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Figure 1. Illustration. Given posed RGB images as input, our method lifts noisy 2D & 3D predictions to the 3D space via decomposed
3D Gaussians, and enables holistic scene understanding in 2D and 3D space.

Abstract

Holistic understanding of urban scenes based on RGB
images is a challenging yet important problem. It encom-
passes understanding both the geometry and appearance to
enable novel view synthesis, parsing semantic labels, and
tracking moving objects. Despite considerable progress,
existing approaches often focus on specific aspects of this
task and require additional inputs such as LiDAR scans
or manually annotated 3D bounding boxes. In this pa-
per, we introduce a novel pipeline that utilizes 3D Gaussian
Splatting for holistic urban scene understanding. Our main
idea involves the joint optimization of geometry, appear-
ance, semantics, and motion using a combination of static
and dynamic 3D Gaussians, where moving object poses are
regularized via physical constraints. Our approach offers
the ability to render new viewpoints in real-time, yielding
2D and 3D semantic information with high accuracy, and
reconstruct dynamic scenes, even in scenarios where 3D
bounding box detection are highly noisy. Experimental re-
sults on KITTI, KITTI-360, and Virtual KITTI 2 demon-
strate the effectiveness of our approach. Our project page
is at https://xdimlab.github.io/hugs website.

1. Introduction
Reconstructing urban scenes is an important task in com-
puter vision with numerous applications. Consider the cre-
ation of a photorealistic simulator for autonomous driving,
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in this context, it becomes crucial to holistically represent
all aspects of the scene relevant to driving. This entails
tasks like synthesizing images at interpolated and extrap-
olated viewpoints in real-time, reconstructing 2D and 3D
semantics, generating depth information, and tracking dy-
namic objects. To minimize sensor cost, achieving such a
holistic understanding exclusively from posed RGB images
holds significant value.

With the rise of neural rendering, many approaches have
emerged to lift 2D information to 3D space, enabling scene
understanding based solely on RGB images. Several pre-
vious works focus on reconstructing static urban scenes,
achieving high-quality novel view appearance and seman-
tic synthesis [11, 30, 51]. Another line of work addresses
dynamic scenes [19, 27, 40, 46], but most of them require
ground truth 3D bounding boxes of dynamic objects as in-
put, which are costly to acquire. PNF [19] is the only
method that utilizes noisy bounding boxes obtained through
monocular 3D detection and tracking, where the transfor-
mations of the bounding boxes are jointly optimized during
training. However, naı̈ve joint optimization of per-frame
pose transformations is prone to local minima and sensitive
to the initialization. Furthermore, while existing methods
are capable of rendering accurate 2D semantic labels, it is
non-trivial to extract accurate semantics in 3D due to the in-
accurate (inferred) 3D geometry. In addition, most of these
methods are unable to achieve real-time rendering.

In this paper, We leverage predicted 2D semantic labels,
optical flow, and 3D tracks, despite their inherent noise and
imperfections, to achieve a holistic understanding of the dy-
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namic scenes based on RGB images (see Fig. 1). Towards
this goal, we infer geometry, appearance, semantics, and
motion in 3D space using a decomposed scene representa-
tion. We leverage 3D Gaussians as the scene representation,
which have recently demonstrated superior novel view syn-
thesis performance on static scenes with real-time rendering
capability [17]. Specifically, we propose to decompose the
scene into static regions and rigidly moving dynamic ob-
jects. We model the poses of these moving objects while
adhering to the physical constraints of a unicycle model, ef-
fectively reducing the impact of noise during tracking and
leading to superior performance compared to optimizing
object poses individually. This allows us to reconstruct dy-
namic scenes even when 3D bounding box predictions are
highly noisy. Further, we extend 3D Gaussian Splatting
to model camera exposure and explore initialization on dy-
namic scenes, enabling state-of-the-art novel view synthesis
performance on urban scenes. Additionally, we incorporate
semantic information into 3D Gaussians, enabling the ren-
dering of semantic maps and the extracting of 3D seman-
tic point clouds. Finally, we integrate the RGB, semantics
and optical flow to jointly supervise the model training, and
investigate the interaction between these image cues to im-
prove the performance of the scene understanding tasks.

Our main contributions are as follows: 1) Our method
addresses the task of dynamic 3D urban scene understand-
ing by extending Gaussian Splatting to model additional
modalities, including semantic, flow, and camera exposure,
as well as dynamic objects. 2) We achieve the decompo-
sition of static and multiple dynamic objects from sparse
urban images and noisy labels by incorporating physical
constraints, omitting the requirement of ground truth 3D
bounding boxes for reconstructing dynamic scenes. 3) Our
method achieves state-of-the-art performance on various
benchmarks, including novel view appearance and semantic
synthesis, as well as 3D semantic reconstruction.

2. Related Work

3D Scene Understanding: Understanding urban scenes
from various aspects has been considered essential for au-
tonomous driving. Numerous techniques have focused
on predicting semantic labels [5, 9, 35], depth maps [10,
28], and optical flows [42] solely from 2D input images.
While these methods have demonstrated impressive accu-
racy within the confines of the 2D space, they often fall
short of grasping a profound understanding of the under-
lying 3D environment. Consequently, this limitation can
hinder the multi-view consistency of their predictions. An-
other line of approach suggests conducting semantic scene
understanding solely based on 3D input [29, 31]. This ap-
proach heavily relies on LiDAR input, which is known to
be costly and resource-intensive to collect.

More recently, a particular approach has emerged, aim-
ing to elevate 2D information to the 3D space to facil-
itate scene understanding within the 2D image domain.
This advancement is made possible through the utilization
of differential neural rendering techniques, such as NeRF
(Neural Radiance Fields) [25]. Numerous NeRF-based ap-
proaches [2–4, 14, 26, 34, 38] have made significant ad-
vancements in terms of both quality and efficiency. Fur-
thermore, some other techniques have empowered NeRF
with improved scene understanding capabilities. Semantic
NeRF [52] first proposes the lifting of noisy 2D annotations
to the 3D space based on NeRF. Significant progress has
been achieved through the efforts of the following works
[37, 44, 49]. While these methods have shown promising
results, they are currently limited to dense input viewpoints
within indoor scenes and are only applicable to static en-
vironments. In this study, our focus lies in dynamic 3D
scene understanding specifically tailored to urban settings,
achieved by lifting 2D information to the 3D space.

