruct those textureless regions wrongly. Moreover,
their use of occupancy also creates floaters, requiring post-
processing before evaluation (see supp. mat.).

For camera tracking, we can see from Table 3 that SLAM
systems designed for tracking (e.g. DROID-SLAM and
DSO) outperform all other methods. Nevertheless, even
though tracking is not the focus of our method, we are still
on par with NICE-SLAM (1.88 vs 1.95 cm on average),
while no depth information is used as additional input.

Even with the less accurate camera poses from our sim-
ple tracking pipeline, NICER-SLAM still produces visu-
ally more compelling and complete novel-view rendering
results than baseline methods, even those using depth in-
puts, see Fig. 4, Fig. 1 and Table 2. Classic methods like
COLMAP and DROID-SLAM cannot render missing re-

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input
NICE-SLAM 1.69 2.04 1.55 0.99 0.90 1.39 3.97 3.08 1.95
Vox-Fusion 0.27 1.33 0.47 0.70 1.11 0.46 0.26 0.58 0.65

RGB input
COLMAP 0.62 23.7 0.39 0.33 0.24 0.79 0.14 1.73 3.49
TANDEM 0.54 0.43 0.47 0.61 0.33 5.42 0.68 0.75 1.15
DSO 0.26 0.25 0.19 0.38 0.20 2.53 0.22 0.38 0.55
Orbeez-SLAM 0.34 0.41 0.27 0.36 F F 0.294 2.89 0.76
NeRF-SLAM 17.26 11.94 15.76 12.75 10.34 14.52 20.32 14.96 14.73
DIM-SLAM 0.48 0.78 0.35 0.67 0.37 0.36 0.33 0.36 0.46
DIM-SLAM∗ 1.06 0.49 0.32 0.43 0.26 0.65 0.55 3.69 0.93
DROID-SLAM 0.34 0.13 0.27 0.25 0.42 0.32 0.52 0.40 0.33
DROID-SLAM∗ 0.58 0.58 0.38 1.06 0.40 0.70 0.53 1.33 0.70
NICER-SLAM 1.36 1.60 1.14 2.12 3.23 2.12 1.42 2.01 1.88

Table 3. Camera Tracking Results on the Replica Dataset. ATE
RMSE [cm] (↓) is the evaluation metric. DIM-SLAM* is our re-
implementation, and DROID-SLAM* has no global BA and loop
closure. “F” denotes program failure or final trajectory unable to
align with GT (SVD decomposition error).

gions. Neural-implicit approaches like NICE-SLAM, Vox-
Fusion and DIM-SLAM fill in missing areas but their ren-



COLMAP TANDEM NeRF-SLAM Orbeez-SLAM DROID-SLAM NICER-SLAM Sensor RGB + Un-used Depth

Figure 6. 3D Reconstruction Results on the Self-Captured Outdoor (SCO) Dataset. The second row shows zoomed-in normal maps
for better comparison. Note that only RGB images are used as input, while the depth image is only for visualization, showing the captured
depth is unable to provide reliable readings in outdoor environments.

COLMAP TANDEM NeRF-SLAM DROID-SLAM NICER-SLAM

Figure 7. Novel View Synthesis Results on our Self-captured Outdoor Dataset. We can obtain visually compelling and more complete
results than other SLAM methods, and perform similarly to NeRF-SLAM, which primarily focuses on novel view synthesis and relies on
DROID-SLAM for camera tracking.

derings are normally over-smooth. We can faithfully ren-
der high-fidelity novel views even when those views are far
from the training views. It is worth noting that our render-
ings are visually on par with NeRF-SLAM, a system pri-
marily dedicated to novel view synthesis. NICER-SLAM
also achieves higher metrics due to lower tracking errors.

Evaluation on 7-Scenes [49]. We also evaluate the chal-
lenging real-world dataset 7-Scenes to benchmark the ro-
bustness of different methods when the input images are of
low resolutions and have severe motion blurs. For geom-
etry illustrated in Fig. 5, NICER-SLAM produces sharper
and more detailed geometry over all baselines. For track-
ing, please check the supplementary material.

