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Abstract—We present a unified formulation and model for three motion and 3D perception tasks: optical flow, rectified stereo matching
and unrectified stereo depth estimation from posed images. Unlike previous specialized architectures for each specific task, we
formulate all three tasks as a unified dense correspondence matching problem, which can be solved with a single model by directly
comparing feature similarities. Such a formulation calls for discriminative feature representations, which we achieve using a
Transformer, in particular the cross-attention mechanism. We demonstrate that cross-attention enables integration of knowledge from
another image via cross-view interactions, which greatly improves the quality of the extracted features. Our unified model naturally
enables cross-task transfer since the model architecture and parameters are shared across tasks. We outperform RAFT with our
unified model on the challenging Sintel dataset, and our final model that uses a few additional task-specific refinement steps
outperforms or compares favorably to recent state-of-the-art methods on 10 popular flow, stereo and depth datasets, while being
simpler and more efficient in terms of model design and inference speed.

Index Terms—Dense correspondence, optical flow, stereo, depth, Transformer, cross-attention

✦

1 INTRODUCTION

UNDERSTANDING the 3D scene structure and motion
from a set of 2D images has been a long-standing goal

of computer vision [1], [2]. It is the cornerstone of many real-
world applications, such as reconstructing a 3D city from
internet photos [3], action recognition with optical flow [4],
augmented reality [5] and autonomous driving [6].

Classic approaches typically tackle these tasks by solving
an energy minimization problem with optimization tech-
niques. For example, the variational approach for optical
flow [7], semi-global matching for stereo vision [8] and
bundle adjustment for structure-from-motion [9]. Although
significant progress has been made with classic methods,
they often still struggle in challenging situations like tex-
tureless regions and thin structures.

The rapid advancement of deep learning [10] and large-
scale datasets also enables direct feed-forward inference of
geometry and motion using high-capacity deep neural net-
works. Different network architectures have been proposed
for different tasks in the last few years (e.g., FlowNet [11] for
optical flow and MVSNet [12] for multi-view stereo). Fur-
ther development of network architectures has led to steady
progress on geometry and motion tasks, and learning-based
methods are currently dominating the leaderboards of pop-
ular benchmarks [6], [13], [14], [15].

However, existing works are largely driven by designing
task-specific models to solve each task independently, and
thus a large variety of network architectures [16], [17], [18],
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Fig. 1: A unified model for three motion and 3D perception
tasks. We formulate optical flow, rectified stereo matching
and unrectified stereo depth estimation as a unified dense
correspondence matching problem that can be solved by
directly comparing feature similarities. To obtain discrimi-
native features for matching, we use a Transformer, in par-
ticular the cross-attention mechanism. We demonstrate that
cross-attention can integrate the knowledge from another
view via cross-view interactions, which greatly improves
the quality of the extracted features. This is not achievable
with classical convolution-based backbones which operate
on each view independently.

[19], [20], [21], [22] have been proposed to handle different
tasks, ignoring the fact that many multi-view geometry
and motion tasks are fundamentally related correspondence
estimation problems. Such a task-specific design philosophy
inevitably leads to lots of architectures to deal with, and ad-
ditional complexities are introduced in model deployment
or update for real-world applications. Besides, pretrained
models for different tasks cannot be reused (e.g., transfer
between tasks) when they are studied in isolation.
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In this paper, we aim at developing a single unified
model to solve three dense perception tasks: optical flow,
rectified stereo matching and unrectified stereo depth esti-
mation from posed images, as shown in Fig. 1, which are
fundamental building blocks for motion (optical flow) and
3D (depth) understanding. To achieve this, we first iden-
tify the main obstacle that hinders previous models to be
generally applicable. In particular, previous methods mostly
encode the task-specific geometric inductive bias (e.g., the
cost volume [17], [23] with different shapes) as intermediate
components of the model and use subsequent convolutional
networks for flow/disparity/depth regression. Since the ge-
ometric inductive bias is task-dependent (e.g., optical flow’s
cost volume is typically based on 2D correlation [11], while
stereo matching networks construct cost volume by 1D cor-
relation [19] or feature concatenation [24]), this leads to task-
specific convolutional architectures for post-processing the
cost volume. Moreover, the type of convolutional networks
can be quite different (2D [17], [19], 3D [24], [25] or Con-
vGRU [21], [26]), which introduces additional challenges in
unifying these tasks under such a pipeline.

Our key insight is that these tasks can be unified in
an explicit dense correspondence matching formulation,
where they can be solved by directly comparing feature
similarities. Thus the task is reduced to learning strong task-
agnostic feature representations for matching, for which
we use a Transformer [27], in particular the cross-attention
mechanism to achieve this. We demonstrate that cross-
attention can integrate the knowledge from another im-
age via cross-view interactions, which greatly improves
the quality of the extracted features. In our method, the
geometric inductive biases for each task are modeled with
parameter-free task-specific matching layers at the final out-
put, which not only introduces no task-specific learnable
parameters, but also demonstrates that cost volume post-
processing is not always necessary for geometry and motion
estimation tasks once we have strong features. This is differ-
ent from Perceiver IO [28] that directly regresses optical flow
without considering any geometric inductive bias, which is
less efficient in terms of model parameters (ours is 8× less)
and inference speed (ours is 4× faster). It also differs from
IIB [29] that injects the geometric inductive bias at the input,
which makes subsequent network layers task-specific. Our
formulation implicitly assumes the corresponding pixels
are visible on both images and thus they can be matched
by comparing feature similarities. To handle unmatched
(occluded and out-of-boundary) regions, we introduce a
simple task-agnostic self-attention layer to propagate the
high-quality predictions to unmatched regions by measur-
ing feature self-similarity [30], [31].

Our unified model naturally enables cross-task transfer
since each task uses exactly the same learnable parameters
for feature extraction. For example, without any finetuning,
a pretrained optical flow model can be directly used for
the task of rectified stereo matching and unrectified stereo
depth estimation. Moreover, when finetuning with the pre-
trained flow model as initialization, we not only enjoy faster
training speed for stereo and depth, but also achieve better
performance, as evidenced by our experiments (Table 10).

Our unified model with only one task-agnostic hierar-
chical matching refinement outperforms RAFT [21] with

31 refinement steps on the challenging Sintel [13] dataset
while running faster (Fig. 5 and Table 3), demonstrating the
effectiveness and efficiency of our method. Our final model
that uses a few additional task-specific refinement steps
outperforms or compares favorably to recent state-of-the-art
methods on 10 popular flow/stereo/depth datasets (KITTI
Flow [14], Sintel [13], Middlebury [15], KITTI Stereo [14],
ETH3D Stereo [32], Argoverse Stereo [33], ScanNet [34],
SUN3D [35], RGBD-SLAM [36] and Scenes11 [37]), while
being simpler and more efficient in terms of model design
and inference speed.

This work represents a substantial extension of our pre-
vious CVPR 2022 conference paper GMFlow [38], where
the new contributions are summarized as follows: (1) The
initial work GMFlow [38] aims at demonstrating a suc-
cessful alternative to RAFT’s [21] iterative architecture for
the optical flow task, while this work proposes a more
holistic perspective that unifies three dense correspon-
dence estimation tasks. (2) We extend GMFlow to rec-
tified stereo matching and unrectified stereo depth esti-
mation from posed images and conduct extensive exper-
iments. (3) We study the cross-task transfer behavior by
reusing pretrained models. Our project page is available at
haofeixu.github.io/unimatch, and our code and models are
available at github.com/autonomousvision/unimatch.

2 RELATED WORK

Most existing methods for optical flow, rectified stereo
matching and unrectified stereo depth estimation have been
largely driven by designing specific architectures for each
specific task, without pursing a unified model. In this sec-
tion, we will first review the development of each task
independently, and then discuss their relations from the
perspective of a unified model and multi-task learning.

2.1 Optical Flow

Optical flow has been traditionally tackled with variational
approaches [2], [7], [39], [40], [41], [42], where it is typically
solved as an energy minimization problem that consists of a
brightness constancy term and a regularization term. The
advancement of deep learning has also enabled directly
learning optical flow from data. The pioneering learning-
based work, FlowNet [11], proposed a convolutional neural
network that directly takes two images as input and re-
gresses an optical flow field. Further advances of network
architectures and training strategies [16], [17], [21], [31],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53] have
led to steady progress for learning-based methods, which
today outperform traditional approaches by a large margin
and are currently dominating the benchmarks including
Sintel [13] and KITTI [6], [14].

However, a closer look at existing learning-based ap-
proaches reveals that the underlying architectural principles
haven’t changed much since FlowNet [11], that is, regressing
optical flow from local correlation (i.e., cost volume) with
convolutions. Such a local regression approach is intrinsi-
cally limited by trading off large-displacement flow esti-
mation with the size of the cost volume. To alleviate this
problem, two popular strategies are coarse-to-fine [17], [43]
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and iterative refinement [21], [44] methods, which estimate
large displacements incrementally in multiple stages. How-
ever, coarse-to-fine methods tend to miss fast-moving small
objects if the resolution is too coarse and may suffer from
the error-propagation issue [54]. In contrast, the iterative
approaches like RAFT [21] lead to a linear increase in
processing time due to the large number of sequential refine-
ments. In contrast, we reformulate optical flow as a global
matching problem, which identifies dense correspondences
by directly comparing pair-wise feature similarities, leading
to significant improvement for large displacements.

2.2 Stereo Matching

Typical stereo matching methods generally follow a four-
step pipeline [23]: matching cost computation, cost ag-
gregation, disparity computation and disparity refine-
ment. Again, early optimization-based methods [55], [56]
have been replaced by modern deep learning-based ap-
proaches [19], [24], [25], [57], [58], [59], [60], [61]. The current
representative stereo methods can be broadly classified into
two categories: 3D and 2D convolution-based approaches.
Their key difference lies in the cost volume construction
method. 3D convolution-based methods [22], [24], [25], [60]
typically use feature concatenation while 2D methods [19],
[58] use feature correlation. These methods usually build a
local cost volume with a predefined search space (typically
192 pixels [59]) and the final disparity prediction is obtained
by computing the weighted sum of all disparity candidates.
Thus the output is always constrained by the predefined
disparity range, which makes these methods less flexible to
handle unconstrained settings like high-resolution images
or new camera settings. For example, to adapt such an ar-
chitecture to larger disparity ranges, the full model has to be
re-trained by setting a new predefined maximum disparity.
In contrast, we directly perform global matching along the
scanline, which make no assumption on the disparity range
and is able to handle arbitrary image resolutions.