Urban Scene Reconstruction: Numerous studies have
been conducted to reconstruct urban scenes using various
methods. These methods can be categorized into three
classes: point-based [1, 32], mesh-based [12, 20] and
NeRF-based [15, 22, 24, 30, 33, 39, 51]. While point-based
and mesh-based methods demonstrate faithful reconstruc-
tions, they struggle to recover all aspects of the scene, es-
pecially when it comes to high-quality appearance model-
ing. In contrast, NeRF-based models allow for reconstruct-
ing scene appearance and enable high-quality rendering of
novel viewpoints. However, these approaches are primarily
designed for static scenes, lacking the ability to handle dy-
namic urban environments. In this study, our focus lies in
addressing the challenges of dynamic urban scenes.

Several methods have also been developed to address the
reconstruction of dynamic urban scenes. Many of these
approaches rely on the availability of accurate 3D bound-
ing boxes for moving objects in order to separate the dy-
namic elements from the static components, as seen in NSG
[27], MARS [40] and UniSim [46]. PNF [19] takes a dif-
ferent approach by leveraging monocular-based 3D bound-
ing box predictions and proposes a joint optimization of
object poses during the reconstruction process. However,
our experimental observations indicate that the straightfor-
ward optimization of object poses yields unsatisfactory re-
sults due to the absence of physical constraints. Another
method, SUDS [36], avoids the use of 3D bounding boxes
by grouping the scene based on learned feature fields. How-
ever, the accuracy of this approach lags behind. In parallel,
the concurrent work EmerNeRF [45] follows a similar idea
to SUDS by decomposing the scene purely into static and
dynamic components. In our research, we possess the ca-
pability to further decompose individual dynamic objects
within the scene and estimate their motion.



Figure 2. Method Overview. We decompose the scene into static regions and N rigidly moving dynamic objects. Each dynamic object is
represented using 3D Gaussians in its canonical space and then transformed to the world coordinates based on transformations constrained
by a unicycle model. We use N unicycle models of different parameters to individually represent the motion of N dynamic objects.
Each 3D Gaussian encompasses information about appearance and semantics, whereas the optical flow can be obtained by calculating the
Gaussian center’s motion, enabling the rendering of RGB images, semantic maps, and optical flow within a unified model. Our method is
supervised using RGB images, noisy 2D semantic labels, and noisy optical flow, denoted as LI, LS, and LF, respectively.

Gaussian Splatting: 3D Gaussians are demonstrated as
a powerful scene representation for novel view synthesis.
While the original 3D Gaussian Splatting [17] primarily fo-
cuses on static scenes, subsequent research has extended
this approach to handle dynamic scenes. Dynamic 3D
Gaussians [23] necessitates a substantial number of train-
ing views accompanied by ground truth masks. Other stud-
ies [43, 47, 48, 53] have also attempted to decompose 3D
Gaussians into static and dynamic components, without fur-
ther decomposing multiple dynamic objects. In our work,
we strive to achieve the decomposition of each individual
dynamic object while being capable of learning such de-
composition from sparse urban images and noisy labels.

3. Method

Fig. 2 illustrates our proposed method, HUGS. Our algo-
rithm takes as input posed images of a dynamic urban scene.
We decompose the scene into static and dynamic 3D Gaus-
sians, with the motion of dynamic vehicles being modeled
via a unicycle model. The 3D Gaussians represent not only
appearance but also semantic and flow information, allow-
ing for rendering the RGB images, semantic labels, as well
as optical flow through volume rendering.

3.1. Decomposed Scene Representation

We assume that the scene is composed of static regions
and a total of N dynamic vehicles exhibiting rigid motions.
Static regions are represented using static Gaussians in the
world coordinate system. Each of the N dynamic vehi-
cles is modeled using dynamic Gaussians in a canonical co-
ordinate system along with a set of rigid transformations
{(Rn

t , t
n
t )}Tt=1 with t denoting the timestamp.

Static and Dynamic 3D Gaussians: Following Gaussian

Splatting [17], we model both static and dynamic regions
using 3D Gaussians. Each Gaussian is defined by a 3D co-
variance matrix Σ ∈ R3×3 and a 3D position µ ∈ R3, as
well as an opacity α ∈ R+:

G(x) = α exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1)

In addition, each Gaussian represents a color vector c ∈ R3

parameterized as SH coefficients. In this work, we propose
to additionally model semantic logits s ∈ RS of each 3D
Gaussian, allowing for rendering 2D semantic labels. Fur-
thermore, we can naturally obtain a rendered optical flow
ft1→t2 ∈ R2 for each 3D Gaussian by projecting the 3D po-
sition µ to the image space at two different timestamps, t1
and t2, and calculating the motion.

Unicycle Model: We parameterize the transformations
(Rt, tt) following the unicycle model1. The state of a uni-
cycle model is parameterized by three elements: (xt, yt, θt),
where xt and yt represent the first two axes of t with
tt = [xt, yt, zt], and θt is the yaw angle of Rt. To adapt
the continuous unicycle model to discrete frames, we derive
the calculus of the unicycle model for the vehicle transition
from timestamp t to t+ 1 as follows:

xt+1 = xt +
vt
ωt

(sin θt+1 − sin θt)

yt+1 = yt −
vt
ωt

(cos θt+1 − cos θt) (2)

θt+1 = θt + ωt

Here, vt represents the forward velocity, and ωt is the an-
gular velocity. This model integrates physical constraints

1While it is more accurate to model vehicles using a bicycle model, we
observe that using the simpler unicycle model is sufficient for our task.



when compared to directly optimizing the transformations
of dynamic vehicles at every frame independently, thus en-
abling smoother motion modeling of moving objects and
making them less prone to local minima.

While it is possible to define an initial state (x1, y1, θ1)
and derive the following states recursively based on veloc-
ities, vt and ωt, such a recursive parameterization is chal-
lenging to optimize. In practice, we define a set of train-
able states {(xt, yt, θt)}Tt=1 along with trainable velocities
{vt, ωt}T−1

t=1 , and add a regularization term to ensure that the
vehicle’s states adhere to the characteristics of a unicycle
model in Eq. 2. The regularization terms will be described
in Section 3.3. Additionally, we model the vertical locations
of the vehicle, {zt}Tt=1, as optimizable parameters.

