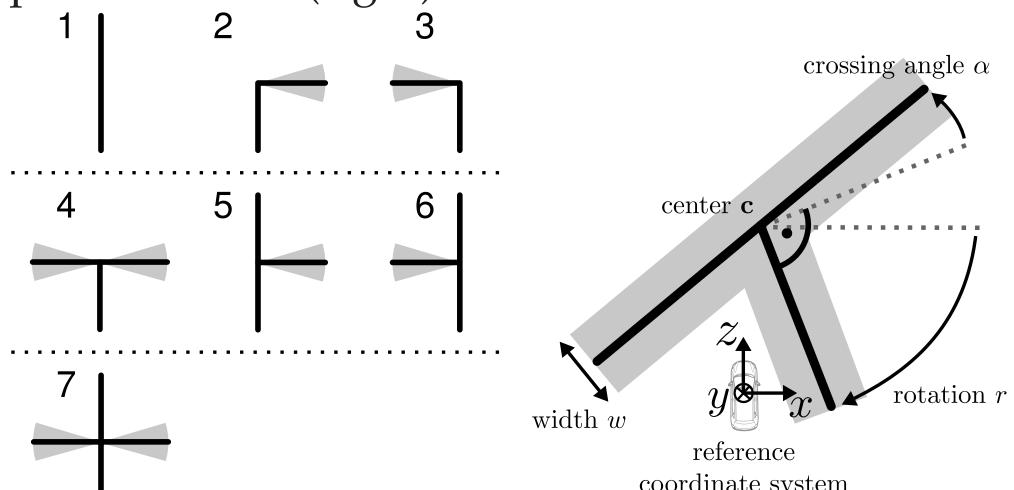


MAX-PLANCK-GESELLSCHAFT

INTRODUCTION

Given a short monocular video sequence from a movable platform we propose a joint probabilistic model for estimating:

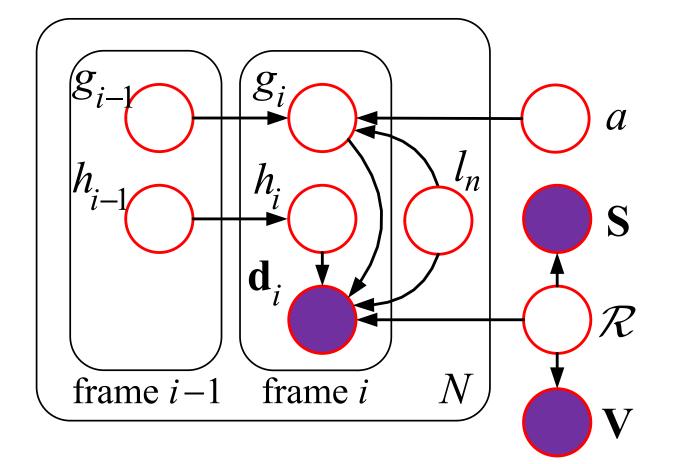

- The 3D urban scene layout
- The objects (e.g., cars) in the scene

Contributions with respect to [1]:

- Model for Traffic patterns
- Interactions between tracklets
- Novel dynamical model

TOPOLOGY AND GEOMETRY

We model street scenes in **bird's eye perspective** using 7 scene layouts θ (left) and the geometry parameters \mathcal{R} (right):

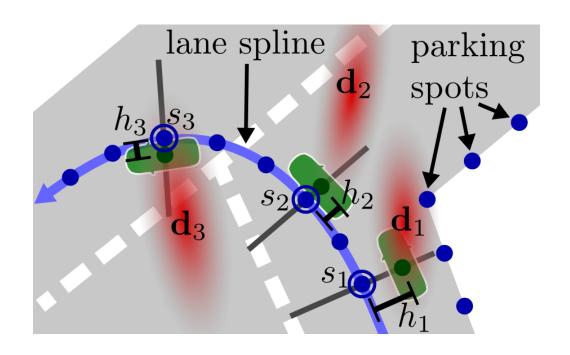

We model the set of possible vehicle locations with lanes connecting the streets and parking spots at the road side:

We have: • *K* streets • K(K-1) lanes • 2*K* parking spots

Understanding High-Level Semantics by Modeling Traffic Patterns

Hongyi Zhang^{*}, Andreas Geiger[†] and Raquel Urtasun[‡] }

PROBABILISTIC MODEL



Variables:

- *R*: Road parameters (width, rotation, etc.)
- *a*: Traffic patterns (i.e. traffic signal phase)
- l_n : Lane n-th tracklet is driving on
- (g_i, h_i) : Vehicle dynamics
- **d**_{*i*}: Tracklet detection (location, heading)
- S: Scene label evidence
- V: Vanishing point evidence

TRACKLETS

Detection likelihood:

 $p(\mathbf{d}_i|g_i, h_i) = \mathcal{N}((s_i, h_i), (\xi \Lambda_{\mathbf{d}_i})^{-1}) \times p_{\text{heading}}^{\gamma}$

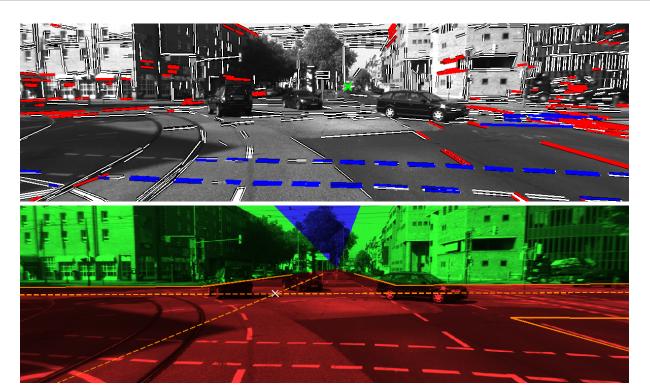
- g = (s, b), s: spline point, $b \in \{\text{stop}, \text{go}\}$
- $\Lambda_{\mathbf{d}_i}$: tracklet precision matrix
- p_{heading} : heading probability
- ξ, γ : model parameters

Forward dynamics:

$$p(g_i|g_{i-1}) = \begin{cases} p(b_i|b_{i-1})\pi(\cdot) & \text{if } b_i = \text{go} \\ p(b_i|b_{i-1}) & \text{if } b_i = \text{stop} \land s_i = s_{i-1} \\ 0 & \text{if } b_i = \text{stop} \land s_i \neq s_{i-1} \end{cases}$$

where the transition probability $p(b_i|\cdot)$ also depends on a, l which decide if the lane is active, and $\pi(\cdot)$ models the driving speed.

Lateral dynamics:


• $h_i = h_{i-1} + \Delta \sigma_h^2$ (Gaussian noise)

Learning forward dynamics: Estimate $p(b_{i-1}, b_i)$ on active/inactive lane separately (S: stop states, G: go states)

*Peking University, [†]MPI Tübingen, [‡]TTI Chicago

VANISH. POINTS / SEM. LABELS

INFERENCE

Inferring road geometry:

• Simulated annealing (MH sampling) • Mixture of local and global moves

Inferring traffic patterns:

$$p(a|\mathbf{T}, \mathcal{R}) \propto \prod_{n=1}^{N} \sum_{l_n} p(\mathbf{t}_n | a, l_n, \mathcal{R})$$

Inferring car-to-lane associations:

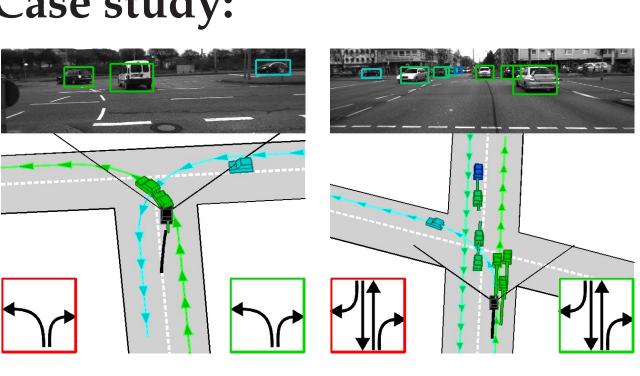
 $p(l_n|a, \mathbf{t}_n, \mathcal{R}) \propto p(\mathbf{t}_n|a, l_n, \mathcal{R}).$

where a tracklet $\mathbf{t} = {\mathbf{d}_1, \dots, \mathbf{d}_M}$ is represented by the set of its detections and $p(\mathbf{t}_n | a, l_n, \mathcal{R})$ can be approximated by Expectation Propagation.