Recent iterative 2D methods like RAFT-Stereo [26] and
CREStereo [62] mostly follow the high-level design of the
RAFT [21] architecture for optical flow, while introducing
several task-specific components (e.g., 1D correlation) to
make such a method suitable for the stereo matching task.
In contrast, we show that our matching-based perspective
enables to use the same model for both optical flow and
stereo matching, with exactly the same learnable param-
eters. Besides, our model is also more efficient since we
don’t rely on any 3D convolutions or a large number of
sequential refinements. On the other hand, although MC-
CNN [57] also tries to learn strong features for matching,
the features in MC-CNN are extracted independently with
a convolutional network, without considering cross-view
interactions. However, as evidenced by our results, cross-
view interactions are crucial for strong and discriminative
features (see Table 1 and Table 2a).

Perhaps the most related stereo work to ours is
STTR [63], which also uses a Transformer and matching-
based disparity computation. However, STTR relies on a
complex optimal transport matching layer and doesn’t pro-
duce predictions for occluded pixels, while we use a much
simpler softmax operation and a simple flow propaga-

tion layer to handle occlusions. The later CSTR (Context-
Enhanced Stereo Transformer) [64] tries to improve STTR’s
performance with a new Transformer architecture, but it
still suffers from the limitation of STTR. Moreover, STTR
is designed to solve the stereo matching task, while we are
seeking a unified model applicable to three different dense
correspondence estimation tasks.

2.3 Depth Estimation
Learning-based depth estimation methods can be broadly
categorized into monocular and multi-view approaches.
Monocular methods [65], [66], [67], [68], [69], [70] take a
single image as input and use generic network architectures
like ResNet [71] to predict the dense depth map, while
multi-view methods [12], [20], [37], [72], [73], [74], [75], [76],
[77] usually focus on how to encode the geometric inductive
bias (cost volume, warping, etc.) into the network archi-
tecture. Compared with monocular methods, multi-view
depth estimation can better leverage the information from
additional viewpoints and usually lead to improved per-
formance [78]. Since multi-view information (e.g., video se-
quences) are usually readily available for many applications,
we consider multi-view depth estimation in this paper. A
popular multi-view depth pipeline is using the plane-sweep
stereo [72], [79] approach, where different depth planes are
tested for correctness. However, like rectified stereo match-
ing, the state-of-the-art methods are usually dominated by
3D convolution-based approaches [72], [73], which accord-
ingly introduces cubic computational complexity. In this pa-
per, we approach this task from an explicit matching-based
perspective and use a Transformer to obtain strong features
for matching, achieving highly competitive performance
without relying on any 3D convolutions. This is different
from the recent work TransMVSNet [80], which still relies on
3D convolutions for cost volume post-processing and where
the Transformer is used before the cost volume construction
stage. Thus, our method is simpler and more lightweight.

2.4 Unified Model
Unified models aim at using task-agnostic architectures to
solve different tasks. One notable work is Perceiver IO [28],
which proposes a general Transformer architecture for dif-
ferent problems in different domains. Perceiver IO has been
applied to the optical flow task, where a direct concate-
nation of two input images is fed to the Transformer, and
optical flow is regressed without using any inductive bias.
Despite its architectural simplicity, more parameters (8×
more than ours) and additional computational complexity
(4× slower than ours) are introduced in order to make
the model perform well. Perceiver IO has also been used
to solve the unrectified stereo depth estimation task [29],
where the geometric inductive bias is fed into the network as
additional inputs. Different from Perceiver IO, our design is
motivated from a unified perspective that learns strong fea-
ture representations for dense correspondence matching for
geometry and motion tasks. In our method, the geometric
inductive biases are well-preserved at the final parameter-free
matching layers, which doesn’t introduce any task-specific
learnable parameters. This is different from Perceier IO for
optical flow and stereo depth estimation, where the network
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Fig. 2: Overview of our unified model. We consider two images as input, which can be video frames for optical flow,
a stereo pair for rectified stereo matching or posed images for unrectified stereo depth estimation. We first extract 8×
downsampled dense features from the two input images with a weight-sharing convolutional network. The features
are then fed into a Transformer for feature enhancement. Next, we perform feature matching by using parameter-free
task-specific matching layers, which produce the optical flow, disparity or depth output, depending on the task. An
additional task-agnostic self-attention layer is introduced to propagate the high-quality predictions to unmatched regions
by measuring feature self-similarity.

inputs are task-specific and thus it is not easy to reuse
the model parameters from different tasks. Another related
work is HD3 [18], which proposes a model that is applicable
to both optical flow and stereo matching. However, HD3
relies on task-specific correlations (2D or 1D) as intermediate
network components, resulting to task-specific learnable
parameters in the subsequent decoders and thus making it
not easy to transfer pretrained models across tasks.

We also note that our unified model is different from
multi-task joint training approaches [81], [82], [83], [84], [85].
Multi-task methods usually deploy task-specific network
architectures which are trained together. In contrast, our
unified model focuses on designing a single network that
is generally applicable to several tasks, without any task-
specific learnable parameters.

3 METHODOLOGY

Dense correspondences between different viewpoints are
the core of optical flow, rectified stereo matching and un-
rectified stereo depth estimation tasks. To unify these three
tasks, our key idea is to use an explicit dense correspon-
dence matching formulation, which identifies the solution
by directly comparing feature similarities. Such a formu-
lation calls for discriminative features, for which we use
a Transformer, in particular the cross-attention to achieve
this. The cross-attention can integrate the knowledge from
another image via cross-view interactions, which greatly
improves features’ quality and is not achievable with con-
volutions that operate on each view independently [57].

Fig. 2 provides an overview of our proposed method. We
first extract dense features from two input images and then
obtain the prediction with a parameter-free matching layer.
A final self-attention layer is used to propagate the high-
quality predictions to unmatched regions by measuring
feature self-similarity.

In the following, we will first formulate the differentiable
matching layers for optical flow, rectified stereo matching

and unrectified stereo depth estimation, and then present a
unified Transformer-based model to extract strong features
for matching. Note that the matching layers are designed
by considering different constraints for each task, which
are therefore task-specific. However, the matching layers are
parameter-free since they only compare feature similarities.
The learnable parameters for all three tasks are exactly the
same and thus they can be reused for cross-task transfer.

3.1 Formulation

We consider two images I1 and I2 as input. These can
be video frames for optical flow, a stereo pair for rectified
stereo matching, or two posed images (with known camera
intrinsic and extrinsic parameters) for unrectified stereo
depth estimation. We assume that 8× downsampled dense
features F1,F2 ∈ RH×W×D are extracted for both images
(we will provide details on our feature extractor in Sec. 3.2),
where H,W and D denote height, width and feature di-
mension, respectively. Next, we present the parameter-free
task-specific matching layers for optical flow, rectified stereo
matching and unrectified stereo depth estimation under our
unified matching-based formulation.

3.1.1 Flow Matching
Optical flow represents the apparent motion between two
video frames, which can be computed by finding 2D pixel-
wise dense correspondences on the image plane. To achieve
this, we directly compare the feature similarities for each lo-
cation in F1 with respect to all locations in F2 by computing
their correlations (i.e., global matching). This can be imple-
mented efficiently using a simple matrix multiplication:

Cflow =
F1F

T
2√

D
∈ RH×W×H×W , (1)

where each element in the correlation matrix Cflow repre-
sents the correlation value between coordinates p1 = (i, j)
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in F1 and p2 = (k, l) in F2, and 1√
D

is a normalization factor
to avoid large values after the dot-product operation [27].

To obtain dense correspondences, we use a softmax
matching layer [19], [59], [86], which is not only end-to-end
differentiable but also enables sub-pixel accuracy. Specifi-
cally, we first normalize the last two dimensions of Cflow

with the softmax operation, which gives us a distribution

Mflow = softmax(Cflow) ∈ RH×W×H×W (2)

for each position in F1 with respect to all positions in F2.
Then, the correspondence Ĝ2D can be obtained from the
weighted average of the matching distribution Mflow with
the 2D coordinates of pixel grid G2D ∈ RH×W×2:

Ĝ2D = MflowG2D ∈ RH×W×2. (3)

Finally, the optical flow Vflow can be obtained by computing
the difference between the corresponding pixel coordinates:

Vflow = Ĝ2D −G2D ∈ RH×W×2. (4)

3.1.2 Stereo Matching
Rectified stereo matching aims to find the per-pixel disparity
along the horizontal scanline (1D correspondence) between
a rectified stereo pair, which can be viewed as a special case
of 2D optical flow. Unlike the 2D global matching for optical
flow in Eq. (1), we only need to consider matching along
the 1D horizontal direction. More specifically, the correlation
matrix for rectified stereo matching is

Cdisp ∈ RH×W×W . (5)

Similarly, we normalize the last dimension of Cdisp and
obtain the matching distribution

Mdisp = softmax(Cdisp) ∈ RH×W×W . (6)

Considering that the correspondence of each pixel in the
first image is located to the left of its reference pixel, we
mask the upper triangle of the W × W slices of Mdisp to
avoid unnecessary matches. Then, the 1D correspondence
Ĝ1D ∈ RH×W can be obtained by computing the weighted
average of the matching distribution Mdisp with all poten-
tial horizontal locations P = [0, 1, 2, · · · ,W − 1] ∈ RW :

Ĝ1D = MdispP ∈ RH×W . (7)

Finally, the (positive) disparity can be obtained by comput-
ing the difference between the corresponding coordinates of
the 1D horizontal pixel grid G1D ∈ RH×W (which stores
only the x-coordinates) and Ĝ1D:

Vdisp = G1D − Ĝ1D ∈ RH×W . (8)