3.2. Holistic Urban Gaussian Splatting

Given the HUGS representation specified above, we are
able to render images, semantic maps and optical flow to
supervise the model or make predictions at inference time.
We now elaborate on the rendering of each modality.

Novel View Synthesis: The combination of static and dy-
namic Gaussians can be sorted and projected onto the image
plane via α-blending:

π : C =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1− α′
j) (3)

Here, α′
j is determined by the projected 2D Gaussian and

the 3D opacity α, see supplement for details.
In contrast to single-object scenes, urban scenes typi-

cally involve more complex lighting conditions and the im-
ages are usually captured with auto white balance and auto
exposure. NeRF-based methods [24] typically feed a per-
frame appearance embedding along with the 3D positions
into a neural network to compute the color, thereby compen-
sating exposure. However, when working with 3D Gaus-
sians, there is no neural network capable of processing ap-
pearance embeddings. Inspired by Urban Radiance Field
[30], we generate an exposure affine matrix for each camera
by mapping the camera’s extrinsic parameters to an affine
matrix A ∈ R3×3 and vector b ∈ R3 via a small MLP:

C̃ = A×C+ b (4)

We demonstrate that modeling the exposure improves ren-
dering quality in the experimental section.

Semantic Reconstruction: Similarly to Eq. 3, we can ob-
tain 2D semantic labels via α-blending based on the 3D se-
mantic logit s:

π : S =
∑
i∈N

softmax(si)α′
i

i−1∏
j=1

(1− α′
j) (5)

Figure 3. 3D Semantic Reconstruction. Comparison between ap-
plying softmax to accumulated 2D semantic logits (left) and to 3D
semantic logits (right). Normalizing semantic logits in 3D space
clearly reduces floaters and yields better 3D semantic reconstruc-
tion than the 2D normalization counterpart.

Note that we perform the softmax operation on 3D seman-
tic logits si prior to α blending, in contrast to most exist-
ing methods that apply softmax to 2D semantic logits S̄
obtained by accumulating unnormalized 3D semantic log-
its si [11, 52]. As shown in Fig. 3, applying softmax in 2D
space leads to noisy 3D semantic labels. This is due to the
fact that 2D space softmax can produce accurate 2D seman-
tics by adjusting the scale of the 3D semantic logits, allow-
ing a single sampled point with a substantial logit value to
significantly influence the volume rendering outcome. For
example, an undesired floating point labeled with “car” may
not be penalized despite the target rendered label is “tree”,
as long as there is a 3D Gaussian providing a large logit
value of “tree” along this ray. Our solution instead removes
such floaters by normalizing logits in 3D space. See sup-
plement for more quantitative and qualitative details.

Optical Flow: The 3D Gaussian representation also en-
ables the rendering of optical flow. Given two timestamps t1
and t2, we first calculate the optical flow of each 3D Gaus-
sian’s center µ as ft1→t2 . Specifically, we project µ to the
2D image space based on the camera’s intrinsic and extrin-
sic parameters:

µ′
1 = K[Rcam

t1 ; tcam
t1 ]µ, µ′

2 = K[Rcam
t2 ; tcam

t2 ]µ, (6)

and then calculate the motion vector as ft1→t2 = µ′
2 − µ′

1.
Next, we render the optical flow via accumulate the optical
flows via volume rendering:

π : F =
∑
i∈N

fiα
′
i

i−1∏
j=1

(1− α′
j) (7)

Note that this rendering process assumes that any pixel of
a 2D Gaussian splat shares the same optical flow direction
as the corresponding Gaussian center but with scaled mag-
nitude. While this is indeed a simplified approximation, we
observe this to work well in practice.

In our experiments, we demonstrate that supervising the
rendered optical flow with pseudo ground truth helps to im-



prove the performance of the geometry in terms of rendered
depth maps. This is due to the fact that flow provides ex-
plicit pixel correspondences, which is inherently supervis-
ing the underlying surface location.

3.3. Loss Functions

We leverage pre-trained recognition models to provide
noisy 2D semantic and instance predictions, noisy 2D op-
tical flow, as well as noisy 3D tracking results. These easy-
to-obtain predictions are critical to enable RGB-only holis-
tic scene understanding in both 2D and 3D space, without
relying on LiDAR input or 3D semantic supervision.

Image-based Losses: Our model is supervised with the
ground truth images using a combination of L1 and SSIM
losses. Let Ĩ denote the rendered image and Î the ground
truth, our rendering loss is defined as follows:

LI = (1− λSSIM )∥Î− Ĩ∥1 + λSSIMSSIM(Î, Ĩ) (8)

We additionally apply the cross-entropy loss to the ren-
dered semantic label wrt. pseudo-2D semantic segmentation
ground truth Ŝ:

LS = −
S−1∑
k=0

Ŝk log(Sk) (9)

Similarly, we leverage pseudo optical flow ground truth F̂
to supervise the rendered optical flow using:

LF = ∥F̂− F∥1 (10)

While 3D Gaussians can enable the rendering of optical
flow without any supervision, we observe artifacts in the
rendered flow without supervision. Further, the optical flow
supervision yields an improvement in the depth maps as
shown in our ablation study.

Unicycle Model Losses: We use a unicycle model to guide
the noisy 3D bounding box predictions:

Lt =
∑
t

∥xt − x̂t∥2 +
∑
t

∥yt − ŷt∥2 (11)

where x̂t and ŷt are the x and y locations of a noisy 3D
bounding box at timestamp t.

As mentioned earlier, we parameterize the vehicle’s
states (xt, yt, θt) and the velocities vt, ωt as learnable pa-
rameters. Hence, we add the following regularization to
make the states adhere to the unicycle model as follows:

Luni =
∑
t

∥xt+1 − xt −
vt
ωt

(sin θt+1 − sin θt)∥+∑
t

∥yt+1 − yt +
vt
ωt

(cos θt+1 − cos θt)∥+∑
t

∥θt+1 − θt − ωt∥ (12)

In addition, we regularize the acceleration of the forward
velocity vt and angular velocity ωt to be smooth:

Lreg =
∑
t

∥vt+1 + vt−1 − 2vt∥2+∑
t

∥θt+1 + θt−1 − 2θt∥2 (13)

The total loss can be summarized as follows:

L = LI + λSLS + λFLF + λtLt + λuniLuni + λregLreg

(14)

3.4. Implementation Details

Initialization: While 3D Gaussian Splatting is not highly
sensitive to the initialization, better initialization can yield
better performance. We utilize the dense point cloud ob-
tained from COLMAP for initialization by default. When
the ego-vehicle is static, we use random initialization.