Evaluation on Self-Captured Outdoor Dataset. We fur-
ther extend the evaluation to outdoor scenarios with a self-
captured outdoor dataset, where an Azure Kinect camera
is used to capture diverse outdoor scenes. Note that the
captured depths are unable to provide reliable readings in
the outdoor environment (see Fig. 6), so we only compare
among monocular SLAM approaches. DIM-SLAM strug-
gles even at the initialization stage, due to its simple warp-
ing loss’s inability to effectively handle large textureless re-
gions. As can be seen Fig. 6, except for TANDEM, all other
baseline methods cannot reconstruct detailed geometry due
to the lack of textures in the scene. NICER-SLAM can not
only handle textureless regions and reconstruct flat surfaces
like walls, but also captures small details, e.g. the handrail.
Fig. 7 shows novel view synthesis results. NICER-SLAM
produces compelling and more complete renderings than
other methods. We also perform similarly to the dedicated

view synthesis system, NeRF-SLAM, but without the need
of leveraging DROID-SLAM for tracking.

5. Conclusions

We present NICER-SLAM, a novel dense RGB SLAM sys-
tem that enables highly accurate 3D reconstruction with re-
alistic appearances. In contrast to vanilla NeRF, it doesn’t
require camera poses as input and instead jointly optimizes
poses and neural implicit maps in an end-to-end manner.
Extensive experiments in both indoor and outdoor scenes
demonstrate the effectiveness of NICER-SLAM, especially
in surface reconstruction and novel view synthesis.

Limitations. Although we show benefits over SLAM meth-
ods using traditional scene representations in terms of map-
ping and novel view synthesis, our pipeline is currently
not yet optimized for real-time operations. Implementing
Instant-NGP [32]-like CUDA solutions and performing on-
the-fly empty space skipping are straightforward strategies
for potential optimization. Moreover, we currently do not
perform loop closure, which will yield further improve-
ments in tracking performance.
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Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Trans. on Graphics, 32(6):1–11,
2013. 2

[39] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In Proc. of the IEEE In-
ternational Conf. on Computer Vision (ICCV), pages 5589–
5599, 2021. 4

[40] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar,
David Novotny, Michael Zollhoefer, and Mustafa Mukadam.

isdf: Real-time neural signed distance fields for robot per-
ception. In Robotics: Science and Systems (RSS), 2022. 2,
3

[41] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 165–174, 2019. 2

[42] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Proc. of the European Conf. on Computer Vi-
sion (ECCV), pages 523–540. Springer, 2020. 2

[43] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A dif-
ferentiable poisson solver. Advances in Neural Information
Processing Systems (NeurIPS), 34:13032–13044, 2021. 2
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NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM

Supplementary Material

In this supplementary document, we first provide ad-
ditional implementation details in Sec. 6, then provide ad-
ditional results on different datasets in Sec. 7. After that,
we show the fitted curve of our locally adaptive transforma-
tion in Sec. 8. In Sec. 9, we supplement with an ablation
study on our design choices. Finally, we provide discus-
sions on the ScanNet and TUM RGB-D datasets in Sec. 10.
We also provide a supplementary video https://youtu.be/
H4cOCa3oUno where we show additional visual compar-
isons.

6. Implementation Details

Use of COLMAP for intrinsics. In 7-Scenes [49], the
RGB and depth camera are not calibrated. Therefore, we
employ COLMAP to obtain the intrinsic parameters for
each scene. Regarding the SCO dataset, a calibration board
was not available at the time of capture. Consequently,
we utilized COLMAP to determine the intrinsic parameters.
However, it is worth noting that direct calibration could by-
pass the need for COLMAP to acquire intrinsic parameters.