3.1.3 Depth Matching
For unrectified stereo depth estimation, we assume the
camera intrinsic and extrinsic parameters (K1,E1,K2,E2)
for image I1 and I2 are known (i.e., posed images). They
can be obtained via additional sensors like IMU and GPS,
or reliably estimated using Structure-from-Motion software
like COLMAP [87]. To estimate depth, we take an approach
similar to the classic plane-sweep stereo method [88]. More
specifically, we first discretize a predefined depth range
[dmin, dmax] as [d1, d2, · · · , dN ] (in our implementation, we

discretize the inverse depth domain, while we use depth
here for ease of notation). Then for each depth candidate
di(i = 1, 2, · · · , N), we compute the 2D correspondences
Ĝ2D ∈ RH×W×2 in F2 given the current depth value:

H(Ĝ2D) = K2E2E
−1
1 diK

−1
1 H(G2D) ∈ RH×W×3, (9)

where H(G2D) ∈ RH×W×3 denotes the homogeneous co-
ordinates of the grid coordinates G2D ∈ RH×W×2. Next,
we perform bilinear sampling on F2 with Ĝ2D and obtain
F i
2 ∈ RH×W×D for depth candidate di. Their correlation is

then computed as

Ci =
F1 · F i

2√
D

∈ RH×W , i = 1, 2, · · · , N, (10)

where · is the dot-product operation on the feature di-
mension D. Concatenating the correlations for all depth
candidates we obtain

Cdepth = [C1,C2, · · · ,CN ] ∈ RH×W×N . (11)

Similar to flow and stereo, we normalize the last dimension
of Cdepth and obtain the matching distribution

Mdepth = softmax(Cdepth) ∈ RH×W×N . (12)

Finally, the depth is estimated by computing the weighted
average of the matching distribution Mdepth with all the
depth candidates Gdepth = [d1, d2, · · · , dN ] ∈ RN :

Vdepth = MdepthGdepth ∈ RH×W . (13)

Thus far, we have presented the detailed matching layers
for all three tasks. We remark that all matching layers are
differentiable and parameter-free, which not only enables
end-to-end training but also doesn’t introduce any task-
specific learnable parameters. We name our models for flow,
stereo and depth tasks GMFlow, GMStereo and GMDepth,
respectively, which represent our unified Global Matching
formulation. Next, we will discuss our model for extracting
strong features from the input images.

3.2 Feature Extraction

Key to our formulation lies in obtaining high-quality dis-
criminative features for matching. To achieve this, we com-
bine a common convolutional network (CNN) with a Trans-
former [27] as the feature extractor. More specifically, we
first use a weight-sharing ResNet [71] to extract 8× down-
sampled features to keep computation tractable, similar to
previous flow methods [17], [21]. However, the two features
from the CNN are extracted independently, without con-
sidering their mutual relations yet. Integrating knowledge
from the potential matching candidates in another image
can intuitively enhance the feature’s distinctiveness and
surpass ambiguities, as demonstrated by sparse matching
methods [89]. This can be naturally implemented with
the cross-attention mechanism, which is able to selectively
aggregate information from another image by measuring
cross-view feature similarities. We also use a self-attention
layer to further improve the feature’s quality by consid-
ering larger context than the convolutional layer, and a
two-layer feed-forward network (FFN, i.e., MLP) to further
increase the capacity of the network following the original
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Fig. 3: Our propagation strategy significantly improves the
performance of occluded and out-of-boundary pixels.

Transformer [27]’s design. The self-attention, cross-attention
and FFN constitute a Transformer block, and our final
Transformer architecture is a stack of six Transformer blocks
which gradually improve the performance (Table. 1).

Specifically, for the extracted convolutional features F̃1

and F̃2, we first add fixed 2D sine and cosine positional
encodings (following DETR [90]) to the features since they
lack spatial information. Adding the position information
also makes the matching process consider not only the fea-
ture similarity but also their spatial distance, which can help
resolve ambiguities and improve performance (Table 2a).
Then the features are fed into the Transformer for feature
enhancement. More specifically, for self-attention, the query,
key and value in the attention mechanism [27] are the same
feature. For cross-attention, the key and value are same but
different from the query to model cross-view interactions.
This process is performed for both F̃1 and F̃2 symmetrically:

F1 = T (F̃1+P , F̃2+P ), F2 = T (F̃2+P , F̃1+P ), (14)

where T is a Transformer, P is the positional encoding, the
first input of T is query and the second is key and value.

One issue with the standard Transformer architec-
ture [27] is the quadratic computational complexity due to
the pair-wise attention operation. To improve efficiency, we
adopt the shifted local window attention strategy from Swin
Transformer [91]. However, unlike Swin that uses a fixed
window size, we split the feature to fixed number of local win-
dows to make the window size adaptive with the feature’s
spatial size. In this way, the attention mechanism can model
long-range dependencies on high-resolution feature maps
and accordingly better performance for large displacements
can be achieved. Specifically, we split the input feature of
size H×W to K×K windows (each with size H

K ×W
K , better

for large displacements flow if K is smaller, see Table 2b),
and perform self- and cross-attentions within each local
window independently. For every two consecutive local
windows, we shift the window partition by ( H

2K , W
2K ) to

introduce cross-window connections. In our method, we
split into 2 × 2 windows (each with size H

2 × W
2 ), which

leads to a good speed-accuracy trade-off (Table 2b).
We note that for the rectified stereo matching task,

since the correspondences lie only on the 1D horizontal
direction, it’s redundant to perform full 2D cross-attention
in the Transformer. Thus we perform 1D horizontal cross-
attention for the stereo matching task, which is not only
faster, but also leads to better performance (Table 6). Since
only the linear feature projection layers of the Transformer
are learnable, the final models are not affected by the specific
parameter-free attention operation (2D, 1D or any other

forms). Thus all the learnable parameters remain exactly the
same for all three tasks.

3.3 Propagation
Our matching-based formulation implicitly assumes that
corresponding pixels are visible in both images and thus
they can be matched by comparing their similarities. How-
ever, this assumption will be invalid for occluded and out-
of-boundary pixels, producing unreliable results in these
regions (Fig. 3). To remedy this, by observing that the
flow/disparity/depth field and the image itself share high
structure similarity [30], [31], we propose to propagate
the high-quality flow/disparity/depth predictions to un-
matched regions by measuring feature self-similarity. This
operation can be implemented efficiently with a single self-
attention layer (illustrated in Fig. 2):

V̂ = softmax

(
F1F1

T

√
D

)
V ∈ RH×W×2, (15)

where V is the flow/disparity/depth prediction from the
softmax matching layer in Sec. 3.1. Note that we don’t
explicitly differentiate matched and unmatched pixels, but
simply learn such a propagation process with ground truth
flow supervision. Fig. 3 shows that this strategy can effec-
tively correct the errors in unmatched regions.

Our current estimate is at the 8× downsampled feature
resolution. To get the original image resolution prediction,
we use RAFT’s upsampling [21] method that computes
the full resolution flow/disparity/depth at each pixel as a
weighted combination of a 3×3 grid of its coarse resolution
neighbors. The combination weights are learned with a
small 2-layer convolutional network, whose output channel
is 8 × 8 × 3 × 3 for 8× upsampling. Fig. 2 provides an
overview of our unified model.

3.4 Refinement
Our method presented so far (based on 1/8 features) already
achieves competitive performance while being simple and
efficient. It can be further improved by using additional
refinement steps, yielding different speed-accuracy trade-
offs. We explore two types of refinement in this paper: hi-
erarchical matching refinement with higher-resolution (1/4)
features and local regression refinement with convolutions.
We remark that the hierarchical matching refinement uses
our matching-based formulation and thus is task-agnostic,
while the local regression refinement is task-specific but
optional. It can hence be viewed as a post-processing step to
further improve the performance of our unified method.

3.4.1 Hierarchical Matching Refinement
Our unified global matching is performed at 1/8 feature
resolution, and a 1/8 flow/disparity/depth prediction is
obtained. Using additional higher-resolution (1/4) features
for matching can further improve the performance and
fine-grained details, while not introducing any task-specific
learnable parameters as it uses our matching-based formu-
lation. However, we found the improvement for unrectified
stereo depth estimation to be not as significant as flow
and stereo, and thus we choose to not perform hierarchical
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matching at 1/4 resolution for the depth task. Specifically,
for optical flow and rectified stereo matching tasks, we
first upsample the 1/8 flow/disparity prediction to 1/4
resolution, and then warp the second CNN feature with the
upsampled flow/disparity. In this way, the remaining task is
reduced to matching between the original first CNN feature
and the warped second CNN feature, and thus the same
model depicted in Fig. 2 can be used at 1/4 resolution but in
a local range for refinement. More specifically, we perform
a 9 × 9 local window matching for optical flow, and 1D
horizontal local matching with length 9 for stereo matching
(similar formulations as Sec. 3.1.1 and Sec. 3.1.2 but in a
local range). The predicted flow/disparity residual is then
added to the previous upsampled flow/disparity prediction
obtained by global matching. For the Transformer, we split
the 1/4 feature map to 8× 8 local windows (each with 1/32
of the original image resolution) in attention computation
to model local-range interactions. Next, we perform a 3× 3
local window self-attention operation for flow/disparity
propagation (similar formulation as Sec. 3.3 but in a local
range). Finally, the 1/4 flow/disparity prediction is obtained
and it’s upsampled to the full resolution.

We note that we share the Transformer and self-attention
weights in the 1/8 and 1/4 hierarchical matching stages
since they perform basically very similar matching process
except for different ranges (global vs. local). This not only
reduces parameters but also improves generalization, as
shown in the original GMFlow [38] paper. To generate
the 1/4 and 1/8 resolution features, we take a similar
approach to TridentNet [92]. Specifically, we first obtain a
1/4 resolution feature map with a CNN, and then append a
weight-sharing 3 × 3 convolution with strides 1 and 2 to
generate two-branch features at 1/4 and 1/8 resolutions,
respectively. Such a weight-sharing design also leads to
less parameters and better performance than using feature
pyramid network [93] (see GMFlow [38] paper)

3.4.2 Local Regression Refinement
Our unified model thus far with only one task-agnostic
hierarchical matching refinement is able to outperform
RAFT [21] with 31 refinements while running faster (Fig. 5
and Table 3), which demonstrates the effectiveness and effi-
ciency of our global matching-based formulation. However,
our matching-based method is also complementary to pre-
vious cost volume and convolution-based local regression
approach. We observe the strength of our unified matching
method mainly in the presence of large motion (Table 1
and 3). For small motions, it might not be necessary to
perform global matching (Table 2c) and in this case, local
regression is advantageous. To achieve the best system-level
performance, one straightforward way is to combine the
strengths of these two kinds of flow estimation approaches.
That is, the local regression method is used as a post-
processing step to our unified model. This further improves
fine-grained details and regions that are hard to match.

