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Goal
Ø Inputs: Sparse Multi-view Videos
Ø Outputs: Animatable Clothed Avatars with 

Pose-Dependent Effects

https://neuralbodies.github.io/arah/

Technical Contribution
Ø We leverage SDF-based volume rendering [1] to enable detailed geometry reconstruction
Ø Importance sampling would be too expensive if we run root-finding [2] for every point on a ray
Ø We propose a joint root-finding algorithm to enable efficient point sampling around iso-surface

[1] Yariv et al. Volume Rendering of Neural Implicit Surfaces. NeurIPS, 2021
[2] Chen et al. SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021
[3] Su et al. A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose. NeurIPS, 2021

Ablation – Joint Root-finding
Ø Surface rendering cannot learn geometry 

with abrupt depth changes.
Ø Uniform sampling results in discretized 

artifacts
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Advantages
Ø Photorealistic Rendering and Detailed 

Geometry
Ø Generalizes to Out-of-distribution Poses
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Fig. 3: Generalization to Unseen Poses on the testing poses of ZJU-MoCap.
A-NeRF struggles with unseen poses due to the limited training poses and the
lack of a SMPL surface prior. Ani-NeRF produces noisy images as it uses an
inaccurate backward mapping function. Neural Body loses details, e.g. wrinkles,
because its conditional NeRF is learned in observation space. Our approach
generalizes well to unseen poses and can model fine details like wrinkles.

4.1 Generalization to Unseen Poses

We first analyze the generalization ability of our approach in comparison to
the baselines. Given a trained model and a pose from the test set, we render
images of the human subject in the given pose. We show qualitative results
in Fig. 3 and quantitative results in Table 1. We significantly outperform the
baselines both qualitatively and quantitatively. The training poses of the ZJU-
MoCap dataset are extremely limited, usually comprising just 60-300 frames of
repetitive motion. This limited training data results in severe overfitting for the
baselines. In contrast, our method generalizes well to unseen poses, even when
training data is limited.

We additionally animate our models trained on the ZJU-MoCap dataset us-
ing extreme out-of-distribution poses from the AMASS [43] and AIST++ [34]
datasets. As shown in Fig. 5, even under extreme pose variation our approach
produces plausible geometry and rendering results while all baselines show se-
vere artifacts. We attribute the large improvement on unseen poses to our root-

Image Synthesis on Unseen Poses and Views Geometry Reconstruction

Ablation – Learned LBS
Ø Learning backward LBS is does not 

generalize
Ø SMPL skinning weights gives suboptimal 

results.
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Fig. 4: Geometry Reconstruction. Our approach reconstructs more fine-
grained geometry than the baselines while preserving high-frequency details such
as wrinkles. Note that we remove an estimated ground plane from all meshes.

finding-based backward skinning, as the learned forward skinning weights are
constants per subject, while root-finding is a deterministic optimization process
that does not rely on learned neural networks that condition on inputs from the
observation space. More comparisons can be found in Appendix H.2, H.3.

4.2 Geometry Reconstruction on Training Poses

Next, we analyze the geometry reconstructed with our approach against recon-
structions from the baselines. We compare to the pseudo-ground-truth obtained
from NeuS [76]. We show qualitative results in Fig. 4 and quantitative results
in Table 2. Our approach consistently outperforms existing NeRF-based human
models on geometry reconstruction. As evidenced in Fig. 4, the geometry ob-
tained with our approach is much cleaner compared to NeRF-based baselines,
while preserving high-frequency details such as wrinkles.

4.3 Novel View Synthesis on Training Poses

Lastly, we analyze our approach for novel view synthesis on training poses. Ta-
ble. 3 provides a quantitative comparison to the baselines. While not the main

AN [3] AniN [4] NB [5] Ours AN AniN NB Ours
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Fig. 5: Qualitative Results on Out-of-distribution Poses from the
AMASS [43] and AIST++ [34] datasets. From top to bottom row: Neural Body,
Ani-NeRF, our rendering, and our geometry. Note that Ani-NeRF requires re-
training their backward LBS network on novel pose sequence. We did not show
A-NeRF results as it already produces severe overfitting e↵ects on ZJU-MoCap
test poses. For more qualitative comparisons, please refer to the Supp. Mat.
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Fig.H.3: Additional Generalization Results on Out-of-distribution
Poses. From top to bottom: Neural Body, Ani-NeRF, ours, and our geometry.

Out-of-distribution generalization of our approach
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Ani-NeRF learns a canonical NeRF model and a backward LBS network which
predicts residuals to the deterministic SMPL-based backward LBS. Consequently,
the LBS network needs to be re-trained for each test sequence. A-NeRF em-
ploys a deterministic backward mapping with bone-relative embeddings for query
points and only uses keypoints and joint rotations instead of surface models (i.e.
SMPL surface). For the detailed setups of these baselines, please refer to Ap-
pendix E.

Benchmark Tasks: We benchmark our approach on three tasks: generalization
to unseen poses, geometry reconstruction, and novel-view synthesis. To analyze
generalization ability, we evaluate the trained models on unseen testing poses.
Due to the stochastic nature of cloth deformations, we quantify performance via
perceptual similarity to the ground-truth images with the LPIPS [91] metric.
We report PSNR and SSIM in Appendix G. We also encourage readers to check
out qualitative comparison videos at https://neuralbodies.github.io/arah/.

For geometry reconstruction, we evaluate our method and baselines on the
training poses. We report point-based L2 Chamfer distance (CD) and normal
consistency (NC) wrt. the pseudo-ground-truth geometry. During the evaluation,
we only keep the largest connected component of the reconstructed meshes. Note
that is in favor of the baselines as they are more prone to producing floating blob
artifacts. We also remove any ground-truth or predicted mesh points that are
below an estimated ground plane to exclude outliers from the ground plane
from the evaluation. For completeness, we also evaluate novel-view synthesis
with PSNR, SSIM, and LPIPS using the poses from the training split.

Table 1: Generalization to Unseen
Poses. We report LPIPS [91] on syn-
thesized images under unseen poses
from the testset of the ZJU-MoCap
dataset [60] (i.e. all views except 0, 6,
12, and 18). Our approach consistently
outperforms the baselines by a large
margin. We report PSNR and SSIM
Appendix G.

Metric NB AniN AN Ours

LPIPS # 0.143 0.159 0.199 0.107

SSIM " 0.897 0.892 0.863 0.911

Table 2: Geometry Reconstruc-
tion. We report L2 Chamfer Distance
(CD) and Normal Consistency (NC)
on the training poses of the ZJU-
MoCap dataset [60]. Note that AniN
and AN occasionally produce large
background blobs that are connected
to the body resulting in large devia-
tions from the ground truth.

Metric NB AniN AN Ours

CD # 1.560 2.251 3.351 0.917

NC " 0.652 0.518 0.647 0.772

4.1 Generalization to Unseen Poses

We first analyze the generalization ability of our approach in comparison to
the baselines. Given a trained model and a pose from the test set, we render
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Experiments
Ø We achieve clean and detailed geometry reconstruction, thanks to the underlying SDF representation
Ø The learned forward skinning enables photorealistic volume rendering for unseen out-of-distribution poses

[4] Peng et al. Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies. ICCV, 2021
[5] Peng et al. Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans. CVPR, 2021