Frame Selection for Mapping. During mapping, we need
to select multiple frames from which we sample rays and
pixels. We introduce a simple frame selection strategy. We
maintain a global keyframe list, adding a frame every 10
frames. For mapping, we select a total ofK = 16 frames: 5
randomly selected from the keyframe list, 10 selected from
the latest 20 keyframes, and the current frame.

System Details. Mapping happens every 5 frames, while
tracking is done every frame. Drifting is a known chal-
lenge with pure RGB input. To mitigate this, during the
local BA stage in mapping, we jointly optimize the poses
for half of the 16 selected frames (those closest to the cur-
rent frame) with the scene representation, while freezing
the rest. In Eq. (9), we set c0 = 1.208 · 10−2, c1 =
6.26471 · 10−6 and c2 = 2.3 · 10−3. For mapping and
tracking, we sample M = 8096 and Mt = 1024 pixels,
respectively, and optimize for 100 iterations. During ev-
ery mapping iteration, pixels are randomly sampled from
all selected frames. With our unoptimized PyTorch imple-
mentation, each mapping and tracking iteration requires an
average of 496ms and 147ms on a single A100 GPU. To
optimize the scene representation during the first mapping
step, we set the scale and shift as w = 20 and q = 0 in
Eq. (13), aligning the scaled monocular depth with a sensi-
ble range (e.g. 1-5 meters).

Initialization for the Scene Representation. Our scene
representation is composed of hierarchical feature grids and

MLPs. We initialize all levels of feature grids to be zero. As
for the coarse MLP for geometry, we adapt the geometric
initialization from IGR [16] and MonoSDF [71] to approx-
imate the SDF to a sphere. As for fine geometry MLP and
the color MLP, we randomly initialize the network.

DIM-SLAM*. Only a small part of the DIM-SLAM [24]
codes (initialization stage) have been released, so we faith-
fully implement the entire pipeline ourselves, denoted as
DIM-SLAM*. We discuss extensively with the authors dur-
ing our implementation. What we have implemented are the
following:
• Keyframe selection and graph management mechanism
• Selection of overlapping frames for bundle adjustments
• Trajectory alignment for tracking evaluation
• Mesh extraction and evaluation
• Mesh culling
• Post optimization module
• Tuning loss weights and learning rates for scene represen-

tation and camera poses

Mesh Culling for DIM-SLAM*. DIM-SLAM originally
requires rendering out multiple depth images within the
scene and fusing them into a TSDF volume. A bounding
box is then calculated on the extracted mesh to remove float-
ing undesired geometries outside. In our implementation,
the reconstructed mesh is first aligned to the dataset’s coor-
dinate system (e.g. Replica) based on the alignment matrix
of the predicted camera trajectory. Geometries beyond the
ground-truth mesh’s bounding box are then removed. It’s
noteworthy that NICER-SLAM requires no post-processing
after extracting the mesh thanks to the use of SDF for rep-
resenting scene geometry. See Fig. 8 for comparison.

7. Additional Results

Additional Results on Replica Dataset. Additional results
on reconstruction and rendering are shown in Fig. 9 and
Fig. 10.

Additional Results on 7-Scenes Dataset. In terms of
tracking, as can be observed in Table 4, baselines with
RGB-D input outperform RGB-only methods overall, em-
phasizing depth inputs’ importance for tracking, especially
amidst imperfect RGB images. Among RGB-only meth-
ods, COLMAP, DSO, and DROID-SLAM* perform poorly
in the pumpkin scene because of large textureless and re-
flective regions. The same behavior is observed in NeRF-
SLAM and Orbeez-SLAM since they rely on off-the-shelf
SLAM pipelines as tracking frontends. In contrast, NICER-
SLAM is more robust to such issues thanks to the predicted

https://youtu.be/H4cOCa3oUno
https://youtu.be/H4cOCa3oUno
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DIM-SLAM DIM-SLAM NICER-SLAM GT
(w/o Mesh Culling) (w/ Mesh Culling) (No Mesh Culling Needed)

Figure 8. DIM-SLAM* Mesh Culling. For DIM-SLAM*, their reconstructed mesh is first aligned to Replica’s coordinate system, and
those floating geometries outside the bounding box of ground-truth mesh are removed. Note that for NICER-SLAM no post-processing is
needed, thanks to our SDF representation.