More specifically, we use RAFT’s iterative refinements
for further improvement. At each refinement, we produce
an update based on the current prediction. The update is
regressed with convolutions from local correlations. The
local correlations are task-specific: for optical flow, we use
2D correlation; for rectified stereo matching, we also use

2D correlation since we found it to perform better than
1D correlation (Table 6) although some redundancy exists;
for unrectified stereo depth, we use 2D correlation con-
structed from the current depth prediction and relative
camera transformation. Such refinement architectures are
task-specific and not shared across tasks. The optional num-
ber of additional iterative refinements is also different for
different tasks, we choose this number empirically. More
specifically, for optical flow, we use 6 additional refine-
ment steps at 1/4 feature resolution after the hierarchical
matching refinement; for rectified stereo matching, we use
3 additional refinement steps at 1/4 feature resolution after
the hierarchical matching refinement; for unrectified stereo
depth estimation, we use 1 additional refinement step at
1/8 feature resolution and no hierarchical matching is used.
Note that the number of refinement steps as part of our
post-processing is much less than previous pure iterative
architectures (e.g., 31 refinements in RAFT [21] and its recent
variants [31], [50], [51]) thanks to our stronger base model.

3.5 Training Loss

We supervise all predictions (including the intermediate
network outputs and final ones) with the ground truth:

L =
N∑
i=1

γN−iℓ(Vi,Vgt), (16)

where N is the total number of predictions, and γ (set to 0.9)
is the weight that is exponentially increasing to give higher
weights for later predictions following RAFT [21].

The definition of the loss function ℓ are following previ-
ous methods. More specifically, for optical flow, we use an
L1 loss [21]; for rectified stereo matching, we use the smooth
L1 loss [19]; for unrectified stereo depth estimation, we use
the L1 loss on the inverse depth [37]. Following [73], we also
use an additional gradient loss for unrectified stereo depth:

Lgrad =
N∑
i=1

γN−i(ℓ(∂xVi, ∂xVgt) + ℓ(∂yVi, ∂yVgt)), (17)

where ℓ is the L1 loss. The total loss for the depth task is a
combination of the inverse depth loss and the gradient loss,
where the combination weights are both 20.

4 EXPERIMENTS

In this section, we will first study the properties of our
unified model for each task independently, and then show
the unique advantage of our unified model by cross-task
transfer, and finally perform system-level comparisons with
previous methods on standard benchmarks.
Implementation details. We implement our full model in
PyTorch. Our convolutional backbone network is a ResNet-
like [71] architecture and the output feature is 1/8 of the
original image resolution for the default model. When hi-
erarchical matching is used, the output features are of 1/4
and 1/8 resolutions as mentioned in Sec. 3.4.1. The feature
dimension is 128. We stack 6 Transformer blocks, where
each Transformer block consists of a self-attention layer, a
cross-attention layer and a feed-forward network. We only
use a single head in all the attention computations, since we
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Method #blocks
Things (val, clean) Sintel (train, clean) Sintel (train, final) Param

(M)EPE s0−10 s10−40 s40+ EPE s0−10 s10−40 s40+ EPE s0−10 s10−40 s40+

cost volume + conv

0 18.83 3.42 6.49 49.65 6.45 1.75 7.17 38.19 7.75 2.10 8.88 45.29 1.8
4 10.99 1.70 3.41 29.78 3.32 0.73 3.84 20.58 4.93 0.99 5.71 31.16 4.6
8 9.59 1.44 2.96 26.04 2.89 0.65 3.36 17.75 4.32 0.88 4.95 27.33 8.0
12 9.04 1.37 2.84 24.46 2.78 0.65 3.32 16.69 4.07 0.84 4.76 25.44 11.5
18 8.67 1.33 2.74 23.43 2.61 0.59 3.07 15.91 3.94 0.82 4.62 24.58 15.7

Transformer + softmax

0 22.93 8.57 11.13 52.07 8.44 2.71 11.60 42.10 10.28 3.11 13.83 53.34 1.0
1 11.45 2.98 4.68 28.35 4.12 1.27 5.08 22.25 6.11 1.70 7.89 33.52 1.6
2 8.59 1.80 3.28 21.99 3.09 0.90 3.66 17.37 4.54 1.24 5.44 26.00 2.1
4 7.19 1.40 2.62 18.66 2.43 0.67 2.73 14.23 3.78 1.01 4.27 22.37 3.1
6 6.67 1.26 2.40 17.37 2.28 0.58 2.49 13.89 3.44 0.80 3.97 21.02 4.2

conv + softmax 6 17.06 5.79 7.74 40.03 6.36 2.15 8.53 31.53 8.00 2.45 10.42 42.09 5.1

TABLE 1: Methodology comparison for optical flow task. We stack different numbers of convolutional residual blocks or
Transformer blocks to see how performance varies. All models are trained on Chairs and Things training sets. We report
the performance on Things (clean) validation set and cross-dataset generalization results on Sintel (clean and final) training
sets. Our method outperforms previous cost volume and convolution-based approach by a large margin, especially for
large motions (s40+). Replacing the Transformer in our model with a convolutional network (i.e., conv + softmax) leads to
a significant performance drop, since convolutions are not able to model cross-view interactions (which is important for
obtaining high-quality discriminative features, see also Table 2a).

didn’t observe obvious performance gains with multi-head
attention. We use the AdamW [94] optimizer and a cosine
learning rate scheduler with warmup to optimize the model.

4.1 Optical Flow

Datasets and evaluation setup. Following previous optical
flow methods [16], [17], [21], we first train on the Fly-
ingChairs (Chairs) [11] and FlyingThings3D (Things) [58]
datasets, and then evaluate on Sintel [13] and KITTI [14]
training sets for cross-dataset generalization. We also eval-
uate on the Things validation set to see how the model
performs on the same-domain data. Finally, we perform
additional fine-tuning on Sintel and KITTI training sets and
report the performance on the online benchmarks.
Metrics. We adopt the commonly used metric in optical
flow, i.e., the end-point-error (EPE), which is the average ℓ2
distance between the prediction and ground truth. For the
KITTI dataset, we also use F1-all, which reflects the percent-
age of outliers. To better understand the performance gains,
we also report the EPE for different motion magnitudes.
Specifically, we use s0−10, s10−40 and s40+ to denote the
EPE over pixels with ground truth flow motion magnitude
falling into the ranges of 0 − 10, 10 − 40 and more than 40
pixels, respectively.
Training schedule. For methodology comparison (Sec. 4.1.1)
and ablation experiments (Sec. 4.1.2), we first train our
default 1/8 feature resolution model on Chairs dataset for
100K iterations, with a batch size of 16 and a learning rate of
4e-4. We then finetune the model on Things dataset for 200K
iterations, with a batch size of 8 and a learning rate of 2e-4.
The models thus far all use bilinear upsamling to upsample
to the full resolution flow prediction for simplicity. For
later experiments, we use RAFT’s convex upsampling [21]
and our models are trained on Things dataset for 800K
iterations, which leads to improved performance [38]. For
the final fine-tuning process on Sintel and KITTI datasets
for benchmark comparisons, we report details in Sec. 4.5.1.

4.1.1 Methodology Comparison

Flow estimation approach. We compare our Transformer
and softmax-based flow estimation method with cost vol-
ume and convolution-based approaches. Specifically, we
adopt the state-of-the-art cost volume construction method
in RAFT [21] that concatenates 4 local cost volumes at
4 scales, where each cost volume has a dimension of
H×W ×(2R+1)2. Here H and W denote the feature’s spa-
tial size, and the search range R is set to 4 following RAFT.
To regress flow, we stack different numbers of convolutional
residual blocks [71] to see how the performance varies.
The final optical flow is obtained with a 3 × 3 convolution
with 2 output channels. For our method, we stack different
numbers of Transformer blocks for feature enhancement and
the final optical flow is obtained with a global correlation
and softmax layer. Table 1 shows that the performance
improvement of our method is more significant compared
to the cost volume and convolution-based approach. For
instance, our method with 2 Transformer blocks is already
able to outperform 8 convolution blocks, especially in the
presence of large motions (s40+). The performance can be
further improved by stacking more layers, surpassing the
cost volume and convolution-based approach by a large
margin. We also replace the Transformer in our model with
a convolutional network for feature enhancement, which
leads to a large drop in performance. This is largely due to
the unique advantage of the cross-attention mechanism for
modeling cross-view interactions (see Table 2a for detailed
evaluations of the Transformer components), which enables
aggregation the information from the other frame by con-
sidering cross-view similarities and thus greatly improves
the quality of the extracted features. This is not achievable
with convolutions [57].
Bidirectional flow prediction. Our method also simplifies
backward optical flow computation by directly transposing
the global correlation matrix in Eq. (1). Note that during
training we only predict unidirectional flow while at in-
ference, we can obtain bidirectional flow for free, without
requiring to forward the network twice, unlike previous
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setup
Things (val) Sintel (train) Param

(M)clean clean final

full 6.67 2.28 3.44 4.2
w/o cross attn. 10.84 4.48 6.32 3.8
w/o position 8.38 2.85 4.28 4.2
w/o FFN 8.71 3.10 4.43 1.8
w/o self attn. 7.04 2.49 3.69 3.8

(a) Transformer components. Cross-attention contributes
most.