Pseudo-GTs: We utilize InverseForm [5] to generate
pseudo ground truth for semantic segmentation. For ini-
tializing the unicycle model, we employ a monocular-based
method, QD-3DT [16], to acquire pseudo ground truth for
3D bounding boxes and tracking IDs at each training view.
For optical flow, we use Unimatch [41] to obtain pseudo
ground truth.

Training: We train the model for 30,000 iterations on
dynamic scenes. For the KITTI-360 leaderboard, we per-
form early stopping at 15,000 iterations. Following [17], we
adopt the approach of setting the weight parameter λSSIM

to 0.2. Furthermore, we assign weights λS and λF as 0.01,
while λt, λuni and λreg are set as 0.1. The learning rate
of the unicycle model parameters progressively decreases
during training.

Time Consuming: Our approach can converge within 30
minutes and achieve inference at a speed of approximately
93 fps on a single NVIDIA RTX 4090. While NSG and
MARS inference at a speed of less than 1 fps. A speed
breakdown of our method is provided in the supplement.

4. Experiments

Datasets: We perform a range of experiments to assess
the performance of our model across various tasks, such
as novel view synthesis, novel semantic synthesis, and 3D
semantic reconstruction. These experiments are conducted
using the KITTI [13], Virtual KITTI 2 (vKITTI) [7], and
KITTI-360 datasets [21]. We apply 50% dropout rate fol-
lowing existing evaluation protocols [21, 40] on all of these
datasets.

Baselines: We evaluate the dynamic scene novel view syn-
thesis task by comparing our method with NSG [27] and
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Figure 4. Qualitative Comparison on KITTI and vKITTI. We use monocular-based 3D bounding box predictions for KITTI, and manually
jittered 3D bounding boxes for vKITTI. We zoom in on a patch of a dynamic object for each KITTI scene.

KITTI Scene02 KITTI Scene06 vKITTI Scene02 vKITTI Scene06
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NSG [27] 23.00 0.664 0.373 23.78 0.717 0.234 21.40 0.689 0.376 20.60 0.719 0.255
MARS [40] 23.30 0.731 0.139 25.09 0.856 0.083 22.67 0.882 0.128 21.67 0.856 0.134
Ours 25.42 0.821 0.092 28.20 0.919 0.027 26.21 0.911 0.040 26.65 0.921 0.030

Table 1. Novel View Synthesis on Dynamic Scenes with predicted or noisy 3D trackings.

MARS [40], which are two open-source methods for dy-
namic urban scenes. Additionally, we compare the static
novel view appearance and semantic synthesis task with
mip-NeRF [2], PNF [19], and MARS [40]. Furthermore,
we assess the quality of 3D semantic scene reconstruction
by comparing it with Semantic Nerfacto [34].

Evaluation Metrics: For novel view synthesis, we adopt
the default setting for quantitative assessments, including
the evaluation of PSNR, SSIM and LPIPS [50]. Regarding
novel view semantic synthesis, we follow KITTI-360 [21],
which reports the mean Intersection over Union on class
(mIoUcls) and category (mIoUcat), respectively. Further,
we evaluate our performance on 3D Semantic Segmentation
against a ground truth semantic LiDAR point cloud, mea-
suring both geometric reconstruction quality and semantic
accuracy. The geometric quality is evaluated as the chamfer
distance between two point clouds, including completeness
and accuracy, whereas the semantic accuracy is also mea-
sured using mIoUcls. In our ablation study, we evaluate 3D
tracking performance by measuring the rotation and trans-
lation error eR and et of our optimized 3D bounding boxes
wrt. the ground truth.

4.1. Novel View Synthesis

We first evaluate HUGS for novel view synthesis on various
datasets including dynamic and static scenes. For dynamic
scenes, we leverage noisy 3D bounding box predictions as
input, instead of using the ground truth. Despite not being

our main focus, we include a comparison of using ground
truth 3D bounding boxes in the supplement.

Dynamic Scene with Noisy 3D Bounding Boxes: Fol-
lowing [27, 40], we evaluate our performance on dynamic
scenes of the KITTI and vKITTI datasets. In contrast to
these methods that leverage ground truth poses, we inves-
tigate a more practical scenario where the bounding boxes
are generated by a monocular-based 3D tracking algorithm,
QD-3DT [16], in Table 1. Here, the predicted 3D bound-
ing boxes are only provided for training views, as testing
views should not be used as inputs for the tracking model.
In experiments where the unicycle model is not utilized, the
bounding boxes of testing views are obtained through linear
interpolation from neighbour training views. Where the uni-
cycle model is used, the bounding boxes of testing views are
computed using Eq. 2. For vKITTI, there is no pre-trained
monocular tracking algorithm. We hence jitter the ground
truth poses to simulate noisy monocular predictions, with
an average noise of 0.5 meters in translation and 5 degrees
in rotation. Our model’s robustness wrt. various levels of
noise will be analyzed in the ablation study.

Table 1 demonstrate that our method consistently outper-
forms against the baselines. Note, that QD-3DT yields rea-
sonable predictions on the KITTI dataset2. Hence, NSG and
MARS reconstruct the dynamic objects reasonably well, but
with more blurriness and artifacts (see Fig. 4), as they do

2In fact, following the evaluation protocol of MARS, the sequences we
evaluate on are used as training sequences for QD-3DT.



MARS Ours MARS Ours
Figure 5. Details Qualitative Comparison with MARS on
KITTI-360 Leaderboard.

PSNR↑ SSIM↑ LPIPS↓ mIoUcls ↑ mIoUcat ↑
mip-NeRF [2] 21.54 0.778 0.365 48.25 67.47
PNF [19] 22.07 0.820 0.221 73.06 84.97
MARS [40] 23.09 0.857 0.174 - -
Ours 23.38 0.870 0.121 72.65 85.64

Table 2. Novel View Semantic and Appearance Synthesis on
KITTI-360.

not model the optimization of the object poses. In contrast,
our method allows for reconstructing dynamic objects with
sharp details, not only in cases of minor pose error on the
KITTI dataset but also on the vKITTI dataset with more se-
vere noise.