NICE-SLAM Vox-Fusion COLMAP TANDEM NeRF-SLAM DIM-SLAM∗ DROID-SLAM NICER-SLAM GT
RGB-D input RGB input

Figure 9. 3D Reconstruction Results on the Replica Dataset [50]. The second row shows zoom-in views for better comparison.

NICE-SLAM Vox-Fusion TANDEM NeRF-SLAM DIM-SLAM∗ DROID-SLAM NICER-SLAM GT
RGB-D input RGB input

Figure 10. Novel View Synthesis Results on the Replica Dataset [50]. The second row shows zoom-in renderings for better comparison.
Note that we selected novel viewpoints far from the training views (extrapolation).

monocular geometric priors and its dense alignment.

Additional Results on Self-Captured Outdoor Dataset.
Additional results on reconstruction and rendering are
shown in Fig. 11 and Fig. 12.

8. Fitted Curve for Locally Adaptive Transfor-
mation

In the main paper, we propose the locally adaptive trans-
formation from SDF to volume density. This strategy in-



COLMAP TANDEM NeRF-SLAM Orbeez-SLAM DROID-SLAM NICER-SLAM Sensor RGB + Un-used Depth

Figure 11. 3D Reconstruction Results on the Self-Captured Outdoor (SCO) Dataset. The second row shows zoomed-in normal maps
for better comparison. Note that only RGB images are used as input, while the depth image is only for visualization, showing the captured
depth is unable to provide reliable readings in outdoor environments.

COLMAP TANDEM NeRF-SLAM DROID-SLAM NICER-SLAM

Figure 12. Novel View Synthesis Results on our Self-captured Outdoor Dataset. We can obtain visually compelling and more complete
results than other SLAM methods, and perform similarly to NeRF-SLAM, which primarily focuses on novel view synthesis and relies on
DROID-SLAM for camera tracking.

chess fire heads office pumpkin kitchen stairs Avg.

RGB-D input
NICE-SLAM 2.16 1.63 7.80 5.73 19.34 3.31 4.31 6.33
Vox-Fusion 2.53 1.91 1.94 5.26 15.33 2.79 3.40 4.74

RGB input
COLMAP 3.42 2.40 1.70 10.42 52.32 5.08 2.62 11.14
TANDEM 42.63 2.59 6.65 9.77 17.20 29.59 13.62 17.44
DSO 18.90 7.53 21.25 11.04 56.57 31.82 15.36 23.21
Orbeez-SLAM 3.36 2.07 1.27 10.50 67.78 4.25 1.69 12.99
NeRF-SLAM 9.34 8.57 4.44 16.67 43.96 9.02 5.41 13.92
DIM-SLAM∗ 60.13 2.41 39.42 24.15 13.07 39.11 10.45 26.96
DROID-SLAM 3.36 2.40 1.43 9.19 16.46 4.94 1.85 5.66
DROID-SLAM∗ 3.55 2.49 3.32 10.93 48.53 4.72 2.58 10.87
NICER-SLAM 3.28 6.85 4.16 10.84 20.00 3.94 10.81 8.55

Table 4. Camera Tracking Results on the 7-Scenes Dataset.
ATE RMSE [cm] (↓) is used as the evaluation metric.

volves locally assigning the β value within the space. To
achieve this, we design a function for translating the lo-
cal point counter Tp to β. The function takes the form
β = c0 · exp(−c1 · Tp) + c2, where c0 = 1.208 · 10−2,
c1 = 6.26471 · 10−6 and c2 = 2.3 · 10−3. The fit-
ted exponential curve representing this function is depicted
in Fig. 13.