#splits
Things (val, clean) Time

(ms)EPE s0−10 s10−40 s40+

1× 1 6.34 1.26 2.37 16.36 105
2× 2 6.67 1.26 2.40 17.37 53
4× 4 7.32 1.29 2.58 19.26 35

(b) Numbers of window splits in shifted local attention.
2× 2 represents a good speed-accuracy trade-off.

matching
space

Things (val, clean) Time
(ms)EPE s0−10 s10−40 s40+

global 6.67 1.26 2.40 17.37 52.6
local 3× 3 31.78 1.19 12.40 85.39 51.2
local 5× 5 26.51 0.89 6.67 76.76 51.5
local 9× 9 19.88 1.01 2.44 61.06 52.9

(c) Global vs. local matching. Global matching is signifi-
cantly better for large motions while being fast to compute.

prop.
Sintel (clean) Sintel (final)

all matched unmatched all matched unmatched

w/o 2.28 1.06 15.54 3.44 1.95 19.50
w/ 1.89 1.10 10.39 3.13 1.98 15.52

(d) Flow propagation greatly improves unmatched pixels.

TABLE 2: GMFlow ablations for optical flow task. All models are trained on Chairs and Things training sets.

frame 1

frame 2

forward flow

backward flow

forward occlusion

backward occlusion

Fig. 4: GMFlow simplifies backward flow computation by
directly transposing the global correlation matrix without
requiring to forward the network twice. The bidirectional
flow can be used for occlusion detection with forward-
backward consistency check.

regression-based methods [44], [95]. The bidirectional flow
can be used for occlusion detection with forward-backward
consistency check (following [95]), as shown in Fig. 4.

4.1.2 Ablations

Transformer components. We ablate different Transformer
components in Table 2a. The cross-attention contributes
most, since it models the cross-view interactions between
two features, which integrates the knowledge from another
image and greatly improves the quality of the extracted
features. Also, the position information makes the match-
ing process position-dependent, which can help alleviate
the ambiguities in pure feature similarity-based matching.
Removing the feed-forward network (FFN) reduces a large
number of parameters, while also leading to a moderate
performance drop. The self-attention aggregates contextual
cues within the same feature, leading to additional gains.
Local window attention. We compare the speed-accuracy
trade-off of splitting the features into different numbers of
local windows for attention computation in Table 2b. Recall
that the extracted features from our CNN backbone have
a resolution of 1/8, further splitting into H/2 × W/2 local
windows (i.e., 1/16 of the original image resolution) leads
to a good trade-off between accuracy and speed, and thus is
used in our model.

0 1 3 7 11 15 19 23 27 31

#refinement

1.0

1.5

2.0

2.5

3.0

3.5

4.0

en
d-

po
in

t-e
rr

or
 (p

x)

RAFT
GMFlow

Fig. 5: Optical flow end-point-error vs. number of refine-
ments at inference time. This figure shows the generaliza-
tion on Sintel (clean) training set after training on Chairs
and Things datasets. Our unified model with only one
hierarchical matching refinement outperforms RAFT with
31 refinement steps while running faster (see Table 3).

Matching Space. We replace our global matching (i.e., all
pair-wise matching H ×W ×H ×W in Eq. (1)) with local
matching (i.e., reduce the global matching in Eq. (1) to a local
one H ×W ×K ×K with window size K ×K) in Table 2c
and observe a significant performance drop, especially for
large motion (s40+). Besides, global matching can be com-
puted efficiently with a simple matrix multiplication, while
a larger size for local matching will be slower due to the
excessive sampling operation.

Flow propagation. Our flow propagation strategy results
in significant performance gains in unmatched regions (in-
cluding occluded and out-of-boundary pixels), as shown in
Table 2d and Fig. 3. The structural correlation between the
feature and flow provides a valuable cue to improve the
performance of pixels that are challenging to match.
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Method #refine.
Things (val, clean) Sintel (train, clean) Sintel (train, final) Param

(M)
Time
(ms)EPE s0−10 s10−40 s40+ EPE s0−10 s10−40 s40+ EPE s0−10 s10−40 s40+

RAFT [21]

0 14.28 1.47 3.62 40.48 4.04 0.77 4.30 26.66 5.45 0.99 6.30 35.19

5.3

25 (14)
3 6.27 0.69 1.67 17.63 1.92 0.47 2.32 11.37 3.25 0.65 4.00 20.04 39 (21)
7 4.66 0.55 1.38 12.87 1.61 0.39 1.90 9.61 2.80 0.53 3.30 17.76 58 (31)
11 4.31 0.53 1.33 11.79 1.55 0.41 1.73 9.19 2.72 0.52 3.12 17.43 78 (41)
23 4.22 0.53 1.32 11.52 1.47 0.36 1.63 9.00 2.69 0.52 3.05 17.28 133 (71)
31 4.25 0.53 1.31 11.63 1.41 0.32 1.55 8.83 2.69 0.52 3.00 17.45 170 (91)

GMFlow
0 3.48 0.67 1.31 8.97 1.50 0.46 1.77 8.26 2.96 0.72 3.45 17.70 4.7 57 (26)
1 2.80 0.53 1.01 7.31 1.08 0.30 1.25 6.26 2.48 0.51 2.81 15.67 4.7 151 (66)

TABLE 3: RAFT’s iterative refinement architecture vs. our GMFlow model. The models are trained on Chairs and
Things training sets. The inference time is measured on a single V100 and A100 (in parentheses) GPU at Sintel resolution
(436× 1024). Our method gains more speedup than RAFT (2.29× vs. 1.87×, i.e., ours: 151 → 66, RAFT: 170 → 91) on the
high-end A100 GPU since our method doesn’t require a large number of sequential computation.

setup
Things KITTI Param

(M)EPE D1 EPE D1

full 1.22 3.70 1.61 10.53 4.7
w/o cross attn. 1.96 7.84 5.40 31.97 4.3
w/o position 1.24 4.46 1.72 12.07 4.7
w/o FFN 1.39 4.93 1.95 14.86 2.3
w/o self attn. 1.35 4.47 1.87 13.04 4.3
w/o propagation 2.33 6.08 1.76 10.09 4.6

(a) Rectified stereo matching task.

setup Abs Rel Sq Rel RMSE RMSE log Param (M)

full 0.074 0.028 0.225 0.103 4.7
w/o cross attn. 0.095 0.043 0.284 0.132 4.3
w/o position 0.078 0.031 0.237 0.109 4.7
w/o FFN 0.089 0.041 0.276 0.127 2.3
w/o self attn. 0.081 0.034 0.248 0.114 4.3
w/o propagation 0.091 0.045 0.293 0.144 4.6

(b) Unrectified stereo depth estimation task.

TABLE 4: Ablations of Transformer components and the propagation strategy. Cross-attention contributes most,
consistent with the analysis in optical flow task (Table 2a).

Training data Method EPE F1-all s0−10 s10−40 s40+

C + T
RAFT 5.32 17.46 0.67 1.58 13.68
GMFlow 7.77 23.40 0.74 2.19 20.34
GMFlow+ 5.74 17.63 0.64 1.69 14.86

C + T + VK
RAFT 2.45 7.90 0.43 1.18 5.70
GMFlow 2.85 10.77 0.49 1.16 6.87
GMFlow+ 2.25 7.20 0.48 1.10 5.12

TABLE 5: Generalization on KITTI 2015 optical flow
dataset after training on synthetic Chairs (C), Things (T)
and Virtual KITTI 2 (VK) datasets.

4.1.3 Comparison with RAFT
Sintel. Table 3 shows the results on Things validation
set and Sintel (clean and final) training sets after training
on Chairs and Things training sets. Without using any
refinement, our method achieves better performance on
Things and Sintel (clean) than RAFT with 11 refinements.
By using an additional task-agnostic hierarchical matching
refinement at 1/4 feature resolution (Sec. 3.4.1), our method
outperforms RAFT with 31 refinements, especially on large
motion (s40+). Fig. 5 visualizes the results. Furthermore,
our model enjoys faster inference speed compared to RAFT
and also does not require a large number of sequential
processing. On the high-end A100 GPU, our model gains
more speedup compared to RAFT’s sequential architecture
(2.29× vs. 1.87×, i.e., ours: 151 → 66, RAFT: 170 → 91),
reflecting that our method can benefit more from advanced
hardware acceleration and demonstrating its potential for
further speed optimization.
KITTI. Table 5 shows the generalization results on KITTI
training set after training on Chairs and Things training sets.
In this evaluation setting, our method doesn’t outperform
RAFT, which is mainly caused by the gap between the

Attention
Things KITTI Time

(ms)EPE D1 EPE D1

2D 1.25 3.97 1.80 13.66 61
1D 1.22 3.70 1.61 10.53 50

TABLE 6: 1D vs. 2D cross-attention in Transformer for
stereo matching task. 1D cross-attention is faster and better.

synthetic training sets and the real-world testing dataset.
One key reason behind our inferior performance is that
RAFT, relying on fully convolutional neural networks, ben-
efits from the inductive biases in convolution layers, which
requires a relatively smaller size training data to generalize
to a new dataset in comparison with Transformers [96], [97],
[98], [99]. To substantiate this claim, we finetune both RAFT
and our GMFlow on the additional Virtual KITTI 2 [100]
dataset. The results in Table 5 verify that the performance
gap becomes smaller when more data is available. We also
train another version GMFlow+ that uses 6 additional local
regression refinements (Sec. 3.4.2), we can observe from
Table 5 that GMFlow+ outperforms RAFT on KITTI dataset.

4.2 Stereo Matching

Datasets and evaluation setup. We first train on the syn-
thetic Scene Flow [58] training set, and then evaluate on
the Scene Flow test set and the KITTI 2015 [14] training
set. Unlike previous representative stereo networks [19],
[24], [25] that usually rely on a predefined disparity range
(typically 192 pixels) to construct the local cost volume, our
method is more flexible and can support unconstrained dis-
parity prediction. To avoid extremely large disparity values
in the data, we mask the pixels whose disparities exceed
400 pixels during both training and evaluation. Finally,
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Model #refine EPE D1 Param
(M)

Time
(ms)

RAFT-Stereo [26]

0 3.28 13.13

11.1

27
3 1.20 4.50 36
7 0.95 3.50 48
15 0.89 3.22 73
31 0.86 3.16 122

GMStereo
(random init)

0 1.11 3.05 4.7 23
1 0.94 2.95 4.7 58
4 0.77 2.22 7.4 86

GMStereo
(flow init)

0 1.00 2.77 4.7 23
1 0.89 2.64 4.7 58
4 0.72 2.08 7.4 86

TABLE 7: Comparison with RAFT-Stereo for stereo match-
ing task. Our GMStereo trained with random initializa-
tion (random init) already significantly outperforms RAFT-
Stereo. Leveraging the pretrained GMFlow model as initial-
ization (flow init) makes the performance gap even larger.

we perform finetuning on KITTI 2015 Stereo, Middlebury
Stereo, Argoverse Stereo and ETH3D Stereo datasets and
report the performance on the online benchmarks.
Metrics. We adopt the commonly used metrics end-point-
error (EPE) and D1-all, where EPE is the average ℓ1 distance
between the prediction and ground truth disparity, and D1-
all denotes the percentage of outliers.
Training schedule. For ablations, we train our model on the
Scene Flow dataset for 50K iterations, with a batch size of 64
and a learning rate of 1e-3. The finetuning process on each
benchmark dataset will be elaborated in Sec. 4.5.2.