Static Scene Leaderboard: We further evaluate our per-
formance on the KITTI-360 leaderboard, which contains 5
static sequences. Our method achieves state-of-the-art per-
formance on the leaderboard as in Table 2 (left), demon-
strating the effectiveness of the 3D Gaussian representa-
tion in modeling complex urban scenes. As we will discuss
in the ablation study, incorporating the affine transform to
model camera exposure is important for reaching high fi-
delity. Fig. 5 shows the qualitative comparison of our pro-
posed method to another top-ranking method, MARS, on
the leaderboard.

4.2. Semantic and Geometric Scene Understanding

Next, we evaluate our model on various semantic and geo-
metric scene understanding tasks on the KITTI-360 dataset.

Novel View Semantic Synthesis: Our holistic represen-
tation also enables novel view semantic synthesis. Hence,
we submit our novel view semantic synthesis performance
to the KITTI-360 leaderboard for comparison as well, see
Table 2 (right). Despite not leveraging category-level prior
as done in previous work [19], our approach achieves com-
parable performance to the SOTA [19] as shown in Fig. 6.

3D Semantic Scene Reconstruction: While existing 2D-
to-3D semantic lifting methods solely evaluate their perfor-
mance in the 2D image space, we further evaluate our per-

PNF Ours
Figure 6. Qualitative Comparison with PNF on KITTI-360
Leaderboard.

acc.↓ comp.↓ mIoUcls ↑
Semantic Nerfacto 1.508 24.28 0.055
Ours 0.233 0.214 0.505

Table 3. 3D Semantic Reconstruction on KITTI-360. Note that
all metrics are calculated in 3D space.

formance in the 3D space to examine the underlying 3D ge-
ometry. To this goal, we leverage the ground truth LiDAR
points provided by the KITTI-360 dataset for evaluation.
With each Gaussian possessing semantic information, we
can obtain a semantic point cloud by extracting the Gaus-
sian’s center µ and its semantic label. We evaluate the geo-
metric quality and semantic accuracy of this semantic point
cloud in Table 3. We compare our method with Seman-
tic Nerfacto [34], a Semantic NeRF implemented using a
more advanced backbone, as the state-of-the-art novel view
semantic synthesis method, PNF, in Table 2 is not open-
source. For this baseline, we extract a semantic point cloud
by specifying a threshold to the density field. While Se-
mantic Nerfacto enables rendering faithful 2D semantic la-
bels as shown in the supplement, the underlying 3D seman-
tic point cloud is significantly worse in comparison. The
Gaussian based representation instead allows for extracting
a much more accurate semantic point cloud in comparison.

4.3. Scene Editing

Our decomposed scene representation enables various
downstream applications. Our method allows for decom-
posing foreground moving objects from the background as
shown in Fig. 7. Further, we can edit the scene by swapping
dynamic objects, or manipulating their rotation and transla-
tions, see Fig. 8.

4.4. Ablation Study

We conduct ablation studies on dynamic and static scenes,
respectively.

Dynamic Scene: As KITTI provides accurate 3D bound-
ing box ground truth, we ablate the effectiveness of our uni-
cycle model on KITTI by manually adding noise to the 3D



KITTI (5% noise) KITTI (10% noise) KITTI (20% noise)
PSNR↑ SSIM↑ LPIPS↓ eR ↓ et ↓ PSNR↑ SSIM↑ LPIPS↓ eR ↓ et ↓ PSNR↑ SSIM↑ LPIPS↓ eR ↓ et ↓

w/o opt., w/o uni. 23.83 0.878 0.062 0.031 0.027 22.16 0.861 0.079 0.063 0.106 20.28 0.835 0.101 0.125 0.425
w/ opt., w/o uni. 24.80 0.897 0.038 0.022 0.051 22.75 0.879 0.056 0.054 0.130 20.56 0.855 0.081 0.135 0.612
w/ opt., w/ uni. (Ours) 28.78 0.928 0.023 0.017 0.022 26.66 0.908 0.032 0.037 0.035 23.59 0.875 0.061 0.081 0.176

Table 4. Ablation Study on Dynamic Scenes of KITTI.

Background Foreground
Figure 7. Scene Decomposition on KITTI. Our approach enables
clear decomposition of foreground and background.

Original Edited
Figure 8. Scene Editing on KITTI. Our decomposed scene repre-
sentation enables replacing dynamic objects (1st row) and moving
dynamic objects around (2nd & 3rd rows).

bounding boxes and evaluate both the novel view synthesis
results and the tracking performance, see Table 4. In this
experiment, we compare our full model to two variants, i.e.,
using the noises without optimization (w/o opt., w/o uni.),
and performing naı̈ve per-frame optimization without using
the unicycle model (w/ opt., w/o uni.). The results validate
the effectiveness of the unicycle model, which obviously
improves the rendering quality and 3D tracking accuracy.
Qualitative results in Fig. 9 further verify the effectiveness
of our unicycle model in enabling accuracy object recon-
struction given noisy 3D bounding boxes.

Static Scene: We further study the effect of different com-
ponents on three static scenes of KITTI-360 in Table 5. This
allows us to ablate design choices without mixing up the
impact of dynamic objects. The results indicate the signif-
icance of exposure modeling, which is particularly impor-
tant for scenes with strong exposure variance. The semantic
and flow losses have little contribution in improving novel
view synthesis. It is rational as imposing a constraint on the
semantic or flow does not necessarily contribute to appear-

PSNR↑ SSIM↑ LPIPS↓ Depth ↓
w/o Affine transform 24.18 0.827 0.083 –
w/o LS 24.47 0.831 0.081 0.892
w/o LF 24.45 0.831 0.080 1.031
Ours 24.52 0.833 0.081 0.872

Table 5. Ablation Study on Static Scenes on KITTI-360.

w/o opt., w/o uni. w/ opt., w/o uni. Ours
Figure 9. Detail Qualitative Comparison on KITTI with Noisy
Bounding Boxes.

ance. However, note that incorporating the flow supervi-
sion clearly improves the underlying geometry, since opti-
cal flow provides explicit correspondence. See supplement
for qualitative comparison.