9. Ablation Study

Losses. In Table 5 (a), we assess the impact of different
mapping losses from Sec. 3.3 on both reconstruction and
tracking, because we conduct local BA on the third stage of

0.0 0.2 0.4 0.6 0.8 1.0 × 106

Tp
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Figure 13. Fitted Curve for Locally Adaptive Transformation.
The function is β = c0 · exp(−c1 · Tp) + c2, where c0 = 1.208 ·
10−2, c1 = 6.26471 · 10−6 and c2 = 2.3 · 10−3.

mapping. As can be noticed, using all losses together yields
the best overall performance. Without monocular depth or
normal loss, both mapping and tracking accuracy drops sig-
nificantly, indicating the crucial role of monocular geomet-
ric cues in disambiguating the optimization process.

Ablation on Hierarchical Architecture. In Table 5 (b)
we show that removing the multi-resolution color feature
grids {Φcolor

l }L1 and representing scene colors solely on the
MLP f color results in a significant performance drop, em-



Ours w/ Occupancy Zoom-in Ours w/ SDF Zoom-in GT Zoom-in

Figure 14. Ablation Study on SDF vs. Occupancy. We conduct the ablation on one random Replica scene (office-4). The figures on
the right depict zoomed-in normal maps for better comparison.

ATE RMSE↓ Acc. ↓ Comp. ↓ Comp. Ratio ↑ Normal Cons. ↑

w/o Ldepth 4.48 4.74 6.18 71.10 89.23
w/o Lnormal 3.22 7.25 6.98 51.07 86.64
w/o Lwarp 2.96 3.76 4.60 74.42 91.32
w/o Lflow 2.30 3.31 4.31 81.10 91.00
Ours 2.01 3.03 3.87 83.98 90.96

(a) Ablation Study on Losses in Eq. (16).

ATE RMSE↓ Acc. ↓ Comp. ↓ Comp. Ratio ↑ Normal Cons. ↑

w/o {Φcolor
l }L1 9.92 8.32 8.49 50.13 87.84

w/o Φcoarse 3.07 4.51 5.11 67.29 90.17
Ours 2.01 3.03 3.87 83.98 90.96

(b) Ablation Study on Hierarchical Architecture.

ATE RMSE↓ Acc. ↓ Comp. ↓ Comp. Ratio ↑ Normal Cons. ↑

Fixed β=0.01 3.81 7.77 8.28 39.48 87.52
Fixed β=0.001 3.98 3.48 5.05 76.67 90.39
Global optimizable β 2.62 3.64 4.53 76.35 90.88
Voxel size of 323 3.00 3.19 4.35 81.90 90.65
Voxel size of 1283 2.16 4.35 4.87 68.96 90.40
Ours 2.01 3.03 3.87 83.98 90.96

(c) Ablation Study on SDF-to-Density Transformation.

Table 5. Ablation Study. On a single random Replica scene
(office-4), we evaluate both camera tracking and reconstruc-
tion.

phasizing the importance of multi-res color feature grids.
Similarly, removing the coarse feature grid Φcoarse and only
using fine-level feature grids for SDFs also causes inferior
performance, especially in the completeness/completeness
ratio.

SDF-to-Density Transformation. We also compare dif-
ferent choices for the transformation from SDF to volume
density (see Sec. 3.2): (a) Fixed β value, (b) globally opti-
mizable β as in [69], and also (c) different voxel size for
counting (our default setting uses 643). As can be seen
in Table 5 (c), with the locally adaptive transformation and
under the chosen voxel size, our method is able to obtain
both better scene geometry and camera tracking.