4.2.1 Ablations
Stereo cross-attention: 1D vs. 2D. Unlike 2D optical flow,
rectified stereo matching is a 1D correspondence task that
corresponding pixels lie on the same horizontal scanline.
Thus, it’s not necessary to perform 2D cross-attention in the
Transformer to model cross-view interactions and 1D hori-
zontal cross-attention is sufficient. As shown in Table 6, us-
ing 1D cross-attention is not only more efficient in terms of
inference time (measured for KITTI resolution (384 × 1248)
on a single V100 GPU), but also leads to better performance
since unnecessary matching information is avoided. We note
that the parameter-free cross-attention operation (2D, 1D or
any other forms) doesn’t affect the learnable parameters (i.e.,
the linear projection layers) of the Transformer, and thus the
pretrained model for optical flow and stereo matching tasks
can still be shared.
Model components. We ablate different components of our
full model in Table 4a. The results are consistent with those
for the optical flow task in Table 2a and Table 2d. That is, the
cross-attention contributes most, but the other components
also contribute to the performance gains.

4.2.2 Comparison with RAFT-Stereo
We compare our GMStereo model with RAFT-Stereo [26]
on the Scene Flow test set in Table 7. The prediction error
and inference time for different number of refinement steps
are reported. We can observe that our GMStereo model
trained with random initialization (random init) already
significantly outperforms RAFT-Stereo, while having less

Model Abs Rel Sq Rel RMSE RMSE log Param
(M)

Time
(ms)

DeFiNe [77] 0.056 0.019 0.176 - 30.8 78
GMDepth 0.059 0.019 0.179 0.082 7.3 40

TABLE 8: Comparison with DeFiNe (Depth Field Net-
work) on ScanNet test set. DeFiNe relies on a series of
3D geometric augmentations to achieve competitive perfor-
mance, while our GMDepth can be trained well without
any such augmentations. Our method also has 4× less
parameters and is 2× faster.

Model Abs Rel Sq Rel RMSE RMSE log Param
(M)

Time
(ms)

DepthFormer [74] 0.075 0.029 0.230 0.106 5.4 29
GMDepth 0.069 0.025 0.211 0.097 4.7 17

TABLE 9: Comparison with DepthFormer on ScanNet test
set. Our approach performs better and is more efficient.

parameters and running faster. This result is consistent with
the comparisons between our GMFlow and RAFT for the
optical flow task in Table 3. Moreover, our GMStereo model
can further benefit from the pretrained flow model thanks
to our unified model. As shown in Table 7, our GMStereo
model trained with GMFlow model as initialization (flow
init) leads to further performance boost, outperforming
RAFT-Stereo by even larger margins.

4.3 Depth Prediction
Datasets and evaluation setup. For ablations, we train on
the ScanNet [34] dataset, where we follow BA-Net [20] for
the training and testing splits. Finally, we train and evaluate
on the SUN3D [35], RGBD-SLAM [36] and Scenes11 [37]
datasets for comparison with previous methods.
Metrics. Following previous methods [20], [72], we use 4
error metrics for evaluation of the depth quality, including
Absolute Relative difference (Abs Rel), Squared Relative
difference (Sq Rel), Root Mean Squared Error (RMSE) and
RMSE in log scale (RMSE log).
Training schedule. For ablation experiments, we train our
model on the ScanNet for 50K iterations, with a batch size of
80 and a learning rate of 4e-4. The depth range for training
and testing is set to [0.5, 10] meters, and the number of
depth candidates in the matching layer (Eq. (12)) is set to
64. The training process on SUN3D [35], RGBD-SLAM [36]
and Scenes11 [37] datasets will be elaborated in Sec. 4.5.3.

4.3.1 Ablations
Model components. We ablate different components of our
full model in Table 4b. The results are consistent with those
for optical flow and stereo matching tasks in Table 2a,
Table 2d and Table 4a. That is, the cross-attention contributes
most, and other components also contribute to the perfor-
mance gains.

4.3.2 Comparison with Depth Field Network
The Depth Field Network (DeFiNe) [77] proposes an im-
plicit way for learning cross-view correspondences, where
the geometric priors (e.g., camera information) are encoded
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Fig. 6: Flow to depth transfer. We use an optical flow model
pretrained on Chairs and Things datasets to directly predict
depth on the ScanNet dataset, without any finetuning. The
performance can be further improved by finetuning on the
ScanNet dataset for the depth task.

as inputs to a Transformer model for depth estimation.
Different from DeFiNe, we learn task-agnostic features and
obtain the depth prediction with a parameter-free matching
layer. In Table 8, we show a comparison with DeFiNe on
ScanNet test set. Our GMDepth model achieves similar
performance but has 4× less parameters and is 2× faster.
It is also worth noting that DeFiNe relies on a series of
geometric 3D augmentations (e.g., camera transformations)
to achieve competitive performance. For example, its ‘Abs
Rel’ error increases from 0.093 to 0.117 when such aug-
mentations are removed according to the ablation study in
DeFiNe’s paper. In contrast, our model can be trained well
without any such augmentations. Compared to learning
correspondences implicitly like DeFiNe [77], our explicit
approach is easier to learn and is more efficient in terms
of model parameters and inference speed, since we model
the geometric constraints explicitly and the model doesn’t
need to learn such geometric priors from data.

4.3.3 Comparison with DepthFormer
DepthFormer [74] proposes to use a Transformer to improve
the quality of cost volume, while we leverage a Transformer
to learn strong features for simple parameter-free matching.
We compare with DepthFormer in Table 9 by replacing
our Transformer and matching layers with DepthFormer’s
Transformer-enhanced cost volume and depth decoding lay-
ers. We train this model variant within our architecture and
keep other components exactly the same. We can observe
that our approach performs better. Besides, since Depth-
Former’s Transformer is applied to the 3D cost volume,
which is more computationally expensive than ours that
operates on 2D features. Thus our method is also 1.7×
faster.

4.4 Cross-Task Transfer
One unique benefit of our unified model is that it naturally
enables cross-task transfer since all the learnable parameters
are exactly the same. More specifically, we can directly use a
pretrained optical flow model and apply it to both rectified

EPE: 3.08
s40+: 8.97

EPE: 2.58
s40+: 7.01

GMFlow

EPE: 1.45
s40+: 3.05

EPE: 1.22
s40+: 2.09

RAFT

img1

GT

Fig. 7: Visual comparisons on Sintel test set.

stereo matching and unrectified stereo depth estimation
tasks. As shown in Table 10c and Table 10d, our pretrained
optical flow model performs significantly better than a
random initialized model. The visual results are shown in
Fig. 6, where our model achieves promising results. The
pretrained flow model can be further finetuned for stereo
and depth tasks, which not only leads to faster training
speed, but also achieves better performance than random
initialization (Table 10).

We also experiment with transferring the pretrained
models from the stereo and depth tasks to the optical flow
task, but no obvious performance gain is observed. This
is understandable since stereo and depth are both 1D cor-
respondence problems, and their pretrained models might
be specialized to the 1D correspondence matching task and
thus are not able to bring clear benefits to the more general
2D correspondence task (i.e., optical flow).

4.4.1 Flow to Stereo Transfer Comparison with RAFT
We compare with RAFT in terms of flow to stereo transfer
in Table 11. More specifically, we use RAFT to extract
optical flow from a stereo pair and obtain the disparity
from the horizontal component of the 2D optical flow. For
our method, we are able to obtain the disparity from our
flow model GMFlow by modifying the parameter-free cross-
attention function and the matching layer. We can observe
from Table 11 that our GMFlow with only 1 refinement
already outperforms RAFT with 31 refinements, without
any finetuning for the stereo task. Our unified model is able
to benefit from additional finetuning and achieves further
performance improvement.

4.4.2 Flow to Depth Transfer Comparison with RAFT
We compare with RAFT in terms of flow to depth transfer in
Table 12. More specifically, we use RAFT to extract optical
flow from two posed images and obtain the depth predic-
tion with triangulation [105]. For our method, we obtain
the depth prediction by modifying the matching layer to
the depth task. We can observe from Table 12 that our
method performs better than RAFT in terms of the ‘RMSE
log’ metric, but inferior for other metrics. This indicates
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(a) Flow to stereo transfer: error curves of disparity
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(b) Flow to depth transfer: error curves of depth
prediction error vs. numbers of training steps.

Model
Things KITTI

EPE D1 EPE D1

rand init, w/o ft 75.24 96.06 103.47 96.95
flow init, w/o ft 2.58 18.19 1.98 17.60

rand init, ft (50K) 1.22 3.70 1.61 10.53
flow init, ft (50K) 1.10 3.04 1.39 7.56
rand init, ft (100K) 1.11 3.05 1.58 9.93
flow init, ft (100K) 1.00 2.77 1.37 7.38

(c) Flow to stereo transfer: performance comparison.

Model Abs Rel Sq Rel RMSE RMSE log

rand init, w/o ft 0.536 1.309 1.300 0.584
flow init, w/o ft 0.198 0.364 0.599 0.235

rand init, ft (50K) 0.074 0.028 0.225 0.103
flow init, ft (50K) 0.066 0.023 0.203 0.092
rand init, ft (100K) 0.069 0.025 0.211 0.097
flow init, ft (100K) 0.063 0.021 0.193 0.088

(d) Flow to depth transfer: performance comparison.