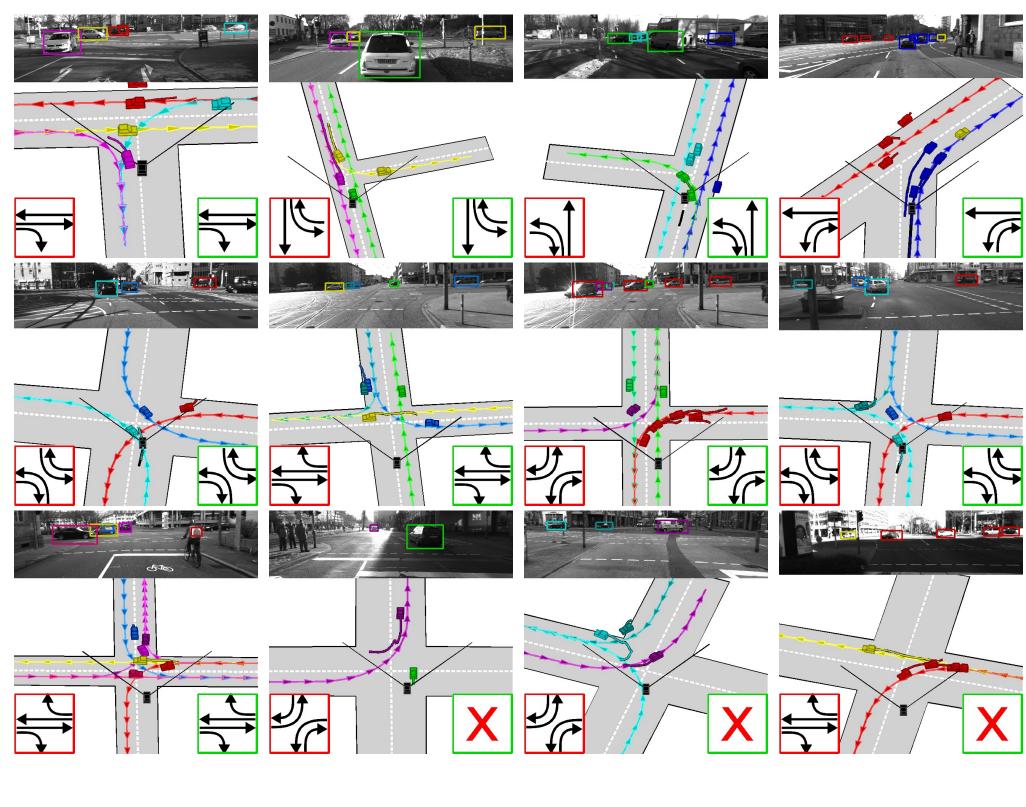
LEARNING

Learning traffic patterns:

• Enumerate all combinations of *K* patterns • Score them by number of correct tracklets • 4 patterns explain most scenarios


3-arm patterns (blue: learned patterns): Pattern 11 Pattern 12 Pattern 13 Pattern 14 Pattern 15 Pattern 16 Pattern 17 Pattern 18 Pattern 19 4-arm patterns (blue: learned patterns):

{	¢					╶╴			
Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8	Pattern 9	Pattern 10	Pattern 11


Lane State Inactive Active	S→S	$G \rightarrow S$	$S \rightarrow G$	$G \rightarrow G$
Inactive	0.888	0.017	0.015	0.080
Active	0.027	0.010	0.005	0.958

RESULTS

Case study:

Qualitative Results:

ľ	attern a	ind ca	r-to-la	ne ass	ociation	error:	
		T-L err	or (all)	T-L err	or (>10m)	Patteri	n error
					4-arm	3-arm	4-arm
•	[1]	46.7%	49.9%	17.9%	30.1%	—	_
	Ours	15.2%	30.1%	3.6%	14.0%	18.2%	19.4%

	T-L error (all)					
Method	3-arm	4-arm	3-arm	4-arm	3-arm	4-arm
[1]	46.7%	49.9%	17.9%	00.170	_	
Ours	15.2%	30.1%	3.6%	14.0%	18.2%	19.4%

Road geometry estimation:

	Location					
Method						
[1]	4.3 m	5.4 m	3.3 deg 2.4 deg	8.0 deg	58.7%	56.0%
Ours	5.7 m	4.9 m	2.4 deg	4.3 deg	61.5%	61.3%

REFERENCES

Red: Inferred pattern Green: True pattern

Left: traffic pattern disambiguates lane association of the static car (rightmost).

Right: Correct inference result for scene from the INTRODUCTION. [1] infers colliding vehicles.

Dettorn and can to land according annous

[1] A. Geiger, C. Wojek, and R. Urtasun. Joint 3d estimation of objects and scene layout. In NIPS, Granada, Spain, December 2011.