5. Conclusion
In this paper, we present HUGS, a holistic scene represen-
tation that jointly optimizes appearance, geometry, and mo-
tion for urban scenes. This leads to state-of-the-art perfor-
mance on various tasks. Our method has several limitations.
Firstly, the reconstructed dynamic objects can only rotate to
a certain degree. Future work may explore category-level
prior, to enable accurate reconstruction of the full object.
Further, our model lacks control of more degrees of free-
dom, e.g., light editing, which could be a promising direc-
tion to explore based on the Gaussian representation.
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Michael Zollhöfer, Justus Thies, and Javier Romero. Driv-
able 3D Gaussian Avatars, 2023. arXiv:2311.08581 [cs]. 3

[54] M. Zwicker, H. Pfister, J. Van Baar, and M. Gross. EWA
splatting. IEEE Transactions on Visualization and Computer
Graphics, 8(3):223–238, 2002. 11



Appendix
In this appendix, we begin by discussing implementation details in Appendix A, which includes information about our
3D Gaussian, metrics, and the training and inference processes. We then describe the datasets used in our experiments in
Appendix B. Appendix C provides information about the baselines we compare with. Finally, Appendix D contains additional
experiment results.

A. Implementation
In this section, we begin by discussing our 3D Gaussian details, encompassing semantic, opacity and depth implementation
(Appendix A.1). Subsequently, we discuss the difference between 3D softmax and 2D softmax in 3D Semantic Scene
Reconstruction (Appendix A.2). Finally, we elucidate the evaluation metrics we utilize (Appendix A.3). Our source code
will be released.

A.1. 3D Gaussian Details

Following [18], each Gaussian has the following attributes: rotation (Rg ∈ R3×3), scale (Sg ∈ R3×1), opacity (α) and
spherical harmonics (SH). The corresponding 3D covariance matrix Σ ∈ R3×3 can be calculated using the following
formula:

Σ = RgSgS
T
g R

T
g (15)

When provided with a viewing transformation W ∈ R3×3 and the Jacobian of the affine approximation of the projective
transformation J ∈ R3×3, the covariance matrix Σ′ ∈ R3×3 in camera coordinates can be expressed as:

Σ′ = JWΣWTJT (16)

Following EWA splatting [54], we can skip the third row and column of Σ′ to obtain a 2× 2 covariance matrix with the same
structure and properties. For brevity, we still use the notation Σ′ ∈ R2×2 to denote the 2D covariance matrix.

By considering the projected 3D Gaussian center µ ∈ R2×1 and an arbitrary point x ∈ R2×1 on camera coordinates, the
opacity α′ of x contributed by this 3D Gaussian can be computed as follows:

α′ = α exp

(
−1

2
(x− µ)T (Σ′)−1(x− µ)

)
(17)

The color c of each Gaussian can be computed based on the view direction and its corresponding spherical harmonics (SH).
Given a set of sorted 3D Gaussians N along the ray, we obtain the accumulated color via volume rendering:

π : C =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1− α′
j) (18)

The same volume rendering technique can be applied to obtain semantic S, depth D and optical flow F. With the given
semantic feature si, depth value di, and Gaussian motion fi relative to the camera pose, we can define the semantic rendering,
depth rendering, and flow rendering as follows:

S =
∑
i∈N

softmax(si)α′
i

i−1∏
j=1

(1− α′
j) (19)

D =
∑
i∈N

diα
′
i

i−1∏
j=1

(1− α′
j) (20)

F =
∑
i∈N

fiα
′
i

i−1∏
j=1

(1− α′
j) (21)

Note that all the projections and volume rendering techniques mentioned are implemented in CUDA. Calculating the pro-
jected 2D opacity α′ on each pixel and sorting Gaussians based on their distances from the camera takes the majority of
computations in the rendering process. These computations need to be performed only once for rendering all modalities, thus
maintaining the real-time rendering property of the original 3D Gaussian Splatting.



A.2. 3D Semantic Scene Reconstruction

We utilize Eq. (19), referred to as 3D softmax, to render semantic maps. This is in contrast to most existing NeRF-based
semantic reconstruction methods that perform softmax to the accumulated 2D logits [11, 52], described in Eq. (22), referred
to as 2D softmax. The fundamental difference between these two rendering techniques lies in the fact that 3D softmax
normalizes the logits of each 3D point. This normalization process helps prevent a single point with a significantly high logit
value from imposing an overwhelming influence on the overall volume rendering outcome. On the other hand, it also prevents
placing 3D points of low logit values in empty space. As a result, 3D softmax is effective in reducing floaters and enhancing
the geometry of the reconstruction results. In Appendix D.3, we present a comprehensive analysis of the qualitative and
quantitative comparison results between these two rendering methods.

S2D norm = softmax

∑
i∈N

siα
′
i

i−1∏
j=1

(1− α′
j)

 (22)

In the following sections, we refer to our default setting obtained by Eq. (19) as S3D norm.

A.3. Metrics

Novel View Appearance Synthesis: To assess the quality of novel view appearance synthesis, we utilize the Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) [50]
following the common practice.

Novel View Semantic Synthesis: Following KITTI-360 [21], we evaluate the quality of novel view semantic synthesis via
the mean Intersection over Union (mIoU) metric.

3D Semantic Reconstruction: We evaluate 3D semantic reconstruction quality by extracting a 3D semantic point cloud
and comparing it with the ground truth LiDAR points. We evaluate both geometric and semantic metrics in the 3D space.
Specifically, we evaluate geometric reconstruction quality by measuring the accuracy (acc.) and completeness (comp.). Ac-
curacy measures the average distance from reconstructed points to the nearest LiDAR point, while completeness measures
the average distance from LiDAR points to the nearest reconstructed points. In order to measure the semantic quality of
the reconstructed point cloud, we map the predicted 3D semantics to the LiDAR points. Concretely, for each point in the
LiDAR point cloud, we identify its closest counterpart in the predicted semantic point cloud and allocate a semantic label
based on this nearest neighbor. The assigned semantic labels of all LiDAR points are then compared with the 3D semantic
segmentation ground truth provided by KITTI-360, evaluated via the mIoU metric. Note that we only use the LiDAR point
clouds for evaluation.