TABLE 10: Cross-task transfer. We show the comparisons of error curves between random initialization and using a
pretrained optical flow model as initialization in Fig. 10a and Fig. 10b. The performance comparisons of different models:
without any finetuning or finetuned with different initialization (rand init vs. flow init) and different numbers of total
training steps (50K vs. 100K) are shown in Table 10c and Table 10d.

Model #refine EPE D1 Time
(ms)

RAFT [21]
(disparity from x-flow)

0 8.10 34.12 15
3 2.76 8.07 22
7 2.08 6.33 31
11 1.95 6.03 41
31 1.93 5.90 95

GMFlow
(1D cross-attention, 1D matching) 0 2.58 18.2 23

GMFlow
(1D cross-attention, 1D matching) 1 1.38 5.27 58

GMStereo, finetune
(1D cross-attention, 1D matching) 0 1.00 2.77 23

GMStereo, finetune
(1D cross-attention, 1D matching) 1 0.89 2.64 58

TABLE 11: Flow to stereo transfer comparison with RAFT.
The evaluations are conducted on Scene Flow test set for
stereo matching task. For RAFT, we obtain the disparity
from the x component of its 2D optical flow prediction.
Our results are obtained by modifying the cross-attention
function and the matching layer.

that our results might have large outliers that dominate
the averaged metrics of ‘Abs Rel’, ‘Sq Rel’ and ‘RMSE’,
but their influence becomes weaker when evaluated in the
log scale. The possible reason for this phenomenon is that
unlike stereo disparity that is a special case of optical flow,
the depth matching layer is slightly different from the flow

Model #refine Abs Rel Sq Rel RMSE RMSE log

RAFT [21]
(depth from triangulation)

0 0.271 0.359 0.781 1.062
3 0.146 0.144 0.464 0.428
7 0.123 0.110 0.401 0.302
11 0.118 0.103 0.388 0.283
31 0.117 0.102 0.385 0.271

GMFlow
(depth matching) 0 0.198 0.364 0.599 0.235

GMDepth, finetune
(depth matching) 0 0.063 0.021 0.193 0.088

TABLE 12: Flow to depth transfer comparison with RAFT.
The evaluations are conducted on ScanNet test set. For
RAFT, we compute the optical flow first and then obtain
the depth prediction with triangulation. Our results are
obtained by modifying the matching layer.

one, which might make it challenging to do direct cross-
task transfer and some outliers might exist. In contrast,
the triangulation process involves solving a least-square
problem, which is more complex than our simple argmax
operation. However, one unique strength of our unified
model is that the pretrained flow model can be finetuned for
the depth task, and it can quickly adapt to the depth task
and finally outperforms the triangulation-based approach
by a large margin.
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Method #refine.
Things (val, clean) Sintel (clean)

EPE s0−10 s10−40 s40+ EPE

GMFlow 1 2.80 0.53 1.01 7.31 1.08

GMFlow+
2 2.52 0.46 0.88 6.63 1.03
4 2.29 0.34 0.75 6.16 0.94
7 2.20 0.30 0.69 5.97 0.91

TABLE 13: Additional local regression refinements for
optical flow task.

Method
Sintel (clean) Sintel (final)

all matched unmatched all matched unmatched

FlowNet2 [16] 4.16 1.56 25.40 5.74 2.75 30.11
PWC-Net+ [101] 3.45 1.41 20.12 4.60 2.25 23.70
HD3 [18] 4.79 1.62 30.63 4.67 2.17 24.99
VCN [102] 2.81 1.11 16.68 4.40 2.22 22.24
DICL [103] 2.63 0.97 16.24 3.60 1.66 19.44
RAFT [21] 1.94 - - 3.18 - -
GMFlow [38] 1.74 0.65 10.56 2.90 1.32 15.80
RAFT† [21] 1.61 0.62 9.65 2.86 1.41 14.68
GMA† [31] 1.39 0.58 7.96 2.47 1.24 12.50
GMFlowNet [104] 1.39 0.52 8.49 2.65 1.27 13.88
DIP† [52] 1.44 0.52 8.92 2.83 1.28 15.49
AGFlow† [53] 1.43 0.56 8.54 2.47 1.22 12.64
CRAFT† [50] 1.44 0.61 8.20 2.42 1.16 12.64
FlowFormer [51] 1.20 0.41 7.63 2.12 0.99 11.37
GMFlow+ 1.03 0.34 6.68 2.37 1.10 12.74

TABLE 14: Comparisons on Sintel test test for optical flow.
† represents the method uses last frame’s flow prediction as
initialization for subsequent refinement, while other meth-
ods all use two frames only.

4.5 Benchmark Results
In this section, we perform system-level comparisons with
previous methods on standard optical flow, stereo matching
and depth estimation benchmarks.

4.5.1 Optical Flow
In Sec. 4.1.3, we have demonstrated that our unified model
with 1 additional task-agnostic hierarchical matching re-
finement at 1/4 feature resolution can already outperform
31-refinement RAFT. To fully unleash the potential of our
method, we use additional task-specific post-processing
steps for further improvement. More specifically, we use 6
additional RAFT’s iterative local regression refinements at
1/4 feature resolution, which can further improve our per-
formance on unmatched regions and fine-grained details,
as shown in Table 13. We note that other post-processing
strategies might also be applicable to our method, in this
paper we adopt RAFT’s approach for convenience.
Sintel. Following RAFT [21], we further finetune our Things
trained model on several mixed datasets that consist of
KITTI 2015 [14], HD1K [108], FlyingThings3D [58] and Sin-
tel [13] training sets. We first finetune on the mixed dataset
for 200K iterations with a batch size of 8 and a learning
rate of 2e-4. Then we finetune on the Sintel training sets
only with a larger crop size 416 × 1024 for 5K iterations.
The batch size is 8 and the learning rate is 1e-4. To generate
the flow prediction results on the Sintel test sets, we first
resize the original images to 416× 1024 and then resize the
prediction back to the original image resolution for submis-
sion. The results on Sintel test set are shown in Table 14.

Method Non-occluded pixels All pixels

FlowNet2 [16] 6.94 10.41
PWC-Net+ [101] 4.91 7.72
HD3 [18] 3.93 6.55
VCN [102] 3.89 6.30
RAFT [21] 3.07 5.10
CRAFT [50] 3.02 4.79
SeparableFlow [49] 2.78 4.53
GMFlowNet [104] 2.75 4.79
DEQ-Flow [47] 2.96 4.91
AGFlow [53] 2.97 4.89
KPA-Flow [48] 2.82 4.60
FlowFormer [51] 2.69 4.68
GMFlow+ 2.40 4.49

TABLE 15: Comparisons on KITTI test set for optical flow.

setup #refine.
Things KITTI

EPE D1 EPE D1

baseline 1 0.94 2.95 1.31 6.79

1D correlation
2

0.84 2.46 1.27 6.22
2D correlation 0.83 2.42 1.25 5.96

1D correlation
4

0.82 2.32 1.32 6.50
2D correlation 0.77 2.22 1.24 6.00

TABLE 16: Additional local regression refinement for
stereo matching task. We observe that 2D correlation is
better than 1D correlation in the local correlation and
convolution-based regression method.

Model D1-all (All) D1-all (Noc) Time (s)

LEAStereo [106] 1.65 1.51 0.30
CREStereo [62] 1.69 1.54 0.41
GANet-deep [25] 1.81 1.63 1.80
CFNet [60] 1.88 1.73 0.18
AANet+ [19] 2.03 1.85 0.06
PSMNet [24] 2.32 2.14 0.41
GMStereo 1.77 1.61 0.17

TABLE 17: Stereo performance on KITTI 2015 test set.

We achieve state-of-the-art results on the highly competitive
Sintel (clean) dataset. On Sintel (final) dataset, our perfor-
mance is only second to the recent FlowFormer [51] model,
which uses a Transformer model that is pretrained on the
large scale ImageNet dataset and is more computationally
expensive due to the large number of sequential refinements
like RAFT. The visual comparisons with RAFT are shown in
Fig. 7, our method can better capture the motion of fast-
moving objects like the moving hand.
KITTI. We further finetune our VKITTI2 trained GMFlow+
model (Table 5) on the mixed KITTI 2012 and KITTI 2015
training sets for 30K iterations. The batch size is 8 and the
learning rate is 2e-4. The comparison results with previous
methods are shown in Table 15. We outperform all previous
methods.

4.5.2 Stereo Matching

Similar to optical flow, we use additional task-specific local
regression refinements to further improve our performance.
Although the rectified stereo matching is a 1D correspon-
dence task, we found that 2D correlation in the cost volume
and convolution-based regression method performs better
than 1D correlation (Table 16), and thus 2D correlation is
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Fig. 8: Visual comparisons on Middlebury test set.

Model bad 2.0 bad 4.0 AvgErr RMS Time (s)

CREStereo [62] 3.71 2.04 1.15 7.70 3.55 (F)
RAFT-Stereo [26] 4.74 2.75 1.27 8.41 11.6 (F)
LEAStereo [106] 7.15 2.75 1.43 8.11 2.90 (H)
HSMNet [107] 10.2 4.83 2.07 10.3 0.51 (F)
CFNet [60] 10.1 6.49 3.49 15.4 0.69 (H)
GMStereo 7.14 2.96 1.31 6.45 0.73 (F)

TABLE 18: Stereo performance on Middlebury test set. “F”
and “H” denote the results are generated using the full and
half resolution images, respectively.