SDF vs. Occupancy. Unlike recent implicit-based SLAM
systems [24, 67, 75] that use occupancy for scene geom-
etry, we employ SDFs. To verify this choice, we keep the
pipeline identical but replace the output in Eq. (4) to confine
the occupancy probability between 0 and 1, and eliminate
the Eikonal loss Leikonal. As evident in Fig. 14 where we
compare reconstruction with given GT poses, using SDFs
leads to more accurate geometry.
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Figure 15. Sampled Frames from ScanNet and TUM RGB-D
Datasets. Both datasets were captured using outdated cameras.
ScanNet exhibits significant motion blur and sudden camera mo-
tion changes, while TUM RGB-D is characterized by fluctuating
light conditions and uncalibrated white balance.

10. ScanNet & TUM RGB-D Datasets

In this section, we discuss why ScanNet [10] and TUM-
RGBD [51] datasets might not be the preferred choices for
evaluating monocular SLAM systems.

ScanNet. In particular, ScanNet is notable for its signif-
icant motion blur and a high level of noises in the RGB
sequences, as clearly evident from the sampled frames in
the first row of Fig. 15. The deterioration of image qual-
ity compounds the complexity of optimization, especially
in the absence of robust geometry guidance provided by
depth maps. We tested various RGB SLAM approaches
on ScanNet including ORB-SLAM2 [33], DSO [14], and
DIM-SLAM [24]. However, they often failed at the initial-
ization stage already.

DROID-SLAM, the SOTA SLAM method for camera
tracking, also struggles with ScanNet. As shown in Table 6,
it breaks down in the middle of the sequence in 3 out of
6 scenes. Consequently, recent methods like NeRF-SLAM
and Orbeez-SLAM, which heavily depend on these SOTA
SLAM methods for camera pose estimation, also struggle
or fail on ScanNet. As for NICER-SLAM, while camera
tracking is not the primary objective, our system manages
to deliver reasonable results without a complete breakdown.

TUM RGB-D Dataset. The TUM-RGBD dataset was in-
troduced over a decade ago, using hardware that is now out-
dated. It shares similar motion blur issues with ScanNet,
and presents additional challenges in its RGB sequences,



Scene ID 0000 0059 0106 0169 0181 0207

RGB-D input
iMAP∗ 55.95 32.06 17.50 70.51 32.10 11.91
NICE-SLAM 8.64 12.25 8.09 10.28 12.93 5.59

RGB input
DROID-SLAM 5.63 F 207.67 F F 7.97
DROID-SLAM∗ 18.75 F 209.98 F F 18.28
NICER-SLAM 96.03 63.24 117.05 77.88 67.97 70.76

Table 6. Camera Tracking Results on ScanNet [10]. ATE
RMSE (↓) is used as the evaluation metric. F denotes program
failure or final trajectory unable to align with GT (SVD decom-
position error). DROID-SLAM* is the DROID-SLAM without
global BA and loop closure.

fr1/desk fr2/xyz fr3/office

RGB-D input
BAD-SLAM 1.7 1.1 1.7
Kintinuous 3.7 2.9 3.0
iMAP 4.9 2.0 5.8
iMAP∗ 7.2 2.1 9.0
DI-Fusion 4.4 2.3 15.6
NICE-SLAM 2.7 1.8 3.0

RGB input
ORB-SLAM2 1.6 0.4 1.0
DROID-SLAM 1.8 0.5 2.8
NICER-SLAM 7.7 11.9 8.7

Table 7. Camera Tracking Results on TUM RGB-D [51]. ATE
RMSE (↓) is used as the evaluation metric.

such as fluctuating light conditions and uncalibrated white
balance, as shown in the second row of Fig. 15.

As presented in Table 7, our method does not perform
as well as baseline approaches on this dataset. This may be
attributed to this kind of rapid fluctuations in light condi-
tions, which is especially challenging for NeRF-based op-
timization. Specifically, NICER-SLAM optimizes camera
poses and scene in an end-to-end manner, by directly back-
propagating the loss between volume-rendered colors and
input RGB colors. However, the varying lighting conditions
introduce a significant challenge to the joint learning of 3D-
consistent geometry and colors, as well as camera poses.
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