3D Tracking: To demonstrate the effectiveness of our model in rectifying noisy 3D tracking results, we evaluate the
accuracy of predicted poses compared to ground truth poses in our ablation study. Considering the rotation and translation
parameters of a ground truth bounding box denoted as R̂ and t̂, respectively, and the corresponding parameters of predicted
poses, represented as R and t, we employ two metrics for this evaluation following [8]: eR quantifies the rotation accuracy,
while et assesses the translation accuracy as follows

eR = arccos
Tr(R̂ ·R−1)− 1

2
(23)

et = ∥t̂− t∥2 (24)

where Tr represents the trace of a matrix.

Depth Estimation: In our ablation study, we evaluate the depth estimation quality of our different variants. This is achieved
by first projecting the LiDAR points acquired at the same frame to the 2D image space, followed by measuring the L2 distance
between the projected LiDAR depth and our method. Considering the projected LiDAR depth is sparse, our assessment
focuses solely on pixels with valid LiDAR projections when calculating the L2 distance.

B. Data
In this section, we present details of datasets on which we conducted our experiments, including KITTI [13], Virtual KITTI
2 (vKITTI) [7] and KITTI-360 [21].



Pre. + π RGB + Affine + π Semantic + π Flow
Speed (ms) 6.25 8.13 (+1.88) 8.54 (+0.41) 9.70 (+1.16) 10.17 (+0.47)

Table 6. Time consumption breakdown of our method.

KITTI: Following NSG [27] and MARS [40], we select frames 140 to 224 from Scene02 and frames 65 to 120 from Scene06
on KITTI for conducting our experiments.

vKITTI: Virtual KITTI 2 is a synthetic dataset that closely resembles the scenes present in KITTI. In line with the settings
outlined in NSG and MARS, we conduct experiments on exactly the same frames from Scene02 and Scene06.

KITTI-360: In addition, we perform experiments on KITTI-360, encompassing both static and dynamic scenes. For the
tasks of novel view synthesis and novel semantic synthesis on the leaderboard, we conduct experiments on the sequences
provided by the official dataset. Furthermore, we explore dynamic scenes, such as frames 11322 to 11381 from sequence 00,
as showcased in our teaser.

C. Baselines
In this section, we discuss the baselines against which we compare our approach, including NSG [27], MARS [40], PNF [19],
and Semantic Nerfacto [34].

NSG: NSG is the pioneering method that introduces the decomposition of dynamic scenes into static background and
dynamic foreground components. They propose a learned scene graph representation that enables efficient rendering of
novel scene arrangements and viewpoints. However, the official source code provided by NSG often encounters issues when
training on KITTI Scene02. Therefore, we utilize the version implemented by the authors of MARS, which is more stable
and yields slightly improved results compared to the original version.

MARS: We utilize the latest version of the code provided by the official MARS repository. This latest version incorporates
bug fixes and includes additional training iterations, resulting in improved performance. In fact, the updated version achieves
a notable improvement of 3 to 4 dB on PSNR compared to the numbers reported in the original paper.

PNF: Since PNF is not open-source, we directly compare our method to their submission on the KITTI-360 leaderboard
regarding novel view appearance & semantic synthesis. To the best of our knowledge, PNF is the only work that considers
the optimization of noisy 3D bounding boxes of dynamic objects. In our ablation study, we conduct a naı̈ve baseline that
optimizes the 3D bounding boxes of each frame independently, which can be considered as a re-implementation of PNF’s
bounding box optimization in our framework.

Semantic Nerfacto: For the evaluation of 3D semantic point cloud geometry, we compare our results with Semantic Ner-
facto [34] as an alternative to PNF [19]. Nerfacto [34] is an integration of several successful methods that demonstrate strong
performance on real data. It incorporates camera pose refinement, per-image appearance embedding, proposal sampling,
scene contraction, and hash encoding within its pipeline. Additionally, Nerfacto includes a semantic head in its framework,
enabling the generation of meaningful semantic maps, as demonstrated in Appendix D.2.

D. Additional Experiment Results
D.1. Time Consumption Breakdown

Tab. 6 shows our detailed runtime breakdown as various components are incrementally enabled. Preparation (Pre.) contains
operations like tile partition and Gaussian sorting. π denotes volume rendering, and affine denotes affine transform. Other
components like unicycle model, dynamic decomposition, and depth rendering are excluded as they hardly consume any
additional time.

D.2. Additional Comparison Experiments

Dynamic Scene with GT 3D Bounding Boxes: Despite not being our primary focus, we additionally provide a comparison
with NSG and MARS using ground truth 3D trackings. In this setting, our approach demonstrates superior performance
across all test scenes, see Tab. 7.



KITTI Scene02 KITTI Scene06 vKITTI Scene02 vKITTI Scene06
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NSG [27] 22.51 0.653 0.397 23.38 0.717 0.243 23.50 0.718 0.352 26.42 0.811 0.170
MARS [40] 22.95 0.728 0.145 27.01 0.883 0.062 29.80 0.950 0.034 32.71 0.959 0.023
Ours 25.89 0.829 0.092 28.90 0.925 0.016 30.73 0.955 0.018 33.31 0.963 0.010

Table 7. Novel View Appearance on Dynamic Scenes with ground truth 3D trackings.

Semantic Nerfacto Ours Pseudo GT

Figure 10. Qualitative Comparison with Nerfacto on 2D space. The Pseudo GT column represents the semantic maps that are predicted
by [6] on GT RGB images.

Semantic Nerfacto Ours

Figure 11. Qualitative Comparison with Nerfacto on 3D space. The semantic point cloud extracted from Semantic Nerfacto struggles to
faithfully represent the geometry.
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KITTI 02 QD-3DT 0.027 0.215
Ours 0.018 0.108

KITTI 06 QD-3DT 0.017 0.046
Ours 0.012 0.033

Table 8. Qualitative Comparison with a tracking method,
QD-3DT [16], on two sequences. Figure 12. Pose comparison with QD-3DT.

Seq01 mIoUcls ↑ Seq02 mIoUcls ↑ Seq03 mIoUcls ↑ Average mIoUcls ↑
Ours w/ S2D norm 0.427 0.363 0.416 0.402
Ours w/ S3D norm 0.544 0.452 0.520 0.505

Table 9. Comparison on 3D and 2D Semantic Softmax on KITTI-360.