Model bad 1.0 bad 2.0 bad 4.0

GANet [25] 6.56 1.10 0.54
AANet [19] 5.01 1.66 0.75
CFNet [60] 3.31 0.77 0.31
RAFT-Stereo [26] 2.44 0.44 0.15
CREStereo [62] 0.98 0.22 0.10
GMStereo 1.83 0.25 0.08

TABLE 19: Stereo performance on ETH3D stereo test set.

used in our final model. From Table 16, we can also observe
the performance gets saturated with 3 more local regression
refinements, and thus our final model uses 3 additional
refinements besides 1 hierarchical matching refinement at
1/4 feature resolution. We note again that the number of
refinements required by our final model is much smaller
than compared to pure iterative architectures like RAFT-
Stereo [26] and CREStereo [62] thanks to our strong dis-
criminative feature representations.
KITTI. We first finetune our Scene Flow pretrained model
on the Virtual KITTI 2 [100] dataset for 30K iterations, with
a batch size of 16 and a learning rate of 4e-4. We then further
finetune on the mixed KITTI 2012 and KITTI 2015 training
sets for 10K iterations, with a batch size of 16 and a learning
rate of 4e-4. The final model is used to generate the disparity
prediction results on KITTI 2015 test set for submission to
the online benchmark. The results are shown in Table 17. We
achieve competitive performance compared with the state-
of-the-art methods LEAStereo [106] and CREStereo [62]. Be-
sides, our model runs about 2× faster since we don’t rely on
any 3D convolutions (unlike LEAStereo) or a large number
(20+) of sequential refinements (unlike CREStereo). Com-
pared with previous lightweight stereo model AANet [19],
our method performs much better. Besides, our model can
be implemented with pure PyTorch, without requiring to
build additional CUDA ops like AANet, which demon-
strates that our method achieves a better speed-accuracy
trade-off and has more practical advantages.
Middlebury. Following CREStereo [62], we collect sev-

Model all:10 all:5 all:3 Time (ms)

ACVNet [22] 4.06 6.46 10.10 236
Odepth† 3.78 7.55 12.33 199
LRM† 2.47 4.71 8.44 191
MSCLab† 2.39 6.29 11.65 150
GMStereo 1.61 3.19 6.86 190

TABLE 20: Argoverse Stereo Challenge on Autonomous
Driving Workshop. † denotes anonymous submission.

eral public stereo datasets for training. More specifically,
we first finetune the Scene Flow pretrained model on
the mixed Scene Flow [58], Tartan Air [109], Falling
Things [110], CARLA HR-VS [107], CREStereo Dataset [62],
InStereo2K [111] and Middlebury [15], [112] datasets for
100K iterations. The batch size is 16 and the learning rate
is 4e-4. We use a random crop size of 480× 640 for training
at this stage. To adapt the model to high resolution (e.g.,
1536× 2048 for Middlebury), we perform another round of
finetuning with a larger random crop size of 768×1024. The
training datasets include CARLA HR-VS [107], CREStereo
Dataset [62], InStereo2K [111], Falling Things [110] and
Middlebury [15], [112]. At inference, we resize all the
Middlebury full resolution test images to 1536 × 2048 for
prediction and finally resize the predicted disparities back
to the original image resolution for evaluation. The results
are shown in Table 18. Our GMStereo achieves the first place
in terms of the RMS (Root Mean Square) disparity error
metric. Besides, our method shows much higher efficiency
than CREStereo [62] (5× faster) and RAFT-Stereo [26] (15×
faster) on such a high-resolution dataset. We also show some
visual comparisons in Fig. 8, our method produces sharper
object structures than CREStereo [62] and RAFT-Stereo [26].
ETH3D. Similar to the training process on the Middlebury
dataset, we use several public stereo datasets for train-
ing. More specifically, we first finetune the Scene Flow
pretrained model on the mixed Scene Flow [58], Tartan
Air [109], Sintel Stereo [13], CREStereo Dataset [62], In-
Stereo2K [111] and ETH3D [32] datasets for 100K iterations.
The batch size is 24 and the learning rate is 4e-4. Then
we perform another round of finetuning on the mixed
CREStereo Dataset [62], InStereo2K [111] and ETH3D [32]
datasets for 30K iterations. Again, the batch size is 24 and
the learning rate is 4e-4. The results are shown in Table 19.
We achieve the second place in terms of the ‘bad 1.0’ and
‘bad 2.0’ metrics and the first place in terms of the ‘bad 4.0’
metric.
Argoverse. We also participate in the Argoverse Stereo Chal-
lenge held in the context of the CVPR 2022 Autonomous
Driving Workshop1 to further demonstrate the potential
of our method. Since this competition requires algorithms
to produce disparity predictions in 200ms or less, we use
global matching at 1/8 feature resolution and two additional
local regression refinements also at 1/8 resolution. The
inference time is about 190ms for a stereo pair of 1024×1232
resolution (resized from the full resolution for prediction).
We first train our model on the Scene Flow dataset with GM-
Flow’s FlyingChairs and FlyingThings3D pretrained model
as initialization. Then, we finetune on the mixed Virtual
KITTI 2 [100] and DrivingStereo [113] datasets. Finally, we

1. http://cvpr2022.wad.vision/

http://cvpr2022.wad.vision/
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Model Abs Rel Sq Rel RMSE RMSE log Time (s)

DeMoN [37] 0.231 0.520 0.761 0.289 0.69
BA-Net [20] 0.161 0.092 0.346 0.214 0.38
DeepV2D [73] 0.057 0.010 0.168 0.080 0.69
GMDepth 0.059 0.019 0.179 0.082 0.04

TABLE 21: Depth performance on ScanNet test set.

Dataset Model Abs Rel Sq Rel RMSE RMSE log

RGBD-SLAM

DeMoN [37] 0.157 0.524 1.780 0.202
DeepMVS [114] 0.294 0.430 0.868 0.351
DPSNet [72] 0.154 0.215 0.723 0.226
IIB [29] 0.095 - 0.550 -
GMDepth 0.101 0.177 0.556 0.167

SUN3D

DeMoN [37] 0.214 1.120 2.421 0.206
DeepMVS [114] 0.282 0.435 0.944 0.363
DPSNet [72] 0.147 0.107 0.427 0.191
IIB [29] 0.099 - 0.293 -
GMDepth 0.112 0.068 0.336 0.146

Scenes11

DeMoN [37] 0.556 3.402 2.603 0.391
DeepMVS [114] 0.210 0.373 0.891 0.270
DPSNet [72] 0.056 0.144 0.714 0.140
IIB [29] 0.056 - 0.523 -
GMDepth 0.050 0.069 0.491 0.106

TABLE 22: Depth performance on RGBD-SLAM, SUN3D
and Scenes11 test datasets.

finetune on the mixed Argoverse training and validation
splits and the final disparity prediction results are submitted
to the online test server for evaluation. The results are
shown in Table 20, where our GMStereo achieves the first
place and clearly outperforms all other submissions.

4.5.3 Depth Estimation

For unrectified two-view depth estimation, our final model
doesn’t use the hierarchical matching refinement at 1/4
feature resolution since we don’t observe very large per-
formance gains. Instead, we use an additional task-specific
local regression refinement at 1/8 feature resolution, which
further improves the performance while maintaining fast
inference speed.
ScanNet. Following BA-Net [20]’s training and testing splits
on ScanNet [34], we train our GMDepth model on the
training split for 100K iterations. The batch size is 80 and
the learning rate is 4e-4. The results are shown in Table 21.
We achieve performance comparable to the representative
method DeepV2D [73] and outperform DeMoN [37] and
BA-Net [20] by a large margin. Notably, our model runs
10× faster than BA-Net and 15× faster than DeepV2D,
which both heavily rely on computationally expensive 3D
convolutions. This demonstrates that our model has strong
potential for real-world use cases.
RGBD-SLAM, SUN3D, and Scenes11. Following the set-
ting of DPSNet [72], we train our model on the mixed
RGBD-SLAM [36], SUN3D [35] and Scenes11 [37] training
sets for 100K iterations, with a batch size of 64 and a learning
rate of 4e-4. The evaluation results on respective RGBD-
SLAM, SUN3D and Scenes11 test sets are shown in Table 22.
We outperform previous representative methods (e.g., DP-
SNet) by a large margin. Compared with IIB [29] which
injects the geometric inductive bias directly to the input of
the Transformer, our performance is similar but our method

is more lightweight and faster, which demonstrates that a
better modeling of the geometric inductive bias enables the
problem to be solved more efficiently.

5 LIMITATION AND DISCUSSION

Our work has several limitations. First, our method still
has room for further improvement in unmatched regions.
As shown in Table 14, the performance in matched regions
on the Sintel dataset is already very accurate (with an end-
point-error of 0.34 pixels on the clean split and 1.10 pixels
on the final split). However, the error in unmatched regions
is considerably larger, which deserves further investigation
in future. Second, we resort to RAFT’s iterative refinement
architecture as a post-processing step to further improve
our performance. We believe more lightweight and effective
approach would be applicable which we consider as inter-
esting future work. Third, our full model is still not able
to achieve real-time inference speed. Further improvements
are necessary to enable applications with real-time require-
ments (20 FPS or more). Finally, in this paper, we have
demonstrated the applicability of our method to multiple
2-frame tasks. We consider the extension of our approach to
the multi-view scenario as an interesting future direction.

Our unified model might also shed some light on train-
ing a single model to do all three tasks simultaneously. In this
paper, we haven’t shown such experiments yet. There are
also additional challenges to resolve (e.g., how to balance
different tasks in the joint training process). Besides, to
train such a unified model, one could also explore recent
unsupervised pretraining approaches (e.g., masked autoen-
coders [115]) to learn general feature representations for
matching. We believe that our work may serve as a fruitful
basis for further research in this area.

6 CONCLUSION

We have presented a unified formulation and model for
three different motion and 3D perception tasks: optical flow,
rectified stereo matching and unrectified stereo depth esti-
mation. We demonstrated that all three tasks can be solved
with a unified model by formulating them as a unified
dense correspondence matching problem. This allows to
reduce the problem to learning high-quality discriminative
features for matching, for which we use a Transformer, in
particular exploiting its cross-attention mechanism to inte-
grate information from the other view. One unique benefit
of our unified model is that it naturally enables cross-task
transfer since all the learnable parameters are exactly the
same. Our final model achieves state-of-the-art or highly
competitive performance on 10 popular flow/stereo/depth
datasets, while being simpler and more efficient in terms of
model design and inference speed.

A key result of this paper is that features aggregated
via a Transformer from both input images are stronger
and contain more discriminative correspondence informa-
tion, which enables to greatly simplify existing motion
and depth estimation pipelines, while achieving improved
performance. We hope our findings can be useful for more
dense correspondence and multi-view perception tasks.
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