KITTI-360 Scene00 KITTI-360 Scene01 KITTI-360 Scene02 Average
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Random 20.84 0.784 0.150 19.40 0.705 0.171 22.55 0.800 0.136 20.93 0.763 0.457
LiDAR 25.64 0.856 0.070 22.88 0.784 0.089 24.04 0.836 0.080 24.19 0.825 0.080
COLMAP 26.23 0.863 0.069 22.94 0.794 0.096 24.38 0.843 0.077 24.52 0.833 0.081

Table 10. Quantitative Comparison with different initialization.

Details of Comparison with Semantic Nerfacto: While Semantic Nerfacto excels at rendering meaningful novel view
semantic images (as seen in Fig. 10), Fig. 11 shows it struggling to accurately reconstruct correct geometry. Following the
common practice of NeRF-based semantic reconstruction methods [34], we apply 2D softmax to Semantic Nerfacto. when
we attempted to apply the 3D Softmax technique to Nerfacto, it did not yield better results compared to using 2D softmax.
The results can be attributed to the incorrect of Nerfacto’s 3D geometry. Instead of adjusting 2D logits with large-scale
logits in 3D, the use of 3D softmax prevents the “cheating” approach by normalizing logits in 3D space. However, this
normalization requirement necessitates sufficiently accurate geometry for satisfactory results.

Comparisons with Tracking Methods: To further compare with off-the-shelf tracking methods, we show the performance
of QD-3DT [16] and our optimized pose initialized with [16] in Tab. 8 and qualitatively illustrate the poses of one vehicle in
Fig. 12. Our method consistently improves [16] across two KITTI scenes.

D.3. Additional Ablation Experiments

3D and 2D Semantic Softmax: We provide more 3D and 2D semantic logits softmax comparison in Fig. 13 and Tab. 9.
As can be seen, normalizing semantic logits in 3D space leads to notable qualitative and quantitative improvement compared
to 2D space normalization.

Improvements on Geometry: We now qualitatively examine how the optical flow loss LF and the semantic loss LS impact
the geometry, as shown in Fig. 14 and Fig. 15. Both figures reveal that incorporating either the semantic loss or the optical
flow loss improves the underlying geometry. While the impact of the semantic loss on geometry may be less evident, the
optical flow clearly enhances geometric accuracy. This improvement is rationalized by the fact that optical flow guides
correspondences across neighboring frames. It’s important to note that when the semantic loss LS is active, the sky region of
the depth maps in Fig. 14 is set to infinite.

Effects of Initialization: We conduct a thorough comparison of the results obtained through different initialization strate-
gies. In particular, we consider random initialization and COLMAP-based initialization. To further investigate whether
adopting LiDAR point cloud for initialization is helpful in urban scenes, we further consider LiDAR point clouds as ini-
tialization. We report the quantitative and qualitative comparison in Tab. 10 and Fig. 16, respectively. We observe that
both LiDAR and COLMAP initialization outperform random initialization. Interestingly, the COLMAP-based initialization
even shows a slight advantage over the LiDAR-based one. This could be attributed to the presence of points in the LiDAR



Ours w/ S2D norm Ours w/ S3D norm

Figure 13. Qualitative Comparison of 3D and 2D softmax results. Note that normalizing semantic logits in 3D space (Ours w/ S3D norm)
clearly reduces floaters and yields better 3D semantic reconstruction than the 2D normalization counterpart (Ours w/ S2D norm).

point clouds that remain unobserved in any training views, leading to artifacts in test viewpoints. Furthermore, COLMAP
improves the quality of objects located at far distances, which cannot be accurately captured by LiDAR. These findings un-
derscore the potential for achieving high-fidelity novel view synthesis in urban scenes based solely on RGB images. In our
main experiments, we adopt the COLMAP-based initialization by default.

D.4. Visualization of Optimization Progress

We present the visualization of the optimization progress for both the noisy bounding boxes and the background semantic
point cloud in Fig. 17. Using noisy 3D bounding boxes as input, our approach optimizes both the background and the poses
of the bounding boxes simultaneously. As evident, the application of physical constraints derived from the unicycle model
results in a smooth trajectory for the bounding boxes.



w/o LS, w/o LF w/ LS, w/o LF w/o LS, w/ LF w/ LS, w/ LF

Figure 14. Qualitative Comparison on depth. In the presence of the semantic loss LS (2nd and 4th columns), we set the sky region’s
depth infinite based on its semantic label. Note that the activation of either the semantic loss LS (2nd column) or the optical loss LF

(3rd column) yields enhancements in geometry, e.g., the left car in the bottom row, with the improvement in optical flow loss being more
evident.

w/o LS, w/o LF w/ LS, w/o LF w/o LS, w/ LF w/ LS, w/ LF

Figure 15. Qualitative Comparison on optical flow. While 3D Gaussians can enable the rendering of optical flow without additional
supervision on semantic or optical flow, the rendered flow maps exhibit clear artifacts (1st column). These artifacts are particularly
noticeable on the cars and the ground. Interestingly, the incorporation of semantic supervision LS mitigates the artifacts to some extent
(2nd column). Additionally, introducing pseudo-optical flow supervision LF contributes to further improvement in the optical flow results
(3rd and 4th columns).



Random LiDAR COLMAP

Figure 16. Qualitative Comparison with different initialization strategies. The superiority of both LiDAR-based and COLMAP-based
initialization over random initialization is evident. Random initialization occasionally results in significant artifacts, as illustrated by the
right building in the 1st row. LiDAR-based initialization, while generally effective, introduces artifacts in areas very close to the ego car,
such as the bottom right corner of the 4th-6th rows. These regions typically encompass LiDAR points unseen by any training views. The
COLMAP-based initialization further demonstrates an improvement over the LiDAR-based approach in distant regions, exemplified by the
trees in the 1st row.

10 steps 2000 steps 5000 steps
Figure 17. Visualization of Optimization Progress. Our method jointly optimizes the static background and the trajectory of the dynamic
foreground objects. By integrating physical constraints using the unicycle model, our method allows for recovering a smooth trajectory
from noisy 3D bounding boxes. To prevent visual clutter, we exclude point clouds of the dynamic object and only visualize the bounding
boxes.
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